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Abstract—In recent years, Transformer models have been
proven to have the remarkable ability of long-range dependen-
cies modeling. They have achieved satisfactory results both in
Natural Language Processing (NLP) and image processing. This
significant achievement sparks great interest among researchers
in 3D point cloud processing to apply them to various 3D tasks.
Due to the inherent permutation invariance and strong global
feature learning ability, 3D Transformers are well suited for point
cloud processing and analysis. They have achieved competitive
or even better performance compared to the state-of-the-art non-
Transformer algorithms. This survey aims to provide a compre-
hensive overview of 3D Transformers designed for various tasks
(e.g. point cloud classification, segmentation, object detection, and
so on). We start by introducing the fundamental components
of the general Transformer and providing a brief description
of its application in 2D and 3D fields. Then, we present three
different taxonomies (i.e., Transformer implementation-based
taxonomy, data representation-based taxonomy, and task-based
taxonomy) for method classification, which allows us to analyze
involved methods from multiple perspectives. Furthermore, we
also conduct an investigation of 3D self-attention mechanism
variants designed for performance improvement. To demonstrate
the superiority of 3D Transformers, we compare the performance
of Transformer-based algorithms in terms of point cloud classifi-
cation, segmentation, and object detection. Finally, we point out
three potential future research directions, expecting to provide
some benefit references for the development of 3D Transformers.

Index Terms—3D Transformers, Point Cloud Processing, Self-
attention Mechanism, Deep Neural Networks, Survey.

I. INTRODUCTION

Transformer models, as encoder-decoder architectures, have
become the dominant algorithms in Natural Language Process-
ing (NLP). Due to the impressive ability of long-range depen-
dencies modeling, they have been expanded to the field of
computer vision. As shown in Fig. [1} a standard Transformer
encoder generally consists of six main components: 1) input
(word) embedding; 2) positional encoding; 3) self-attention
mechanism; 4) normalization; 5) feed-forward operation; and
6) skip connection. For the 3D point cloud processing, the
Transformer decoder is designed for the dense prediction tasks
such as part segmentation and semantic segmentation. And
it usually adopts the PointNet++ [[1]] or U-Net design where

Dening Lu and Qian Xie contribute equally to this work and should be
considered co-first authors.

Dening Lu, Linlin Xu are with the Department of Systems Design Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
d62lu@uwaterloo.ca; linlinxu618 @gmail.com).

Minggiang Wei is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China (e-mail:
mingqgiang.wei@gmail.com).

Jonathan Li is with the Department of Geography and Environmental
Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-
mail: junli@uwaterloo.ca).

Qian Xie is with the the Department of Computer Science, University of
Oxford, Oxford OX1 3QD, U.K. (e-mail: gian.xie@cs.ox.ac.uk).

Transformer blocks are also incorporated. Here, we take an
input point cloud P = {pi,p2,p3,....,pn} € RN*P as
an example to describe each component in the Transformer
encoder. D is the feature dimension of the input point. D
equals three means only 3D coordinates of the point cloud are
taken as the input, while D equals six means 3D coordinates
and normal vectors are both taken as the input. The details of
the components mentioned above are as follows:

« Firstly, for the input embedding, P is projected to a high-
dimension feature space which can facilitate subsequent
learning. It can be achieved by a Multi-Layer Perception
(MLP) or other feature extraction backbone networks like
PointNet [2]. We denote the embedded feature map as
X € RN*C,

o Secondly, the positional encoding is used to capture the
geometrical information of the input data. Since the 3D
coordinates can be taken as natural position information,
the position encoding can be crafted manually by sine
and cosine functions or some normalization operations
[3l. Moreover, there also exist some position encoding
schemes with a trainable parameter matrix B [4]], [5],
which is more adaptive to different input data.

o Thirdly, the core component of the Transformer encoder
is the self-attention mechanism. The sum of the em-
bedded feature map X and positional encoding result
is taken as the input. And then it is projected to three
different feature spaces by three learnable weight matrices
Wgq € R*Ca W), € RE*x Wy € RE*C, where Ck
equals Cq. In this way, Query, Key, and V alue matrices
can be expressed as:

Query =X x Wq,
Key =X xWg, (1)
Value =X x Wy.

This operation is able to improve the expression ability
of the self-attention mechanism. Given the Query, Key,
and Value matrices, an attention map can be expressed
as follows:

Qx KT
VCx
where @, K,V mean the Query, Key, and Value ma-
trices respectively, “x” means the matrix multiplication.
As we can see, the attention map with the size of N x N
measures the similarity of any two input points, so it is
also called the similarity matrix. Then the attention map
and Value matrix are multiplied to generate the new
feature map F, with the same size as X. Each feature
vector in F' is obtained by computing a weighted sum of
all input features, so it is able to establish connections

Attentionmap = Softmax( ), ()
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Fig. 1: Illustration of the Transformer encoder architecture.

with all input features. And this is the reason why
Transformers are good at global feature learning.

o Fourthly, a normalization layer is placed before and after
the feed-forward layer, performing the standardizing and
normalizing operations to feature maps. There are two
kinds of normalization methods used in this layer: Lay-
erNormalization or BatchNormalization. The former is
commonly used in Natural Language Processing (NLP),
while the latter is commonly used in computer vision like
2D or 3D data processing.

« Fifthly, a feed-forward layer is added to enhance the rep-
resentation of the attention features. Generally, it consists
of two fully-connection layers with a RELU function.

« Finally, a skip connection is used to build the connection
between the input and output of the self-attention module.
There have been many self-attention variants using var-
ious skip connection forms [6]—[8]], which we will give
more details in Sec. [Vl

Note that there also are some 3D Transformers that do not
include all these six components completely. For example,
early 3D Transformer networks like Point Attention (P-A)
network [6] and Attentional ShapeContextNet [[7] do not have
the positional encoding module. They focus on applying the
self-attention mechanism to 3D point cloud processing. Point
Cloud Transformer (PCT) [8] proposes a neighbor embed-
ding mechanism achieved by EdgeConv [9]. This mechanism
incorporates the positional encoding into the input embed-
ding module. Since the self-attention mechanism is the core
component of Transformers, we also incorporate the methods
mainly utilizing the self-attention mechanism for point cloud
processing into the 3D Transformer family.

Transformer models have been introduced to image process-
ing widely, and achieved satisfying results for various tasks,
such as image segmentation [[10]], object detection [11]] and
tracking [[12f]. Vision Transformer (ViT) [[13]] first proposes a
pure Transformer network for image classification. It achieves
excellent performance compared with the state-of-the-art con-
volutional networks. Based on ViT, there are massive Trans-
former variants proposed for image classification [14]-[17],
segmentation [[18]-[20], object detection [11]], [15], [21]], [22]f],
and other vision tasks. Moreover, various Transformer ar-
chitectures are proposed for performance improvement, such
as convolutions+Transformers [16]], multi-scale Transformers
[17], and self-supervised Transformers [23]]. There also have
been several surveys [24]-[26] proposed to categorize all in-
volved 2D Transformers into multiple groups. The taxonomies
they use are usually algorithm architecture-based taxonomy

and task-based taxonomy.

Due to the remarkable global feature learning ability and
order-independent operations, Transformer architectures have
also been applied to 3D point cloud processing and analysis.
As shown in Fig. 2] a number of 3D Transformer backbones
are proposed for point cloud classification & segmentation
[41, 18}, [30], [33[I, [66], [67], detection [31], [SO], tracking
[52]-[54], registration [S5]—[59], [68], [69], completion [46],
[162]-[65]), [70] an so on. Moreover, 3D Transformer net-
works have also been applied to various practical application
fields, such as medical data analysis [33] and autonomous
driving [71], [72]]. Therefore, it is necessary to conduct
a systematic survey for 3D Transformer works. Recently,
several 3D Transformer/Attention related reviews have been
published. For instance, Khan et al. [25] review the vision
Transformers according to the architecture- and task-based
taxonomies. However, it mainly focuses on Transformers on
2D image analysis, and only provides a brief introduction of
3D Transformer networks. Qiu et al. [73[] introduces several
3D self-attention mechanism variants, and conducts a detailed
comparison and analysis for them on SUN RGBD [74] and
ScanNetV2 datasets [[75]]. However, a comprehensive survey
of Transformer models in 3D point clouds has not been
conducted so far. This survey aims to provide a comprehensive
investigation of 3D Transformers, based on the existing review
works above. As shown in Fig. 3] we design three different
taxonomies: 1) Transformer implementation-based taxonomys;
2) data representation-based taxonomy; and 3) task-based
taxonomy. In this way, we are able to analyze Transformer
networks from multiple perspectives. There could be an inter-
section between different categories. Taking Point Transformer
(PT) [4] as an example: 1) in terms of the Transformer
implementation, it belongs to the local Transformer category,
operated in the local neighborhood of the target point cloud; 2)
in terms of the data representation, it belongs to the multi-scale
point-based Transformer category, extracting the geometrical
and semantic features hierarchically; 3) in terms of the 3D
task, it is designed for point cloud classification and segmenta-
tion. Additionally, we also conduct an investigation of different
self-attention variants in 3D point cloud processing. We expect
to provide some benefit references for the development of
Transformer-based networks.

The major contributions of this survey can be summarised
as follows:

o This is the first survey paper, to the best of our knowl-

edge, that focuses on comprehensively covering Trans-
formers in 3D point cloud processing and analysis.



« This paper investigates a series of self-attention variants
in 3D point cloud processing. It introduces novel self-
attention mechanisms that aim at improving the perfor-
mance and efficiency of 3D Transformers.

o This paper conducts brief comparisons and analysis of
Transformer-based methods on several 3D tasks, in-
cluding 3D shape classification and 3D shape/semantic
segmentation, and 3D object detection on several public
benchmarks.

e This paper can provide the readers with the SOTA
methods, since the most recent and advanced progress
of Transformers on 3D point clouds is provided.

The paper is organized into six sections after the Introduc-
tion. Sec. [[I} [} and [[V] design three different taxonomies for
3D Transformer classification. Sec. [V] reviews different self-
attention variants which are proposed to improve the perfor-
mance of Transformers. Sec.[VI|makes a brief comparison and
analysis of the involved 3D Transformer networks. Lastly, Sec.
VIl summarizes our survey work, and points out three potential
future directions for 3D Transformers.

II. TRANSFORMER IMPLEMENTATION

In this section, we broadly categorize 3D point cloud
Transformers from multiple perspectives. Firstly, in terms of
the operating scale, 3D Transformers can be divided into
two parts: Global Transformers and Local Transformers (Sec.
[-A). The operating scale represents the scope of the algo-
rithm in the point cloud, such as the global domain or the
local domain. Secondly, in terms of the operating space, 3D
Transformers can be divided into Point-wise Transformers and
Channel-wise Transformers (Sec. [[I-B). The operating scale
represents the dimension in which the algorithm is operated,
such as the spatial dimension or the channel dimension. Lastly,
we review efficient Transformer networks which are designed
to reduce the computational cost (Sec[lI-C).
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Fig. 2: Applications of Transformers in 3D point cloud pro-
cessing.

