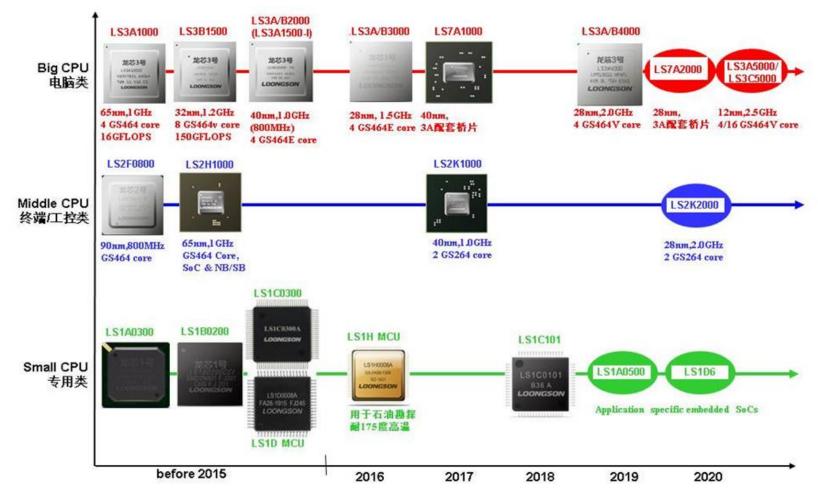


编译技术与编译教学新的发展契机

计卫星

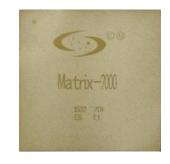
2019年11月22日




内容提纲

- 国产处理器芯片加速发展
- 华为方舟编译器初露头角
- GraalVM逐步成熟
- 关于编译教学的探究
- 总结

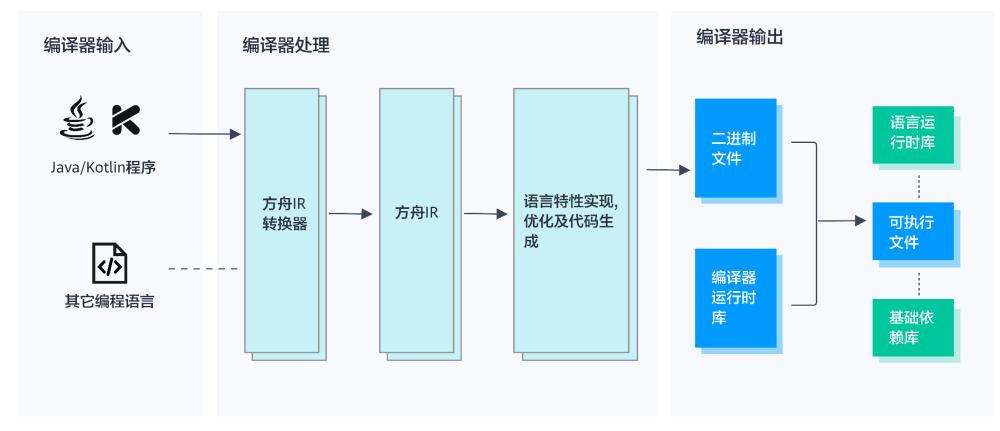
• 龙芯

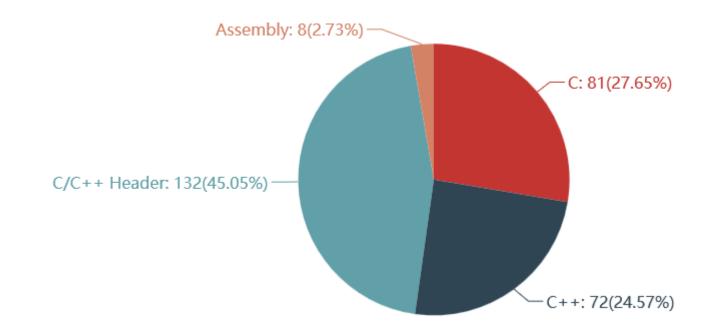

• 其他

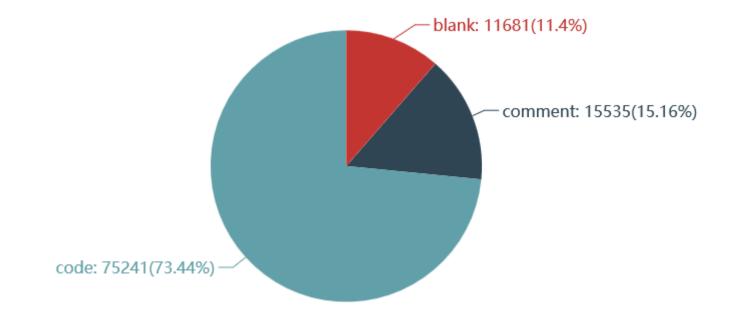
• 比特大陆

2016: 清微智 能-Thinker 2017: 地平线 视觉芯 片征程、 旭日

2019: 地平线-征程二 代 2019: 平头哥-含光 800AI 2019: 清微智 能-多模 态 TX510




2016: 寒武纪 1A 2018: 寒武纪 云端 MLU100 2019: 平头哥-玄铁910 2019: 清华-天 机芯



• 项目源码规模

• 项目源码规模

• 测试结果

序号	行数	结果	序号	行数	结果
1	11	√	6	10	√
2	31	\checkmark	7	24	\checkmark
3	24	\checkmark	8	7	\checkmark
4	44	\checkmark	9	19	\checkmark
5	73	\checkmark	10	17	\checkmark

序号	文件个数	行数
1	22	5, 059
2	83	52, 468

北京理工大字计算机字院 School of Computer Science and Technology,BIT

- 中间代码设计-MAPLE
 - 尽可能保留源码信息
 - 高层次树状层次化结构
 - 低层次与指令一一对应
 - 可扩展-支持新的语言和控制结构

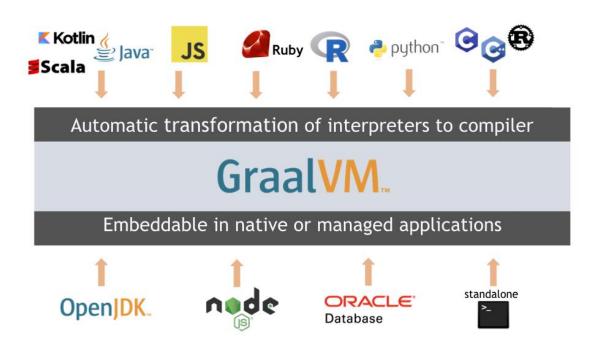
• 相关对比: MAPLE & JBC

```
int fact(int n) {
   if( n!=1 )