A. Operating Scale

According to the operating scale, 3D Transformers can
be divided into two parts: Global Transformers and Local
Transformers. The former means that Transformer blocks are
applied to all the input points for global feature extraction,
while the latter means that Transformer blocks are applied in
a local patch for local feature extraction.

1) Global Transformers: There are many existing works
(51081, 1271, 1291, [33], [34], [48], focusing on global
Transformer studying. For a global Transformer block, each
new output feature in F' can establish connections with all
input features X, making it permutation-invariant and capable
of learning the global context features [8].

Similar to the PointNet [2] structure, Guo et al. [8] propose
Point Cloud Transformer (PCT), a pure global Transformer
network. Taking the 3D coordinates as the input P, PCT first
proposes a neighbor-embedding architecture to map the point
cloud into a high dimensional feature space. This operation
can also incorporate local information into the embedded
features. And then these features are fed into four stacked
global Transformer blocks to learn semantic information. The
global features are finally extracted by a global Max and
Average (MA) pooling for classification and segmentation.
Moreover, PCT designs an improved self-attention module,
named Offset-Attention (OA), inspired by the Laplacian matrix
in Graph convolution networks [77]. We detail the structure of
the OA module in Sec. It is able to sharpen the attention
weights and reduce the influence of noise. The state-of-the-art
performance of PCT on various tasks proves that Transformers
are suitable for 3D point cloud processing.

Unlike the single scale of PCT, Han et al. present
a Cross-Level Cross-Scale Cross-Attention Transformer net-
work, named 3CROSSNet. Firstly, it performs Farthest Point
Sampling (FPS) algorithm [I]] on the raw input point cloud
to obtain three point subsets with different resolutions. Sec-
ondly, it utilizes stacked multiple shared Multi-Layer Per-
ception (MLP) modules to extract local features for each
sampling point. Thirdly, it applies Transformer blocks to each
point subset for global feature extraction. Finally, the Cross-
Level Cross-Attention (CLCA) module and Cross-Scale Cross-
Attention (CSCA) module are proposed to build connections
between different-resolution point subsets and different-level
features for long-range inter- and intra-level dependencies
modeling.

Yu et al. propose a BERT-style pre-training strategy
for 3D global Transformers, which generalizes the concept of
BERT to 3D point cloud processing. Taking local patches
as the input, they first utilize the mini-PointNet [2]] for the
input embedding, following ViT [13]. And then they design a
point cloud Tokenizer with a discrete Variational AutoEncoder
(dVAE) to convert the embedded points into discrete point
tokens for pre-training. The Tokenizer network is achieved
by DGCNN [9] for meaningful local information aggregating,
and is learned through dVAE-based point cloud reconstruction.
During pre-training, the point embeddings with some masked
tokens are fed into the Transformer encoder. Supervised by
the point tokens generated by the Tokenizer, the encoder
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can be trained to recover the corresponding tokens of the
masked locations. The authors have conducted comprehensive
experiments to show that the BERT-style pre-training strategy
is able to improve the performance of the pure Transformer
in point cloud classification and segmentation.

2) Local Transformers: Unlike global Transformers, local
Transformers [4]], [30], [31]], [38] aim to achieve feature
aggregation in the local patch instead of the entire point cloud.

Point Transformer (PT) [4]] adapts the PointNet++ [
hierarchical architecture for point cloud classification and
segmentation. It focuses on local patch processing, and re-
places the shared MLP modules in PointNet++ with local
Transformer blocks. PT has five local Transformer blocks
operated on progressively downsampled point sets. Each block
is applied within KNN local neighborhoods around sampled
points. Especially, the self-attention operator that PT uses is
the vector attention [80] instead of the scalar attention. The
former has been proven to be more effective for point cloud
processing, since it supports channel-wise attention weight
assignment, not just assigning one weight to a whole feature
vector. Please refer to Sec. for the specific expression of
the vector attention.

Similarly, Local Feature Transformer Network (LFT-Net)
[30] also proposes to increase the expression ability of local
fine-grained features. It consists of four stacked local Trans-
former and Trans-pool blocks, so the local features can be
continuously aggregated into the global features. There are two
main differences between LFT-Net and PT. One is that LFT-
Net proposes a trans-pooling model, instead of commonly-
used symmetry functions like max/mean/sum pooling. This
model is able to alleviate the feature discarding. Another is that
LFT-Net applies multi focal-loss instead of the standard cross-
entropy loss function. Such loss can address the problems of
class imbalance and weak learning ability for complex regions
in the semantic segmentation task. It reshapes the standard
cross-entropy loss by adding a class-based weight and a decay
coefficient, which are able to balance the data distribution, and
enhance the impact of the low-accuracy class on the loss.

Pan et al. [31]] propose Pointformer to combine the local
and global features both extracted by Transformer blocks for
3D object detection. It has three kinds of main blocks: a Local
Transformer (LT) block, a Global Transformer (GT) block and
a Local-Global Transformer (LGT) block. Firstly, the LT block
applies the dense self-attention operation in the neighborhood
of each centroid point generated by FPS [[1]]. Secondly, taking
the whole point cloud as the input, the GT block aims to learn
global context-aware features via the self-attention mechanism.
Lastly, the LGT block adopts a multi-scale cross-attention
module, to build connections between local features from the
LT and global features from the GT. Specifically, the LGT
block takes the output of the LT as query, and the output of the
GT as key and value to conduct the self-attention operation. In
this way, all centroid points can be utilized to integrate global
information, which leads to effective global feature learning.

Inspired by Swin Transformer [17]], Lai et al. [47] propose
Stratified Transformer for 3D point cloud segmentation. It
splits the point cloud into a group of non-overlapping cu-
bic windows via 3D voxelization and performing the local

Transformer operation in each window. Stratified Transformer
also follows the encoder-decoder architecture. The encoder is
a hierarchical structure consisting of multiple stages, where
each stage has two successive Transformer blocks. The former
block utilizes a Stratified Self-Attention (SSA) to capture
the long- and short-range dependencies. And the latter block
utilizes a Shifted SSA to further strengthen the connec-
tions between different independent windows, following Swin
Transformer [17]]. Specifically, to solve the issue that the local
Transformer is weak in capturing global information, SSA
generates the dense local key points and sparse distant key
points for each query point. The former is generated in the
window that the query point belongs to, while the latter is
generated in a larger window by downsampling the entire
input point cloud. In this way, the receptive field of the query
point is not limited in the local window, allowing SSA to
build the long-range contextual dependencies. Additionally,
Stratified Transformer performs a KPConv [81]] embedding in
the first stage to extract the local geometric information of
the input point cloud. This operation has been proven to be
effective in their ablation experiments.

B. Operating Space

According to the operating space, 3D Transformers can
be divided into two categories: Point-wise Transformers and
Channel-wise Transformers. The former is to measure the
similarity among input points, while the latter is to distribute
attention weights along channels without being concerned by
the unorderedness of point clouds [36]. Generally, according
to Eq.[2} the attention maps of these two kinds of Transformers
can be expressed as:

x KT
VCk
QT x K )

VCx 7
where the size of Point — wise Attn is N x N, while the
size of Channel — wise Attn is Cx x Cgk.

1) Point-wise Transformers: Point-wise Transformers aim
to investigate the spatial correlation among points and learn
the long-range context-dependent representation. The output
feature map of point-wise Transformers can be formulated as
a weighted sum of all input features. It spatially describes the
long-range contextual dependencies [35]]. Since global Trans-
formers and local Transformers in Sec. are distinguished
by the spatial operating scale, i.e., the whole point cloud or
a local patch, all involved methods [4]—[8], [27], [29]-[31],
13311, (3411, [38]I, [47], [48],, [76] in Sec.[[I-A] can be considered
as point-wise Transformers. Apart from these methods, point-
wise Transformers are also widely applied to other tasks.

Xu et al. [32] propose an encoder-decoder Transformer net-
work (TD-Net) for point cloud denoising. The encoder consists
of a coordinate-based input embedding module, an adaptive
sampling module and four stacked point-wise self-attention
modules. The outputs of the four self-attention modules are
concatenated together as the input of the decoder. Additionally,
the adaptive sampling approach can automatically learn the

Point — wise Attn = Softmaz( )s
3)

Channel — wise Attn = Softmazx(



offset of each sampling point generated by FPS [1]. This
operation allows the sampling points closer to the underlying
surface. The decoder is applied to construct the underlying
manifold according to the extracted high-level features. And
finally, a clean point cloud can be reconstructed by the
manifold sampling.

Yu et al. [33] propose 3D Medical Point Transformer
(3DMedPT) for medical point cloud analysis. Specifically,
it presents a hierarchical point-wise Transformer for clas-
sification and a uniform-scale point-wise Transformer for
segmentation. Especially, 3DMedPT introduces the convolu-
tion operation to the point-wise Transformer block. It adds
a local feature extraction module achieved by DGCNN [9]
before each Transformer block. Point Attention Network (P-
A) [6] and Pyramid Point Cloud Transformer (PPT) [4§]]
also have similar structures. Considering insufficient training
sample processing in the medical domain, 3DMedPT proposes
a special module named Multi-Graph Reasoning (MGR), to
enrich the feature representations.

2) Channel-wise Transformers: Different from point-wise
Transformers, the channel-wise Transformers [34[-[37], [66]
focus on measuring the similarity of different feature channels.
They are able to improve the context information modeling by
highlighting the role of interaction across different channels
[35]].

Han et al. [35] propose Dual Transformer Network (DT-
Net) for point cloud analysis, which applies the point-wise
Transformer and channel-wise Transformer operations simul-
taneously. After the point-wise and channel-wise features are
extracted respectively, they are concatenated via element-wise
sum operation to improve feature representation. Ablation
studies in [35] demonstrate that DT-Net with both point-
wise and channel-wise Transformer modules achieves the best
results, compared to that with only point-wise or only channel-
wise Transformers.

Qiu et al. [36] propose a back-projection CNN module for
local feature capturing, leveraging an idea of error-correcting
feedback structure. It designs a Channel-wise Affinity Atten-
tion (CAA) module for better feature representations Specif-
ically, the CAA module consists of two blocks: a Compact
Channel-wise Comparator (CCC) block and a Channel Affinity
Estimator (CAE) block. The CCC block can generate the
similarity matrix in the channel space, without being con-
cerned by the unorderedness of point clouds. The CAE block
further calculates an affinity matrix, in which an element with
a higher attention value represents the lower similarity of
the corresponding two channels. This operation can sharpen
the attention weights and avoid aggregating similar/redundant
information. In this way, each channel of the output feature
has sufficient intersection with other distinct ones, which has
been proven to be beneficial to the final results. We also detail
the CAA structure in Sec. [Vl

Instead of only using the feature channels, Transformer-
Conv proposed in [37]] combines both coordinate and feature
channels to design a novel channel-wise Transformer. Specif-
ically, the Query matrix is generated directly by the coor-
dinate information without any linear transformation, while
the Key matrix is generated by feature channels with an

MLP. And then the attention matrix is calculated by element-
wise multiplication rather than dot product. In this way, the
attention matrix is able to represent the relationship between
the coordinate channels and feature channels of each point.
Since all features come from the coordinate space, an element
with a higher value in the attention matrix tends to represent
that the corresponding feature channel is more faithful to the
coordinate space. After that, the Value matrix is expanded
from the Key matrix by MLP. And then the new feature
map, called the response matrix, can be obtained by element-
wise multiplication between the Value matrix and attention
matrix. The response matrix consists of the weighted feature
channels of all input points. Finally, the output features are
generated by applying a channel max-pooling operation to the
response matrix. The max-pooling plays a screening role and it
is able to select the most important channels, i.e., the channels
which fit the coordinate space best. Such channels have been
proven to be effective for point cloud analysis by the ablation
experiments.

C. Efficient Transformers

Despite the great success in point cloud processing, stan-
dard Transformers tend to cause high computation costs and
memory consumption because of massive linear operations.
Given an input point cloud with [V points, the computation and
memory complexities of the standard self-attention module are
quadratic on N, i.e., O(N3). This is the key drawback when
applying Transformers on large-scale point cloud datasets.

Recently, there are several 3D Transformers researching on
improving the self-attention module for higher computational
efficiency. For instance, Centroid Transformer [38] takes NV
point features as the input while outputs a smaller number
M of point features. In this way, the key information in the
input point cloud can be summarized in a smaller number of
the outputs (called centroids). Specifically, it first constructs
M centroids from N input points, by optimizing a general
“soft K-means” objective function. And then it uses the M
centroids and IV input points to generate the Query and Key
matrices respectively. The size of the attention map is reduced
from N x N to M x N, so the computational cost of the
self-attention is reduced from O(Nz) to O(NM). To further
save the computational cost, the authors apply a K-Nearest
Neighbor (KNN) approximation. This operation essentially
converts the global Transformer to the local Transformer. In
this case, the similarity matrix is generated by measuring the
relationships among each query feature vector and its K
neighbor key vectors, instead of N vectors. So the compu-
tational cost can be further reduced to O(NK). Similarly,
Cheng et al. [82] also propose PatchFormer to reduce the
size of the attention map. It first splits the raw point cloud
into M patches, and then aggregates the local feature in each
patch. The significant difference is that PatchFormer uses
M aggregated local features to generate Key matrix, while
Centroid Transformer uses M centroids to generate Query
matrix. In this way, the computational cost of the self-attention
in PatchFormer can also be reduced to O(NM).

Wang et al. [39] propose Light-weight Transformer Network
(LighTN) to reduce the computational cost in a different way.



LighTN aims to simplify the main components in the standard
Transformer, maintaining the superior performance of Trans-
formers while increasing the efficiency. Firstly, it removes the
positional encoding block because the input 3D coordinates
can be considered as a substitute for the positional encoding.
This operation eliminates the overhead of positional encoding
itself. Secondly, it utilizes a small-size shared linear layer as
the input embedding layer. And the dimensions of embedded
features are reduced by half compared to the computationally-
saving neighbor embedding setting in [8]. In this way, the
computational costs of the input embedding can be reduced.
Thirdly, it presents a single head self-correlation layer as the
self-attention module. The projection matrices of Wg, Wi,
and Wy are removed, to reduce learnable parameters for
high efficiency. Since the attention map is generated only by
the input self-correlation parameters, the self-attention module
is also named the self-correlation module, which can be
formulated as:
SA(X) = FCout(C(X))a
T
X xX )% X, “4)
VGO

where S A(x) represents the self-attention block, F'C,,; repre-
sents the linear transformation, softmax(x) is the activation
function, and C is the input feature dimension declared in
Eq. [2} Lastly, the authors build three linear layers (a standard
FFN block generally has two linear layers) in the Feed-
Forward Network (FFN) and use the expand-reduce strategy
[83] in the middle layer. So the negative impact caused by
the decreasing learnable parameters in the self-correlation
layer can be mitigated. By this means, LighTN is able to
guarantee the performance and the FFN only causes a slight
increase in the computational costs. Similarly, Group Shuffle
Attention (GSA) proposed in [40] also simplifies the self-
attention mechanism in its Transformer network. It integrates
the shared projection weight matrix and non-linearity function
into the self-attention mechanism (please see Sec. for
detailed description of GSA).

C(X) = softmax(

III. DATA REPRESENTATION

There are several forms of 3D data representation, such as
points and voxels, both of which can be used as the input of
3D Transformers. Since points can be represented by voxels,
several voxel-based approaches can also be performed on point
clouds, so as to 3D Transformers. According to different
input formats, we divide 3D Transformers into Voxel-based
Transformers and Point-based Transformers.

A. Voxel-based Transformers

Unlike images, 3D point clouds are generally unstructured,
and cannot be directly processed by traditional convolution
operators. However, 3D point clouds can be easily converted
into 3D voxels, which are structured like images. Thus, some
Transformer-based works [41]-[43]], [47] explore to trans-
form 3D point clouds into voxel-based representation. The
most general voxelization approach can be described as fol-
lows [84]: The bounding box of a point cloud is first regularly

divided into 3D cuboids via rasterization. Voxels containing
points are retained, generating the voxel representation of point
clouds.

Inspired by the ability of sparse convolution to process
voxel data fast [85], [86]], Mao et al. [42] first propose Voxel
Transformer (VoTr) backbone for 3D object detection. They
present the submanifold voxel module and the sparse voxel
module to extract features from non-empty and empty voxels
respectively. In both two modules, the Local Attention and
Dilated Attention operation are designed, on the basis of the
Multi-head Self-Attention mechanism (MSA), to maintain low
computational consumption for numerous voxels. As stated,
the proposed VoTr can be integrated into most voxel-based
3D detectors. To tackle the computation issue of Transformers
in voxel-based outdoor 3D detectors, Voxel Set Transformer
(VoxSeT) is proposed in [43] to detect outdoor objects in a set-
to-set fashion. Based on the low-rank characteristic of the self-
attention matrix, a Voxel-based Self-Attention (VSA) module
is designed by assigning a set of trainable “latent codes” to
each voxel, which is inspired by the induced set attention
blocks in Set Transformer [87].

Inspired by the effectiveness of voxel-based representation
on large-scale point clouds, voxel-based Transformers can
also be applied to large-scale point cloud processing. For in-
stance, Fan et al. [44] present Super light-weight Sparse Voxel
Transformer (SVT-Net) for large scale place recognition. They
design an Atom-based Sparse Voxel Transformer (ASVT)
and a Cluster-based Sparse Voxel Transformer (CSVT). The
former is used to encode short-range local relations, while the
latter is used to learn long-range contextual relations. Park et
al. [45] propose Efficient Point Transformer (EPT) for large-
scale 3D scene understanding from point clouds. To relieve
the problem of geometric information loss during voxelization,
they introduce the center-aware voxelization and devoxeliza-
tion operations. On this basis, Efficient Self-Attention (ESA)
layers are employed to extract voxel features. Their center-
aware voxelization can preserve positional information of
points in voxels.

B. Point-based Transformers

Although voxels are of regular format, the transformation to
voxels would lead to geometric information loss to some extent
and cause issues [1]], [2]]. The format of the point cloud is the
original representation, which preserves complete geometric
information of the input data. Thus, most Transformer-based
point cloud processing frameworks fall into this category. And
their algorithm architectures are usually designed in two main
groups: uniform-scale architecture [8]], [29], [46[, [59], [76]
and multi-scale architecture [4], [5l, [33], [35], [47], [48]].

1) Uniform Scale: Uniform-scale architectures usually keep
the scale of the point features constant during data processing.
The number of output features of each module is consistent
with the number of input features. The most representative
work is PCT [8]], which has been discussed in Sec. [[I-A] After
the input embedding stage, four global Transformer blocks
of PCT are directly stacked together to refine point features.
There is no hierarchical feature aggregation operation, which



facilitates the decoder designing for dense prediction tasks
like point cloud segmentation. And feeding all input points
into the Transformer block is beneficial to global feature
learning. However, uniform-scale Transformers tend to be
weak in extracting the local features due to the lack of the
local neighborhoods. And processing the whole point cloud
directly would lead to a high computation cost and memory
consumption.

2) Multi Scale: Multi-scale Transformers refer to those
with progressive point sampling strategies during feature ex-
traction, also called hierarchical Transformers. Point Trans-
former (PT) [4] is the pioneering one that introduces the multi-
scale structure to a pure Transformer network. Transformer
layers in PT are employed on progressively sampling point
sets. On one hand, sampling operations can accelerate the
computation of the whole network by reducing the parameters
of the Transformer. On the other hand, these hierarchical struc-
tures usually come with KNN-based local feature aggregation
operations. This local feature aggregation is beneficial to the
tasks that need fine semantic perception, such as segmentation
and completion. And the highly aggregated local features at
the last layer of the network can be taken as the global features,
which can be used for point cloud classification. Additionally,
there also exist many multi-scale Transformer networks [5]],
[33], [47]], [48] that utilize EdgeConv [9]] or KPconv [81] for
local feature extraction and utilize Transformers for global
feature extraction. In this way, they are able to combine
the strong local modeling ability of convolutions and the
remarkable global feature learning ability of Transformers for
better semantic feature representation.

IV. 3D TASKS

Similar to image processing [25[], 3D point cloud related-
tasks can also be divided into two main groups: high-level and
low-level tasks. High-level tasks involve semantic analysis,
which focuses on translating 3D point clouds to information
that people can understand. Low-level tasks, such as denoising
and completion, focus on exploring fundamental geometric
information. They are not directly related to human semantic
understanding but can indirectly contribute to high-level tasks.

A. High-level Task.

In the field of 3D point cloud processing, high-level tasks
usually include: classification & segmentation [4]], [7], [8],
12811301, (331, (351, [36], [38], (401, [41], [47], (82], [83],
[89], object detection [31]], [42], [43], [49]-[51], [66], [90],
[91] and tracking [S2]-[54], registration [S3[|—-[59], [68]], [69]
and so on. Here, we start by introducing classification &
segmentation tasks, which are very common and fundamental
research topics in the field of 3D computer vision.

1) Classification & Segmentation: Similar to image classi-
fication [92]-[95]], 3D point cloud classification methods aim
at classifying the given 3D shapes into specific categories, such
as chair, bed and sofa for indoor scenes, and pedestrian, cyclist
and car for outdoor scenes. In the field of 3D point cloud
processing, since the encoders of segmentation networks are

usually developed from classification networks, we integrate
these two tasks as one for introduction here.