      return n * fact(n -1);
   else
      return 1;
```

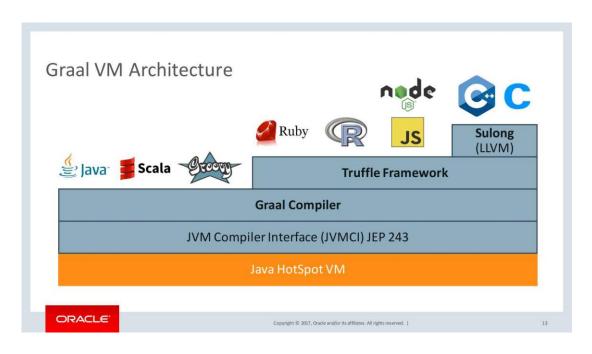
```
int &fact(var %n i32) i32 {
   if(ne i32 (dread i32 %n, constval i32 1)) {
      call $fact(sub i32 (dread i32 %n, constval i32 1))
      return (mul i32 (dread i32 %n, regread i32 %%retval))
   }
  return(constval i32 1)
```

```
int fact(int);
    Code:
       0: iload 1
       1: iconst 1
       2: if icmpeq
       5: iload 1
       6: aload 0
       7: iload 1
       8: iconst 1
       9: isub
      10: invokevirtual #5
// Method fact:(I) I
      13: imul
      14: ireturn
      15: iconst 1
      16: ireturn
```

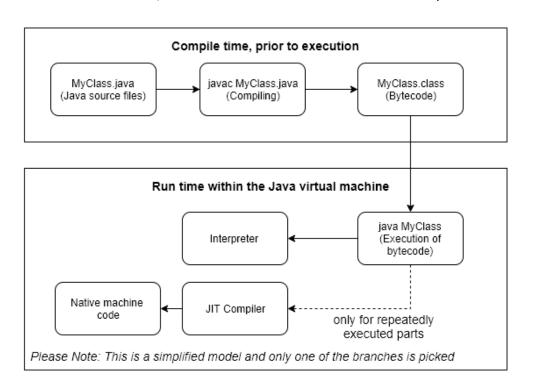

- 主要做法
 - -抽取语言共性,建立中间层API
- 主要原因
 - "That library is not available in my language. I need to rewrite it."
 - "That language would be the perfect fit for my problem, but we cannot run it in our environment."
 - "That problem is already solved in my language, but the language is too slow."

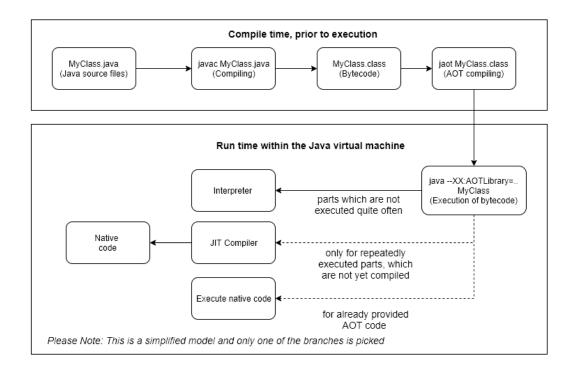


IronPython


• 多语言互操作


```
const express = require('express');
const app = express();
app. listen(3000);
app.get('/', function(req, res) {
 var text = 'Hello World!';
 const BigInteger = Java.type(
   'java.math.BigInteger');
 text += BigInteger.valueOf(2)
    .pow(100).toString(16);
 text += Polyglot.eval(
   'R', 'runif(100)')[0];
 res.send(text);
```




Polyglot

• JVM和GraalVM对比

https://rieckpil.de/whatis-graalvm/

• 代码提芯情况

• GraalVM项目负责人

Thomas Wuerthinger

Oracle Labs

Verified email at oracle.com - Homepage

Computer Science

TITLE	CITED BY	YEAR
One VM to rule them all T Würthinger, C Wimmer, A Wöß, L Stadler, G Duboscq, C Humer, Proceedings of the 2013 ACM international symposium on New ideas, new	213	2013
Self-optimizing AST interpreters T Würthinger, A Wöß, L Stadler, G Duboscq, D Simon, C Wimmer Acm Sigplan Notices 48 (2), 73-82	127	2012
Dynamic code evolution for Java T Würthinger, C Wimmer, L Stadler Proceedings of the 8th International Conference on the Principles and	82	2010
An intermediate representation for speculative optimizations in a dynamic compiler	81	2013

GET MY OWN PROFILE

Cited by		VIEW ALL
	All	Since 2014
Citations	1387	1174
h-index	19	18
i10-index	33	29
		320
	ш	160
. 1	ш	80
2012 2012 2014	2015 2016 2017 2	019 2010

学计算机学院

School of Computer Science and Technology, BIT

• 林茨大学

Team

Oracle Labs @ JKU

Thomas Würthinger (lead) Peter Hofer Florian Angerer Danilo Ansaloni Stefan Anzinger **Daniele Bonetta Matthias Grimmer** Christian Häubl

Roland Schatz Lukas Stadler **Christian Wirth** Andreas Wöß

PhD students

Benoit Daloze Josef Eisl Thomas Schatzl David Leopoldseder Manuel Rigger


> Hanspeter Mössenböck (supervisor)

Graduate students Former researchers

Josef Haider Jacob Kreindl Raphael Mosaner **Daniel Pekarek Thomas Pointhuber**

Thomas Feichtinger Thomas Kotzmann Gilles Duboscq Miguel Garcia Reem Hourieh **Christian Humer Christian Huber Christos Kotselidis**

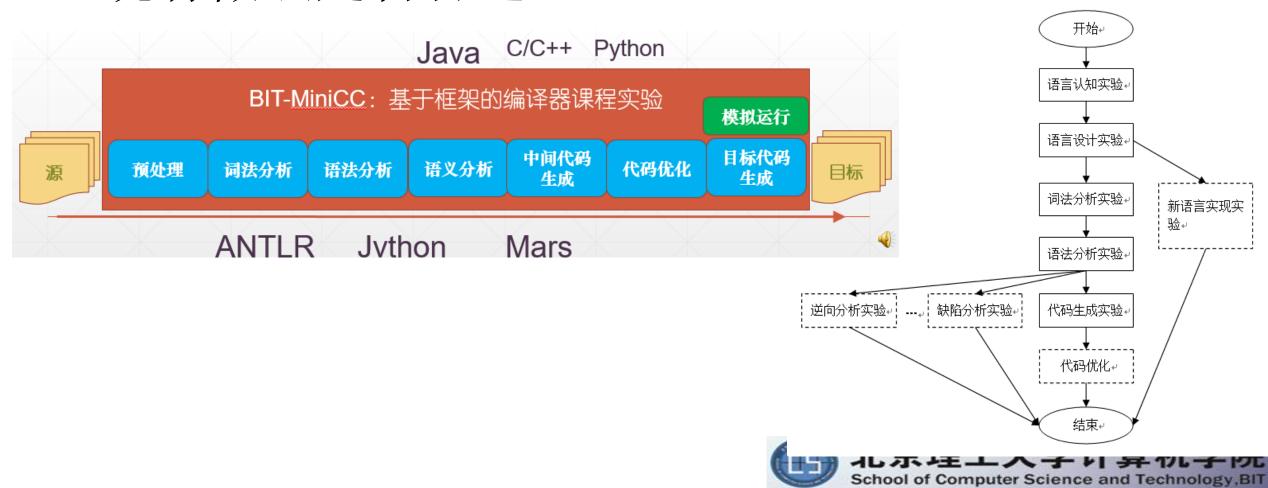
Michael Pfeiffer Stefan Rumzucker Christoph Schmid Bernhard Urban **Christian Wimmer**