Xie et al [7], for the first time, propose to introduce
the self-attention mechanism into the task of point cloud
recognition. Inspired by the success of shape context [96]
in shape matching and object recognition, the authors first
transform the input point cloud into a form of shape context
representation. It is comprised of a set of concentric shell
bins. Based on the proposed novel representation, they then
present the ShapeContextNet (SCN) to perform point feature
extraction. To automatically capture the rich local and global
information, a sot-product self-attention module is further
adopted on the shape context representation, resulting in the
Attentional ShapeContextNet (A-SCN).

Inspired by self-attention networks in image analysis [80],
[97] and Natural Language Processing (NLP) [78]], Zhao et
al. [4] design a vector attention-based Point Transformer layer.
A Point Transformer block is constructed on the basis of the
Point Transformer layer in a residual fashion. The encoder of
Point Transformer is constructed by only Point Transformer
blocks, pointwise transformations and pooling operation for
point cloud classification. Moreover, Point Transformer also
uses a U-Net structure for point cloud segmentation, where
the decoder is designed to be symmetrical with the encoder. It
presents a Transition Up module to recover the original point
cloud with semantic features from the downsampled point set.
Such module consists of a linear layer, batch normalization,
ReLU, and trilinear interpolation for feature mapping. Ad-
ditionally, a skip connection between the encoder block and
the corresponding decoder block is introduced to enhance the
interpolated features. With these carefully designed modules,
Point Transformer becomes the first model that reaches over
70% mloU (70.4%) for semantic segmentation on Area 5 of
S3DIS dataset [98]]. As for the task of shape classification on
ModelNet40 dataset, Point Transformer also achieves 93.7%
overall accuracy.

Point Cloud Transformer (PCT) [8] proposes to capture
long-range relationships among input points (i.e., global con-
text) for point cloud classification. Since PCT applies the
Transformer operation to all input points without downsam-
pling, it is easy to design a decoder for the segmentation
task. As discussed in Sec. the authors first use two
cascaded feed-forward networks to embed input points into
the high-dimension feature space. And then they employ four
Transformer blocks to improve the feature representation.
Moreover, inspired by the Laplacian matrix in Graph convolu-
tion networks [[77]], they design a novel Offset-Attention (OA)
mechanism to replace the standard self-attention for better
performance. Finally, PCT achieves 93.2% overall accuracy on
the ModelNet40 classification dataset, and 86.4% part-average
Intersection-over-Union on the ShapeNet part segmentation
dataset. The effectiveness of the proposed OA module is also
verified by the 1.0% overall accuracy improvement in point
cloud classification.

PointASNL [28] combines local information and global
information in parallel for point cloud understanding, inspired
by the non-local operation in images [99]]. Specifically, it first
proposes an attention-based Adaptive Sampling (AS) module



to replace the FPS algorithm [1]]. And then it designes a Local-
Nonlocal (LNL) module to extract local and global features
for each sampling point. The local features are aggregated
by employing appealing methods (e.g., PointNet++ [1], Point-
Conv [100]) in a local neighborhood, and the global features
are extracted by applying the self-attention mechanism to
all sampling points. Finally, a channel-wise summation with
a nonlinear convolution is used to fuse extracted local and
global features. After all, PointASNL reaches 93.2% overall
classification accuracy on ModelNet40 [[101].

Masked Point Modeling (MPM) [29] is proposed to help
pre-train pure Transformer-based models for point cloud clas-
sification. It is inspired by the concept of BERT [78] and
masked autoencoder [[102]]. Specifically, a point cloud is first
divided into several local point patches. And then a mini-
PointNet is utilized to get the embedded feature (which can
be regarded as tokens) for each patch. Like [29], some tokens
are randomly discarded (masked) and the rest are fed to the
Transformer network, to recover the masked point tokens.
The training procedure is totally self-supervised since the
masked point tokens have ground truth. With 8192 points
as input, Point-BERT can achieve 93.8% overall accuracy on
ModelNet40.

Dual Transformer Network (DTNet) [35] is proposed to
encode contextual dependencies between input points from
the perspectives of both position and channel for point cloud
classification and segmentation. Based on this idea, two par-
allel feature refinement branches are constructed. The first
one is a standard point-wise Transformer, which can capture
long-range spatial context dependencies among features. The
second branch is a channel-wise Transformer, measuring the
similarity of different channels, with the same architecture as
the first one. The final refined feature map is obtained via
element-wise sum operation on the outputs of the above two
branches.

In contrast to the standard self-attention mechanism, a
centroid attention mechanism [38]] takes NV inputs and outputs
M elements (M is smaller than N). The output elements
can be regarded as centroids of the input sequence. Please
see Sec. for the detailed description. The authors argue
that the standard self-attention can be seen as the special
case of their centroid attention when M equals N. For
point cloud processing, they propose Centroid Transformer by
stacking multiple self-attention layers and centroid attention
layers. Centroid Transformer reaches 93.2% overall accuracy
on ModelNet40. For the task of point cloud reconstruction,
the centroid attention block is demonstrated to be capable of
achieving better reconstruction results on ShapeNet part [103]]
and ShapeNet Corel3 dataset [104], with less network pa-
rameters than the Dynamic Routing module in 3D Capsule
Network [105]].

Given the fact that the Multi-Head Self-Attention (MSA)
operation is costly in point cloud analysis, Yang et al. [40]
design a lightweight yet high-performance Group Shuffle
Attention (GSA) module. The GSA is comprised of Group
Attention and channel shuffle [[106]]. In detail, the point feature
map is first divided into a small number of groups. And
then multi-head self-attention operations are performed within

each group, finally followed by the channel shuffle operation.
Note that since GSA utilizes a shared projection weight
matrix to generate the Query and Key matrices and uses
an ELU activation to generate the Value matrix, it is more
parameter-efficient than the standard MSA. As one of the self-
attention variants, the architecture of GSA is also detailed in
Sec. Equipped with GSA, Point Attention Transformers
(PATs) for point cloud reasoning are developed and show
promising results on tasks of shape classification, indoor scene
segmentation and gesture recognition.

Zhang et al. [41] propose a pure Transformer-based point
cloud learning backbone, taking 3D voxels as the input,
termed Point-Voxel Transformer (PVT). Inspired by the recent
Swin Transformer [17], a Sparse Window Attention (SWA)
operation is designed to perform the self-attention within non-
overlapping and shifted 3D voxel windows respectively. A
relative-attention (RA) operation is also introduced to compute
fine-grained features of points. With the above two designed
modules, PVT can take advantage of both point-based and
voxel-based networks in one pure Transformer architecture.
Similarly, Lai et al. [47] propose Stratified Transformer to
explicitly encode long-range contexts. It also extends Swin
Transformer [[17]] to point cloud processing by 3D voxeliza-
tion. The main difference from the PVT is that Stratified
Transformer takes both dense local points and sparse distant
points as the key vectors for each query vector. This operation
is beneficial to message passing among cubic windows and
further global information capturing. Both PVT and Stratified
Transformer achieve 86.6% ploU for part segmentation on
ShapeNet dataset. However, Stratified Transformer performs
better for semantic segmentation, surpassing PVT by 4.7%
mloU on S3DIS dataset.

To relieve the problem of the expensive computation cost,
Patch ATtention (PAT) [82] computes attention maps in linear
complexity to the input size. The core idea is that each input
point cloud (/N points) would be over-segmented into several
patches (M patches) via the K-Means algorithm. Compared
to the number of points N, the number of these segmented
patches M is much smaller. A feature map B € RM*P for
these patches is then computed and replaces the Key matrix
(¢ RN*DY in the traditional self-attention formula, where
D is the dimension of embedded feature space. In this way,
the computational complexity can be reduced from O(N?) to
O(NM). On the basis of the PAT, an efficient point cloud
processing framework, PatchFormer, is proposed. According
to experiments in [82], PatchFormer can achieve competitive
performance in point cloud classification, and is over 9x faster
than previous 3D Transformers.

Aiming at enhancing feature interactions between multiple
levels and scales, Han et al. [88] propose a Multi-level
Multi-scale Point Transformer (MLMSPT) for efficient point
representation learning. They combine the idea of feature
pyramid networks [[107] and the self-attention mechanism. The
input of the MLMSPT is a group of feature maps, which are
produced by an MLP-based point feature embedding network
on three point sets with different sampling resolutions. A Point
Pyramid Transformer block is then designed to extract multi-
scale representations. For each resolution branch, a Multi-



level Transformer (MLT) block is employed to encode rich
relationships among input points, by taking in a concatenated
feature map from multiple Point Pyramid Transformer layers.
After MLT, feature maps from three branches are then concate-
nated together and sent into a Multi-scale Transformer block to
extract contextual information from multiple scales, following
PF-Net [108]]. Cross-Level Cross-Scale Cross-Attention Net-
work (3CROSSNet) [27] also has the similar architecture, as
shown in Sec.

2) Object Detection: Thanks to the rapid development of
3D point cloud scanners, 3D object detection is becoming
a more and more popular research topic. Similar to the 2D
object detection task, 3D object detectors aim to output 3D
bounding boxes with point clouds as input data. Recently,
Carion et al. [11] introduces the first Transformer-based 2D
object detector, DETR. It proposes to combine Transform-
ers and convolutional neural networks (CNN) to eliminate
non-maximum suppression (NMS). Since then, Transformer-
related works have also shown a flourishing growth in the field
of point cloud-based 3D object detection.

On the basis of VoteNet [109], Xie et al. [49], [110],
for the first time, introduce the self-attention mechanism of
Transformers into the task of 3D object detection in in-
door scenes. They propose the Multi-Level Context VoteNet
(MLCVNet) to improve detection performance by encoding
contextual information. In their papers, each point patch and
vote cluster are regarded as tokens in Transformers. And
then the self-attention mechanism is utilized to strengthen the
corresponding feature representations via capturing relations
within point patches and vote clusters, respectively. Due
to the integration of the self-attention modules, MLCVNet
achieves better detection results than its baseline model on
both ScanNet [[75] and SUN RGB-D datasets [74]. Chen et
al. [90] propose PQ-Transformer to detect 3D objects and
predict room layouts simultaneously. The whole framework is
also based on VoteNet, and a Transformer decoder is utilized to
enhance proposal features. With the assistance of room layout
estimation and refined features by the Transformer decoder,
PQ-Transformer attains the mAP@0.25 of 67.2% on ScanNet.

To achieve effective feature learning, Pan et al. [31] pro-
pose a pure Transformer-based backbone, Pointformer, whose
architecture follows the U-Net fashion. As shown in Sec.
three Transformer-based blocks are introduced in Pointformer:
Local Transformer (LT), Local-Global Transformer (LGT) and
Global Transformer (GT). Similar to MLCVNet, these blocks
are designed to enhance feature representative with the aid
of encoding long-range dependencies of Transformers. The
proposed Pointformer improves detection performance on both
indoor datasets (SUN RGB-D [74] and ScanNet V2 [75]]) and
outdoor datasets (nuScenes [[111]] and KITTI [112]).

The above methods employ the hand-crafted grouping
scheme to get features for object candidates by learning from
points merely within the corresponding local regions. How-
ever, Liu et al. [50] argue that the point grouping operation
within limited regions tends to hinder the performance of 3D
object detection. Thus, they present a group-free framework
with the aid of the attention mechanism in Transformers. The
core idea is that the features of an object candidate should

come from all the points in the given scene, instead of a
subset of the point cloud. After obtaining object candidates,
their method first leverages a self-attention module to capture
contextual information between the object candidates. They
then design a cross-attention module to refine the object
features with the information of all the points. With the
improved attention stacking scheme, their detector achieves
the mAP@0.25 of 69.1% on the ScanNet dataset.

Inspired by DETR [11] in 2D object detection, an end-to-
end 3D DEtection Transformer network, termed 3DETR [51],
is first proposed to formulate 3D object detection as a set-
to-set problem. Borrowing ideas from both DETR [11]] and
VoteNet [109], 3DETR also follows the general encoder-
decoder fashion. In the encoder part, sampled points and the
corresponding features extracted by MLP are directly fed into
a Transformer block to refine the features. In the decoder
part, these features go through a parallel Transformer-fashion
decoder and are turned into a set of object candidate features.
These object candidate features are finally used to predict
3D bounding boxes. After all, 3DETR improves VoteNet by
9.5% APsq and 4.6% APs5 on ScanNetV2 and SUN RGB-D
respectively.

As known, images can provide complementing information
for object detection from 3D point clouds [113]. Wang et
al. [114]] focus on exploring the multi-modal fusion strategy.
They propose an end-to-end Transformer architecture to fuse
point clouds and images for 3D object detection in indoor
scenes, termed Bridged Transformer (BrT). Considering the
heterogeneous geometrics of point clouds and images, they
do not directly interact with each other by simply applying
attentions on them. Instead, point and image patch tokens
are both fed into the Bridged Transformer layers. And object
queries are utilized to bridge information communication be-
tween points and images. Benefiting from this bridged design,
BrT reaches 71.3% mAP@0.25 on ScanNetV2 validation set.

Apart from the above methods focusing on indoor scenes,
Sheng et al. [660] propose a Channel-wise Transformer based
two-stage framework (CT3D) to improve 3D object detection
performance in outdoor LiDAR point clouds. The input of
the channel-wise Transformer comes from a Region Proposal
Network (RPN). Moreover, the Transformer network consists
of two sub-modules: the proposal-to-point encoding module
and the channel-wise decoding module. The encoding module
first takes the proposals and their corresponding 3D points
as the input. And then it extracts the refined point features
through a self-attention-based block. The channel-wise decod-
ing module transforms the extracted features from the encoder
module into a global representation through a channel-wise
re-weighting scheme. And finally, Feed-Forward Networks
(FFNs) are performed for detection predictions. In this way,
CT3D achieves 81.77% AP in the moderate car category on
the KITTI test set.

In a similar paradigm to DETR [11]], Bai et al. [115]] propose
a LiDAR and Camera fusion based 3D object detector based
on Transformers, called TransFusion. In TransFusion, the
attention mechanism is employed to adaptively fuse features
from images. It aims to relieve the problem of bad associa-
tion between LiDAR points and image pixels established by



calibration matrices. CAT-Det [91] is also proposed to fuse
LiDAR point clouds and RGB images more efficiently for 3D
object detection performance boosting. A Pointformer and an
Imageformer are first introduced in the branches of the point
cloud and image respectively to extract multi-modal features.
A Cross-Modal Transformer (CMT) module is then designed
to combine the features from the above two streams. With the
performance of 67.05% mAP on the KITTI test split, CAT-
Det becomes the first multi-modal solution that significantly
surpasses LiDAR-only ones.

Temporal-Channel TRansformer (TCTR) [72] is proposed to
process 3D Lidar-based video for effective object detection in
autonomous driving. The key idea is based on the observation
that adjacent frames can provide contextual information to the
current frame. Instead of merely taking the current frame ¢
point cloud as input, it proposes to include the former 7" frames
to assist in object detection for frame ¢. Specifically, the input
raw point clouds are first transformed into images. And then
TCTR is designed to extract and aggregate features from mul-
tiple frames, by encoding the temporal-channel domain and
spatial-wise relationships along with the continuous frames.

3) Object Tracking: 3D object tracking takes two point
clouds (i.e., a template point cloud and a search point cloud)
as input. It outputs 3D bounding boxes of the target (template)
in the search point cloud. It involves feature extraction of point
clouds and feature fusion between template and search point
clouds.

Cui et al. [52] argue that most existing tracking approaches
do not consider the attention changes of object regions during
tracking. That is, different regions in the search point cloud
should contribute different importance to the feature fusion
process. Based on this observation, they present a LiDAR-
based 3D Object Tracking with a TRansformer network
(LTTR). This method is able to improve the feature fusion
of template and search point clouds by capturing attention
changes over tracking time. Specifically, they first build a
Transformer encoder to improve the feature representation of
template and search point clouds separately. And then they
employ the cross-attention mechanism to build a Transformer
decoder. It can fuse features from the template and search point
clouds by capturing relations between the given two point
clouds. Benefiting from the Transformer-based feature fusion
between template and search point clouds, LTTR reaches
65.8% mea Precision on KITTI tracking dataset. Zhou et
al. [53]] also propose a Point Relation Transformer (PRT)
module to improve feature fusion in their coarse-to-fine Point
Tracking TRansformer (PTTR) framework. Similar to LTTR,
PRT employs self-attention and cross-attention to encode
relations within and between point clouds respectively. The
difference is that PRT utilizes the Offset-Attention [8] to
relieve the impact of noise data. After all, PTTR surpasses
LTTR by 8.4% and 10.4% in terms of average Success and
Precision, becoming a new SOTA on the KITTI tracking
benchmark.

Unlike the above two approaches which focus on the
feature fusion step, Shan et al. [54] introduce a Point-Track-
Transformer (PTT) module to enhance the feature representa-
tion after the feature fusion step. Features from the fusion step

and the corresponding point coordinates are mapped into the
embedding space. A position encoding block is also designed
to capture positional features by the KNN algorithm and
a MLP layer. With the above two embedded semantic and
positional features as input, a self-attention block is finally
applied to get more representative features. To verify the
effectiveness of the proposed PTT, authors integrate it into the
seeds voting and proposal generation stages of the P2B [116]
model and get the PTT-Net. As demonstrated by experiments,
PTT-Net improves P2B by 9.0% in terms of Precision on
KITTI for the car category.

4) Registration: Given two point clouds as input, the aim
of point cloud registration is to find a transformation matrix
to align them.

Wang et al. [55] introduce the Transformer encoder into
the task of point cloud registration by designing their Deep
Closest Point (DCP) model. As normal, the input unaligned
point clouds are first sent to a feature embedding module,
such as PointNet [2] and DGCNN [9], to transfer 3D coor-
dinates into a feature space. A standard Transformer encoder
is then applied to perform context aggregation between two
embedded features. Finally, authors utilize a differentiable
Singular Value Decomposition (SVD) layer to compute the
rigid transformation matrix. DCP is the first work that employs
the Transformer model to improve the feature extraction of
point clouds in registration. With the same paradigm, Wang et
al. [56] also deploy Transformer layers to refine the point-wise
features extracted by EdgeConv [9] layers, capturing the long-
term relationship between point clouds. The resulted network,
termed STORM, achieves better performance than DCP for
partial registration on ModelNet40 dataset. Similarly, Fischer
et al. [57] also leverage multi-head self- and cross-attention
mechanism to learn contextual information between target and
source point clouds. But their method focuses on processing
outdoor scenes, e.g., the KITTI dataset [112].

To find more robust correspondences between two point
clouds, Fu et al. [58] present the first deep graph matching-
based framework (RGM) to perform robust point cloud reg-
istration, which is less sensitive to outliers. During the graph
establishment, they employ Transformer encoders to get the
soft edges of two nodes within a graph. With the generated
soft graph edges, better correspondences can be obtained
for the overlapping parts when registering partial-to-partial
point clouds. The effectiveness of the proposed Transformer-
based edge generator is demonstrated by performance drop on
ModelNet40 when replacing it with full connection edges and
sparse connection edges.

To address the problem of indistinct feature extraction
caused by the shallow-wide Transformer architecture, Chen
et al. [59] propose Deep Interaction Transformer (DIT) to
improve feature discrimination. They carefully design three
novel modules to perform feature extraction and correspon-
dence confidence evaluation. To get good representations of
each input point cloud, a Point Cloud Structure Extractor
(PSE) is presented. It employs the Transformer encoder to
model global relations, and proposes a Local Feature Integrator
(LFD) to encode structural information. The extracted features
(Fx,Fy) of two input point clouds are then fed into a



deep-narrow Point Feature Transformer (PFT), to establish
comprehensive associations. Moreover, they insert a positional
encoding network to encode relative position information be-
tween points. In such a way, feature representations (U x, Uy )
with richer information can be obtained. Given two features
and the established correspondences, a Geometric Matching-
based Correspondence Confidence Evaluation (GMCCE) is
designed to filter out bad correspondence with low confidence
values. With more representative features extracted by the
full Transformer network, DIT outperforms previous methods,
achieving 1.1e — 8 in terms of ¢;; 4 on clean point clouds of
ModelNet40 [101].

Recently, Yew et al. [|69]] argue that explicit feature matching
and outlier filtering via RANSAC in point cloud registration
can be replaced with attention mechanisms. They thus design
an end-to-end Transformer framework, termed REGTR, to
directly find point cloud correspondences. In REGTR, point
features from a KPconv [81] backbone are fed into several
multi-head self- and cross- attention layers for relationship
capturing. With the above simple design, REGTR becomes the
current state-of-the-art point cloud registration method on the
ModelNet40 [[101]] and 3DMatch [[117] datasets. Similarly, Qin
et al. [68]] also utilize the self- and cross-attention to find robust
superpoint correspondences in their GeoTransformer. In terms
of Registration Recall, both REGTR and GeoTransformer
achieve 92.0% on 3DMatch dataset. However, GeoTrans-
former surpasses REGTR by 10.2% on 3DLoMatch [118]
dataset.

5) Point Cloud Video Understanding: The 3D world around
us is consistent and dynamic in time, which cannot be
fully represented by traditional single-frame and fixed point
clouds. In contrast, point cloud videos, a set of point clouds
captured in a fixed frame rate, could be a promising data
representation of our real physical world. It is much more
important for intelligent systems to understand point cloud
videos to better interact with the world. Point cloud video
understanding involves processing a time sequence of 3D point
clouds which has a long-range relationship with each other.
Thus, Transformers could be a promising choice to process
point cloud videos, since they are good at dealing with global
long-range interactions.