The team at the JVM workshop at ETH in September 2014

- 个人经历
 - GCC/LLVM
 - Determinism Parallel Ruby
 - 基于QEMU获取trace
 - 代码分析
 - 算法优化
 - GraalVM
 - BIT-MiniCC/MiniCCompiler
 - **—** ...

- 主要的问题
 - 玩具型与工业实用型?
 - 传统语言与新语言?
 - 国外开源与国内自主可控?

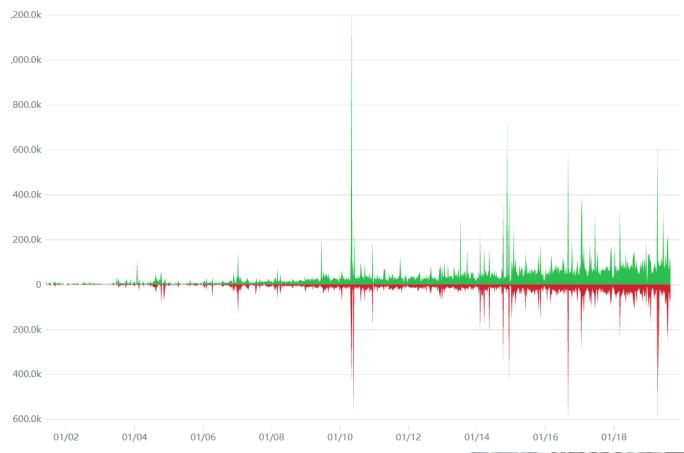
- 为什么他们可以
 - GCC/LLVM
 - RISC-V + Chisel
 - GraalVM
 - Pin-tool
 - ANTLR
 - **—** ...



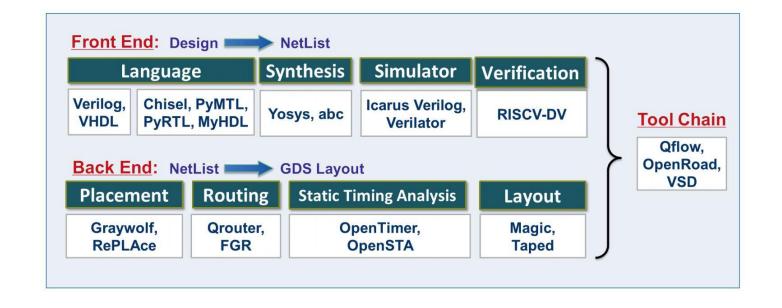
- 理想型实验
 - 模块可替换
 - 难度阶梯型
 - -10万行代码规模/近工业强度
 - 系统兼容性强
 - 对接到开源社区
 - 鼓励新语言探索

_ …

• 现有做法是否合适?


- 更好的建设途径
 - 专项支持: 申请项目建设
 - -产学合作:企业授权,案例设计与构造
 - 开源改造: 持续改造
 - 竞赛积累: 自我生长,持续改进
 - 教研相长:特色鲜明,单点突破
 - _ …

- 相关领域的经验
 - 系统能力(组成和体系结构)
 - 广泛参与, 持续改进, 成绩不断被推高
 - 并行计算
 - 国外厂商和国内厂商不同竞赛
 - 软件工程
 - 原型系统竞赛
 - 操作系统
 - -编译原理


• LLVM代码提交情况

- 新的机遇
 - 大数据近似计算
 - 硬件加速器
 - -量子计算
 - EDA工具链
 - 开源芯片

http://blog.sciencenet.cn/home.php?mod=space&uid=414166&do=blog&id=1203989

总结

- 国产芯片呈现百花盛开的局面
- 提升编译人才数量和质量需共同发力
- 编译技术
 - 超前布局、单点突破、超越式发展
- 编译教学
 - -产学合作、长期坚持、重视开源生态对接