Based on the above observation, Fan et al. [60] propose
Point 4D Transformer network, termed P4Transformer, to
process point cloud videos for action recognition. To extract
the spatial-temporal local features of a point cloud video,
the input data are first represented by a set of spatial-
temporal local areas. And then a point 4D convolution is used
to encode features for each local area. After that, authors
design a Transformer encoder to receive and integrate the
features of local areas via capturing long-range relationships
across the entire video. P4Transformer is successfully applied
into the task of 3D action recognition and 4D semantic
segmentation from point clouds. It achieves higher results
than PointNet++-based methods on many benchmarks (e.g.,
the MSR-Action3D [119], the NTU RGB+D 60 [120] and
120 [121] datasets for 3D action recognition, and the Synthia
4D [|86]] dataset for 4D semantic segmentation). PATransformer
demonstrates the effectiveness of Transformers on point cloud

video understanding.

B. Low-level Task.

The input data of low-level tasks is usually the raw scanned
point cloud with occlusion, noise, and uneven densities. Thus,
the final goal of low-level tasks is to get a high-quality
point cloud, which could contribute to high-level tasks. Some
typical low-level tasks include point cloud downsampling [39],
upsampling [34], denoising [32], [61]], completion [46], [62]—
[65], [[70] and so on.

1) Downsampling: Given a point cloud with N points,
downsampling methods aim at outputting a smaller size of
point cloud with M points, while remaining the geometric
information of the given point cloud. Leveraging the powerful
learning ability of Transformers, wang et al. [39] propose
Light-weight Transformer Network (LighTN), downsampling
point clouds in a task-oriented manner. As shown in Sec.
it first removes the position encoding, and then uses a small-
size shared linear layer as the embedding layer. Moreover, the
MSA module is replaced with a single head self-correlation
layer. Experimental results demonstrate the above strategies
significantly reduce the computational cost while preserving
the capability of feature learning. 86.18% classification accu-
racy can still be attained while only 32 points are sampled.
Moreover, the designed lightweight Transformer network is a
plug-and-play module, which can be easily inserted into other
related networks.

2) Upampling: Contrary to downsampling, upsampling
methods aim to output a point cloud with a bigger size than the
input point cloud. The upsampled points are expected to lie on
the underlying surfaces of the objects represented by the given
sparse point clouds. PU-Transformer [34] is the first work to
apply the Transformer-based model to the task of point cloud
upsampling. The core idea is to activate the strong capability
of Transformer encoders in point cloud feature representation
by designing two novel blocks in the Transformer encoders.
The first block is the Positional Fusion block (PosFus), which
aims at capturing local position-related information of point
cloud data. The second one is the Shifted Channel Multi-
head Self-Attention (SC-MSA) block. It is designed to address
the problem of the lack of connection between the outputs
of different heads in conventional MSA. Please see more
details about the SC-MSA in Sec. [Vl PU-Transformer shows
the promising potential of Transformer-based models in point
cloud upsampling.

3) Denoising: Denoising approaches take point clouds cor-
rupted by noise as the input, and output clean point clouds
by utilizing the local geometry information. Xu et al. [32]
propose Transformer-based Denoising Network (TDNet) for
point cloud in the encoder-decoder fashion. Taking each point
as a word, they improve NLP Transformer [3] to make it
suitable for point cloud feature extraction. The Transformer-
based encoder can map the input point cloud into a high-
dimensional feature space and further learn the semantic
relationship among points. With the extracted feature from the
encoder, the latent manifold of the input noise point cloud can
be obtained. Finally, a clean point cloud can be generated by
sampling each patch manifold.



Another category of point cloud denoising is to filter out
noise points directly from the input point clouds. For instance,
some Lidar point clouds could contain a huge number of vir-
tual (noise) points. These points are produced by the specular
reflections of glass or other kinds of reflective materials. To
detect these reflective noise points, Gao et al. [[61] first project
the input 3D LiDAR point cloud into a 2D range image. And
then a Transformer-based auto-encoder network is employed
to predict a noise mask to indicate the points coming from
reflection.

4) Completion: In most 3D practical applications, it is
usually difficult to get complete point clouds of objects or
scenes due to occlusion from other objects or self-occlusion.
This issue makes point cloud completion an important low-
level task in the field of 3D vision. The complete point cloud
contains more geometrical information about objects, which
can be used to help computers understand the physical world
better.

PoinTr proposed in [[62], for the first time, converts point
cloud completion to a set-to-set translation task. Specifically,
authors claim that the input point cloud can be represented
by a set of groups of local points, termed “point proxies”.
Taking a sequence of point proxies as the input, a geometry-
aware Transformer block is carefully designed to generate
the point proxies of the missing parts. In a coarse-to-fine
fashion, FoldingNet [122] is finally employed to produce
points based on the predicted point proxies. The geometry-
aware Transformer block is a plug-and-play module, which can
capture both the semantic and geometric relationship among
points. PoinTr attains 8.38 Average L1 Chamfer Distance (CD)
on the PCN dataset [123]].

Different from PointTr, Xiang et al. [63] propose to for-
mulate the task of point cloud completion as the growth
of 3D points in a snowflake-like fashion. Based on this
insight, SnowflakeNet is presented to focus on recovering fine
geometric details, such as corners, sharp edges and smooth
regions, of the complete point cloud. The core idea is to
combine Snowflake Point Deconvolution (SPD) layer with the
skip-Transformer to better guide the point splitting process.
SPD can generate multiple points from a given point. Skip-
Transformer is capable of capturing both contexts and spatial
information from the given point and the generated points.
With the skip-Transformer integrated, the SPD layers are
capable of modeling structure characteristics, thus producing
more compact and structured point clouds. Benefiting from the
snowflake-like idea and the skip-Transformer, SnowflakeNet
surpasses PoinTr by 1.17 Average L; Chamfer Distance (CD)
on the PCN dataset.

Due to the partial scanned data, robotic grasping methods
often suffer from wrong grasping estimation. To solve this
issue, Chen et al. [64] present a robotic grasping-oriented
shape completion model, termed TransSC. A Transformer-
based Multi-Layer Perception (TMLP) module is designed to
extract better point-wise feature representations. And then a
manifold-based decoder is employed to produce the complete
point clouds by decoding the point features. Lin et al. [46] also
leverage a Transformer encoder to improve feature representa-
tion in their point cloud completion network, termed PCTMA-

Net. Similar to TransSC, they claim that the Transformer-based
embedding network can extract more discriminate features for
each point than MLP-based networks. Liu et al. [70] also
integrate self-attention and cross-attention to enhance feature
extraction in their proposed dynamic Transformer-based point
cloud completion framework.

Instead of working directly on the point cloud, Vector
Quantized Deep Implicit Functions (VQDIF) proposed in [|65]]
introduces a novel 3D sparse representation. It converts the 3D
point cloud to a set of discrete 2-tuples. Accordingly, they de-
sign a VQDIF encoder and decoder to perform transformation
between the 3D point cloud and the proposed 2-tuples. The
sequences of 2-tuples features from partial observations can
then be fed into a Transformer-based autoregressive model,
i.e., ShapeFormer, to generate complete feature sequences.
Next, these sequences are then projected to a feature grid by
the VQDIF decoder. Finally, a 3D-Unet [124] is employed
to generate local deep implicit functions of objects’ whole
shapes.

V. 3D SELF-ATTENTION VARIANTS

Based on the standard self-attention module, there are many
variants proposed to improve the performance of Transformers
in 3D point cloud processing, as shown in Fig. f] and [3
According to Sec. we categorize the relevant variants into
two parts: Point-wise Variants and Channel-wise Variants.

A. Point-wise Variants

Point Attention (P-A) network [6] (Fig. f(a)) and Atten-
tional ShapeContextNet (A-SCN) network [7] (Fig. Ekb)) de-
sign different residual structures in their Transformer encoders.
The former strengthens the connection between the output and
input of the module, while the later establishes the relationship
between the output and the Value matrix of the module.
And relevant experiments have demonstrated that the residual
connection is necessary in order to learn a good model [7].

Inspired by the Laplacian matrix L = D — E in Graph
convolution networks [77[], Point Cloud Transformer (PCT) [8]]
further proposes an Offset-Attention (OA) module (Fig. c)).
It calculates the offset (difference) between the Self-Attention
(SA) features and the input features X by matrix subtraction,
which is analogous to a discrete Laplacian operation. Addi-
tionally, it refines the normalization of the similarity matrix by
replacing Scale + Softmax (SS) with Softmax + L1 Norm (SL)
operation. It is able to sharpen the attention weights and reduce
the influence of noise. Based on the Offset-Attention, Zhou et
al. [53] propose a Relation Attention Module (RAM) which
has a similar structure as the OA module. The difference is that
it first projects Query, Key and Value matrices into latent
feature spaces by linear layers. Then, instead of generating the
Attentionmap by multiplying the Query and Key matrices
directly, it applies the Lo normalization to the Query and Key
matrices. This operation can prevent the dominance of a few
feature channels with extremely large magnitudes. Ablation
experiments in [53] demonstrate that the Lo normalization is
able to improve the model performance.
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Point Transformer (PT) (Fig. Ekd)) introduces the vector
subtraction attention operator to its Transformer network,
replacing the commonly-used scalar dot-product attention.
Compared with the scalar attention, vector attention is more
expressive since it supports adaptive modulation of individual
feature channels, not just whole feature vectors. This kind of
expression appears to be very beneficial in 3D data processing
[4]. Point Transformer utilizes the subtraction-form vector
attention to achieve the local feature aggregation. The attention
map is generated by merely building the connections between
the centroid feature and its neighbor feature, instead of mea-
suring the similarity between any two point features within
a neighborhood. Additionally, 3D Convolution-Transformer
Network (3DCTN) conducts a detailed investigation on
self-attention operators in 3D Transformers, including the
scalar attention and different forms of vector attention.

As mentioned in Sec. [I-C| LighTN presents a self-
correlation module, to reduce the computational cost. As
shown in Fig. Eke), it eliminates the projection matrices, Wy,
Wk, and Wy, simultaneously in the self-attention mechanism.
Only the input self-correlation parameters are used to generate
attention features. According to Eq.[d] we can see that the self-
correlation mechanism generates a symmetry attention map
X - XT, which satisfies the permutation invariance in point
cloud processing [39]]. The authors also conduct a series of
ablation studies, removing different projection matrices, to
demonstrate the effectiveness of the proposed self-correlation
mechanism.

PU-Transformer proposes a Shifted Channel Multi-
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head Self-Attention (SC-MSA) block to improve the MSA
mechanism. Specifically, despite the rich information captured
by MSA, only feature dependencies within the same head can
be estimated, while lacking information propagation between
different heads. To address this issue, as shown in Fig. Ekf),
PU-Transformer applies a window (dashed square) shift along
the channels to ensure that any two consecutive splits have a
uniform overlap area. Compared with the independent splits
of the regular MSA, SC-MCA is able to enhance the channel-
wise relations in the output features.

Group Shuffle Attention (GSA) proposed in [40] has two
improvements compared with the standard MSA. The first one
is that GSA is a parameter-efficient self-attention mechanism.
It uses a shared projection matrix W to generate the Query
and Key matrices, and uses a non-linearity o to generate the
Value matrix:

Qx KT
Vo
where Q = K = X x W and C is the dimension of X. In this
way, GSA is able to reduce the computational costs of the self-
attention operation. The second one is that GSA introduces
channel shuffle to MSA, which enhances the information flow
between heads. As shown in Fig. f{g), unlike PU-Transformer
[34], it re-groups the channels by rewriting each point feature.

Attn, (X) = softmax( ) x o(X), 5)

B. Channel-wise Variants

Dual Transformer Network (DT-Net) proposes a
channel-wise MSA, applying the self-attention mechanism to
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the channel space. As shown in Fig. [[a), unlike the standard
self-attention mechanism, channel-wise MSA multiplies the
transposed Query matrix and Key matrix. By this means,
the attention map can be generated to measure the similarities
between different channels, as described in Eq. EI

As shown in Fig. Ekb), the Channel-wise Affinity Attention
(CAA) module [36] utilizes a similar approach, Compact
Channel-wise Comparator block (CCC), to generate the simi-
larity matrix between different channels. Moreover, it designs
a Channel Affinity Estimator block (CAE) to generate the
affinity matrix, strengthening the connection between distinct
channels and avoiding aggregating similar/redundant informa-
tion. The Value matrix is generated by an MLP layer, and
the final feature map is obtained by multiplying the affinity
matrix and Value matrix. Additionally, the CAA module uses
a regular skip connection between the input and output feature
map.

The Transformer-Conv module proposed in [37] learns the
potential relationship between feature channels and coordinate
channels. As shown in Fig. Ekc), The Query matrix and
Key matrix are generated by coordinates and features of
the point cloud respectively. And then the similarity matrix
can be produced by a relation function g (e.g., element-wise
multiplication) and channel softmax operation. Different from
the above methods, the V alue matrix in the Transformer-Conv
module is generated from the K ey matrix by linear projection.
This operation is able to establish a response relationship
between the Value matrix and similarity matrix. And such
a relationship can be captured by multiplying the similarity
matrix and Value matrix in an element-wise manner. Lastly,
the final feature map can be generated by using a channel
max-pooling and further 1 x 1 convolution.

VI. COMPARISON AND ANALYSIS

This section briefly gives an overall comparison and analysis
of 3D Transformers on several main-stream tasks, including
classification, part segmentation, semantic segmentation and
object detection.

A. Classification & Segmentation

3D point cloud classification and segmentation are two
fundamental yet challenging tasks, in which Transformers have
played a key role. Classification can most reflect the ability of
feature extraction of the networks. Thus, we first summarize
these 3D Transformers according to the classification task.
Table [I] shows the classification accuracy of different methods
on the ModelNet40 [[101]] dataset. For fair comparisons, input
data and input size are also shown. We use the Overall
Accuracy (OA) as the evaluation metric, which is widely
adopted.

From the table, we can see the recent proliferation of
Transformer-based point cloud processing methods since 2020,
when the Transformer architecture was first employed in
image classification by ViT [13]]. Due to the strong ability of
global information aggregating, Transformers rapidly assume
a leading position in this task. For the performance, most
3D Transformers achieve the classification accuracy of around
93.0%. The newest PVT [41]] pushes the limit to 94.0%,
which surpasses most non-Transformer algorithms of the same
period. As an emerging technology, the success of the Trans-
former in point cloud classification demonstrates its superiority
and great potential in the field of 3D point cloud processing.
We also present the results of several state-of-the-art non-
Transformer-based methods as reference. As can be seen, the
classification accuracy of the recent non-Transformer-based



TABLE I: A comparative analysis between involved point
cloud classification methods on the ModelNet40 [101]] dataset.
OA means overall accuracy. All results quoted are taken from
the cited papers. P = points, N = normals.

Method [ input input size  OA(%)
Non-Transformer
PointNet [2] P 1024 x 3 89.2
PointNet++ [[1] P 1024 x 3 90.7
PointNet++ [[1] P, N 5120 x 6 91.9
PointWeb [[125] P 1024 x 3 92.3
SpiderCNN [126] PN 1024 x 6 92.4
PointCNN [127]] P 1024 x 3 92.5
PointConv [100] P, N 1024 x 6 92.5
FPConv [128] P, N 1024 x 6 92.5
Point2sequence [129] P 1024 x 3 92.6
DGCNN [9] P 1024 x 3 92.9
KPConv [81] P 6800 x 3 92.9
InterpCNN [130] P 1024 x 3 93.0
ShellNet [131] P 1024 x 3 93.1
RSMix [132] P 1024 x 3 93.5
PAConv [133] P 1024 x 3 93.9
RPNet [134] P, N 1024 x 6 94.1
CurveNet [[135] P 1024 x 3 94.2
PointMLP [136] P 1024 x 3 94.5
Attention/Transformer
ShapeContextNet [[7] P 1024 x 3 90.0
PATs [40] P 1024 x 3 91.7
DTNet [35] P 1024 x 3 92.9
MLMSPT [88| P 1024 x 3 92.9
PointASNL [28] PN 1024 x 6 93.2
PCT [8] P 1024 x 3 93.2
Centroid Transformers [38] | P 1024 x 3 93.2
LFT-Net [30] P, N 2048 x 6 93.2
3DMedPT [33] P 1024 x 3 93.4
3CROSSNet [27] P 1024 x 3 93.5
PatchFormer [[82] P, N 1024 x 6 93.6
Point Transformer [4] PN 1024 x 6 93.7
Point-BERT [29] P 8192 x 3 93.8
CAA [36] P 1024 x 3 93.8
PVT [41] P, N 1024 x 6 94.0

methods has exceeded 94.0%, and the highest one is 94.5%,
achieved by PointMLP [136]]. Therefore, it is hard to say which
kind of algorithm is the best, and we believe that there will
be new breakthroughs of 3D Transformers in the future.

For part segmentation, comparisons are performed on the
ShapeNet part segmentation dataset [103]. The commonly
used part-average Intersection-over-Union is set as the perfor-
mance metric. As summarised in Table|ll} all the Transformer-
based methods can achieve the pIOU of around 86%, except
for ShapeContextNet [7]], which is an early model before 2019.
Note that Stratified Transformer [47] achieves the highest
86.6% pIloU among all the comparative methods. And it is
also the best model in the task of semantic segmentation on
the S3DIS semantic segmentation dataset [98] (Table .

B. Object detection

3D object detection from point clouds remains to be
developed by Transformers. Compared to the above three
tasks, there are merely a few Transformer or Attention-based
methods proposed. The reason could be that the task of object
detection is more complicated than classification. Table
and [V] summarise the performance of these Transformer-
based networks on two public indoor scene datasets: SUN
RGB-D [74]] and ScanNetV2 [75]. VoteNet [109] is also
reported here as a reference, which is the pioneering work

in 3D object detection. In terms of AP@25 in the ScanNetV2
dataset, all the Transformer-based methods perform better than
VoteNet. Among them, Pointformer [31] and MLCVNet [49]]
are based on VoteNet, and achieve similar performance. Both
of them utilize the self-attention mechanism in Transformers
to enhance the feature representations. Instead of leverag-
ing the local voting strategy in the above two approaches,
GroupFree3D [50] directly aggregates semantic information
from all the points in the scene to extract the features of ob-
jects. Its performance of 69.1% demonstrates that aggregating
features from all the elements by the self-attention mechanism
is a more efficient way than the local voting strategy in
VoteNet, MLCVNet, and Pointformer. 3DETR [51]], as the first
end-to-end Transformer-based 3D object detector, achieves the
second best detection performance, 65.0%, in the ScanNetV2
dataset.

VII. DISCUSSION AND CONCLUSION
A. Discussion

As in the 2D field, Transformers also show its superiority
in 3D point cloud processing. From the perspective of the
3D tasks, Transformer-based methods mainly focus on high-
level tasks, such as classification and segmentation. And they
achieve breakthrough improvements in terms of accuracy. We
argue the reason is that Transformers are better at extracting
global contextual information via capturing long-dependency
relationships, which corresponds to the semantic information
in high-level tasks. On the contrary, low-level tasks, such as
denoising and sampling, focus on exploring local geometric
features. From the perspective of the performance, 3D Trans-
formers improve the accuracy of those tasks above and surpass
most of the existing methods. However, as shown in Sec.
there is still a gap between them and the start-of-the-art
non-Transformer-based methods. Therefore, despite the rapid
development of 3D Transformers, as an emerging technology,
they still need further exploration and improvement.

Based on the properties of Transformers and their successful
applications in 2D domain, we point out several potential
future directions for 3D Transformers, hoping it will ignite
the further development of this technology.

1) Patch-wise Transformers: As mentioned in Sec.
3D Transformers can be divided into two groups: Point-
wise Transformers and Channel-wise Transformers. Moreover,
referring to the exploration of Transformers in 2D image
processing [|80], we are able to further divide Point-wise Trans-
formers into Pair-wise Transformers and Patch-wise Trans-
formers based on the operating form. The former is to calculate
the attention weight for a feature vector by a corresponding
pair of points, while the latter is by incorporating information
from all points in a given patch. Specifically, the self-attention
mechanism of pair-wise Transformers can be described as:

yi= Y alzi,z;) 0 Bx)),

JjER;

(6)

where y; is the output feature, R; is the operating scope of
the self-attention module, 3 projects the feature z; to a new
feature space by linear layers, and a(x;,z;) is utilized to



TABLE II: A comparative analysis between different point cloud Transformers in terms of ploU on the ShapeNet part
segmentation dataset. ploU means part-average Intersection-over-Union. All results quoted are taken from the cited papers.

air- ear-

motor- skate-

Method ploU plane bag cap car chair phone guitar knife lamp laptop bike ™Mug pistol rocket i)oar d table
3DMedPT [33]] 843 81.2 86.0 91.7 79.6 90.1 81.2 919 88.5 848 96.0 723 958 832 64.6 782 838
ShapeContextNet [7] 84.6 | 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 829 96.0 69.2 939 825 629 744 80.8
DTNet [35] 85.6|83.0 81.4 843 784 90.9 743 91.0 873 847 956 69.0 944 825 59.0 764 835
3CROSSNet [27] 85.9 | 83.8 84.9 86.1 79.8 91.2 703 91.1 87.0 850 959 732 949 832 562 76.7 83.0
CAA [36] 859|845 822 86.8 789 91.1 745 91.4 89.0 845 955 69.6 942 834 578 755 835
PointASNL [28] 86.1 | 84.1 84.7 87.9 79.7 92.2 737 91.0 87.2 842 958 744 952 81.0 63.0 763 832
LFT-Net [30] 86.2 [ 83.0 83.9 90.9 794 93.1 714 925 88.6 857 959 693 942 85.0 656 746 855
PCT (8] 86.4| 850 824 89.0 81.2 919 715 913 88.1 863 958 646 958 83.6 622 77.6 837
MLMSPT [_88] 86.4| 844 84.7 89.2 80.2 89.4 77.1 923 87.5 853 96.7 716 952 842 613 76.0 83.6
PatchFormer [82] 86.5 - - - - - - - - - - - - - - - -

Point Transformer [4]] 86.6 | - - - - - - - - - - - - - - - -

PVT [41] 86.6 | 85.3 82.1 88.7 82.1 924 755 91.0 889 856 954 762 947 842 650 753 817
Stratified Transformer [47]] | 86.6 | - - - - - - - - - - - - - - - -

TABLE III: A comparative analysis between different point cloud Transformers in terms of mloU/mAcc/OA on the S3DIS
Area 5 semantic segmentation dataset. mloU means mean classwise intersection over union, mAcc means mean of classwise
accuracy, and OA means overall pointwise accuracy. All results quoted are taken from the cited papers.

Method OA mloU | mAcc | ceiling  floor wall beam column  window  door table chair sofa bookcase  board  clutter
ShapeContextNet [7] 81.6 527 - - - - - - - - - - - - - -
PATs [40] - 60.07 | 70.83 93.04 9851 7228 1.00 41.52 85.05 3822 57.66 83.64 48.12 67.00 61.28  33.64
PCT 8] - 61.33 | 67.65 92.54 9842 80.62  0.00 19.37 61.64 48.00 76.58 8520 46.22 67.71 67.93 5229
PointASNL [28] 87.7 62.6 68.5 94.3 98.4 79.1 0.0 26.7 55.2 66.2 833 86.8 47.6 68.3 56.4 52.1
MLMST |[88] - 62.9 - 94.5 98.7 90.6 0.0 21.1 60.0 514 83.0 89.6 28.9 70.7 74.2 55.5
LFT-Net [30] - 65.2 76.2 92.8 96.1 81.9 0.0 37.6 70.3 70.4 73.2 76.0 40.9 78.8 71.0 58.2
PVT [41] - 67.30 - 91.18 9876 86.23  0.31 34.21 49.90 6145 81.62 89.85 4820 79.96 7645  54.67
EPT [45] - 67.5 74.7 91.5 97.4 86.0 0.2 40.4 60.8 66.7 87.1 79.6 73.7 58.6 772 57.3
PatchFormer [82] - 68.1 - - - - - - - - - - - - - -
Point Transformer [4] 90.8 70.4 76.5 94.0 98.5 86.3 0.0 38.0 63.4 743 89.1 824 743 80.2 76.0 59.3
Stratified Transformer [47] 91.5 72.0 78.1 - - - - - - - - - - - - - -

TABLE IV: A comparative analysis between different point
cloud Transformers in terms of AP on the ScanNetV2 and
SUN RGB-D object detection datasets. AP means Average
Precision. All results quoted are taken from the cited papers.

Method ScanNetV2 SUN RGB-D
APy5  APso AP35 APso
VoteNet [109] 58.6 335 57.7 -
3DETR [51] 62.7 37.5 56.8 30.1
Pointformer [31] 64.1 - 61.1 -
MLCVNet [49] 64.5 414 59.8 -
3DETR-m [51]] 65.0 47.0 59.0 32.7
GroupFree3D [50] 69.1 52.8 63.0 452

measure the relationship between x; and x;, which can be
decomposed as:

(7

where p is normalization function like softmax, 7 is a mapping
function that ensures §(x;, x;) has the same size as 5(z;), and
¢ is a relation function which can be expressed as:

awi,x;) = p(v(d(zi, z5))),

Concatenation : §(x;,x;) = [p(z:), ¥(x;)],
Summation : 6(z;, ;) = @(x;) + ¥(x;),
Subtraction : §(x;,x;) = p(x;) — ¥(z;),
Hadamard product : 6(z;, x;) = ¢(z;) © ¥(x;),
Dot product : §(x;, ;) = p(x;) T (x;),

®)

where Dot product belongs to the scalar attention operator,
while the other forms are vector attention operators. The
subtraction-form vector attention is used in Point Transformer
[4]. From the Eq. [f] we can see that the attention weight
a(x;,x;) is determined by a corresponding pair of point

features x; and x;. Pair-wise Transformers have achieved
compelling performance in the 2D field and are also commonly
used in 3D point cloud processing. Nearly all algorithms in
Sec. can be considered as pair-wise Transformers, where
most of them use Dot product.

Zhao et al. [80]] also explore a family of patch-wise Trans-
formers in image processing, whose self-attention mechanism
can be expressed as:

yi= Y alzw,); © Blx;),

JER;

(©))

where xx, is the patch of feature vectors in R;, o transforms
the zx, to a new tensor with the same spatial dimensionality,
and oz, ); is the j-th feature vector in this tensor. Similar to
pair-wise Transformers, a(zg,) can also be decomposed as:

and ¢ can be expressed as three different forms [80]:
Concatenation : §(xzx,) = [p(x:), [¥(z;)lvjer:],
Star-Product : §(xx,) = [o(x:) 0 (x;)vjen,: (11)

Dot product : §(zx,) = [o(2;) ¥ (xk)]v)ken, -

By comparing Eq. [] and 0] we can see that the latter is to
aggregate all feature vectors in R; to generate the weight
matrix that is applied to §(z;), instead of merely utilizing a
pair of features. In this way, patch-wise Transformers are able
to enhance the connections among different feature vectors,
and extract more robust short- and long-range dependencies.
However, since the feature vectors are arranged in a particular



TABLE V: Detailed Performance of mAP@0.25 for each category on the ScanNet V2 object detection dataset.

Method mAP | cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
VoteNet [109] | 58.6 | 36.3 879 88.7 89.6 588 473 381 44.6 7.8 56.1 71.7 472 454 571 949 547 92.1 372
3DETR [51] 62.7 1502 87.0 86.0 87.1 61.6 46.6 40.1 545 9.1 628 69.5 484 509 684 979 67.6 859 458

Pointformer [31] | 64.1 | 46.7 88.4 90.5 88.7 65.7 55.0 47.7 558 18.0 63.8 69.1 554 485 662 989 615 86.7 474
MLCVNet [49] |64.48|42.45 88.48 89.98 87.4 63.50 56.93 46.98 56.94 11.94 56.72 76.05 63.94 60.86 65.91 98.33 59.18 87.22 47.89
3DETR-m [51] | 65.0 |49.4 83.6 909 89.8 67.6 524 39.6 564 152 559 792 583 576 67.6 972 70.6 922 53.0
GroupFree3D [50] | 69.1 | 52.1 929 93.6 88.0 70.7 60.7 53.7 624 16.1 585 809 679 470 763 99.6 720 953 56.4

order in zw,, patch-wise Transformers are not permutation-
invariant, which may have some negative effects on point cloud
processing.

Currently, there is little patch-wise Transformer research
in the field of 3D point cloud processing. Considering the
advantages of patch-wise Transformers and their outstanding
performance in image processing, we believe that introducing
patch-wise Transformers to point cloud processing is beneficial
to performance improvement.

2) Adaptive Set Abstraction: PointNet++ [1]] proposes a
Set Abstraction (SA) module to extract the semantic features
of the point cloud hierarchically. It mainly utilizes FPS and
query ball grouping algorithms to achieve sampling point
searching and local patch construction respectively. However,
the sampling points generated by FPS tend to be evenly
distributed in the original point cloud, while ignoring the
geometric and semantic differences between different parts.
For example, the tail part of the aircraft is more geometrically
complex and distinct than the fuselage part, which makes
the former need more sampling points to describe. Moreover,
query ball grouping focuses on searching the neighbor points
only based on the Euclidean distance. However, it ignores the
semantic feature differences among points, which makes it
easy to group points with different semantic information into
the same local patch. Therefore, developing an adaptive set
abstraction is beneficial to improving the performance of 3D
Transformers. Recently, there have been several Transformer-
based methods in the 3D field exploring adaptive sampling
[39]. But nearly none of them makes full use of the rich short-
and long-range dependencies generated by the self-attention
mechanism. In the field of image processing, Deformable
Attention Transformer (DAT) proposed in [137] generates the
deformed sampling points by introducing an offset network.
It achieves consistently-improved results on comprehensive
benchmarks and reduces computational costs. It will be mean-
ingful to present an adaptive sampling method based on
the self-attention mechanism for the hierarchical Transformer.
Additionally, inspired by the superpixel [[138] in the 2D field,
we argue that it is feasible to utilize the attention map in 3D
Transformers to obtain the “superpoint” [[139]] for point cloud
oversegmentation, converting point-level 3D data into district-
level data. In this way, this adaptive clustering technique can
be used to replace the query ball grouping method.

3) Self-supervised Transformer Pre-training: Transformers
have shown impressive performance on NLP and 2D image
processing tasks. However, much of their success stems not
only from their excellent scalability but also from large-
scale self-supervised pre-training [78]]. Vision Transformer

[13] performes a series of self-supervision experiments, and
demonstrates the potential of the self-supervised Transformer.
In the field of point cloud processing, despite the significant
progress of supervised point cloud approaches, point cloud an-
notation is still a labor-intensive task. And the limited labeled
dataset hinders the performance improvement of supervised
approaches, especially in terms of the point cloud segmenta-
tion task. Recently, there have been a series of self-supervised
approaches proposed to address these issues, such as Gen-
erative Adversarial Networks (GAN) [140], Auto-Encoders
(AE) [141]], [142], and Gaussian Mixture Models (GMM)
[143]. These methods use auto-encoders and generative model
to realize self-supervised point cloud representation learning
[89]. Their satisfactory performances have demonstrated the
effectiveness of the self-supervised point cloud approaches.
However, few self-supervised Transformers are currently ap-
plied to 3D point cloud processing. With the increase of
3D point cloud datasets, especially large-scale complex point
cloud datasets, it is worthwhile to explore the self-supervised
3D Transformers for point cloud representation learning.

Overall, we can see that Transformers have just started to
be applied to point cloud-related tasks. And the real power of
Transformers in point cloud processing still has much space
for deep exploration.

B. Conclusion

Transformer models have attracted widespread attention
in the field of 3D point cloud processing, and achieved
impressive results in various 3D tasks. In this paper, we have
comprehensively reviewed recent Transformer-based networks
applied to point cloud-related tasks, such as point cloud classi-
fication, segmentation, object detection, registration, sampling,
denoising, completion and other practical applications. We first
introduce basic definitions of Transformers, and describe the
development and applications of the 2D and 3D Transformers
briefly. Then we utilize three different taxonomies to catego-
rize the involved methods into multiple groups, analyzing them
from multiple perspectives. Additionally, we also investigate
a series of self-attention variants that aims to improve the
performance and reduce the computational cost. In terms of
point cloud classification, segmentation and object detection,
a brief comparison of the involved methods is provided in
this paper. Finally, we provide three potential future research
directions for the development of 3D Transformers. We hope
this survey gives researchers a whole view of 3D Transformers,
and drives their interest to further improve the performance.
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