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Abstract—The Go programming language aims to provide
memory and thread safety through measures such as auto-
mated memory management with garbage collection and a
strict type system. However, it also offers a way of circum-
venting this safety net through the use of the unsafe package.
While there are legitimate use cases for unsafe, developers
must exercise caution to avoid introducing vulnerabilities like
buffer overflows or memory corruption in general. In this
work, we present go-geiger, a novel tool for Go developers
to quantify unsafe usages in a project’s source code and all
of its dependencies. Using go-geiger, we conducted a study on
the usage of unsafe in the top 500 most popular open-source
Go projects on GitHub, including a manual analysis of 1,400
code samples on how unsafe is used. From the projects using
Go’s module system, 38% directly contain at least one unsafe
usage, and 91% contain at least one unsafe usage in the project
itself or one of its transitive dependencies. Based on the usage
patterns found, we present possible exploit vectors in different
scenarios. Finally, we present go-safer, a novel static analysis
tool to identify dangerous and common usage patterns that
were previously undetected with existing tools.

Index Terms—Golang, Static Analysis, Memory Corruption.

1. Introduction

Programming languages with direct memory access
through pointers, such as C/C++, suffer from the dangers
of memory corruption, including buffer overflows [1], [2]
or use-after-free of pointers. Microsoft, e.g., reports that
memory safety accounts for around 70% of all their bugs1.
To avoid these dangers, many programming languages, such
as Java, Rust, Nim, or Google’s Go, use automatic memory
management and prevent using low-level memory details
like pointers in favor of managed object references. Thus,
these languages are memory safe, eliminating most memory
corruption bugs. However, there are valid use cases for such
low-level features. Safe languages therefore provide, to vary-
ing degrees, escape hatches to perform potentially unsafe
operations. Escape hatches may be used for optimization
purposes, to directly access hardware, to use the foreign

1. https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-
more-secure-code/

function interface (FFI), to access external libraries, or to
circumvent limitations of the programming language.

However, escape hatches may have severe consequences,
e.g., they may introduce vulnerabilities. This is especially
problematic when unsafe code blocks are introduced through
third-party libraries, and thus are not directly obvious to the
application developer. Indeed, a recent study shows that un-
safe code blocks in Rust are often introduced through third-
party libraries [3]. Therefore, security analysts, developers,
and administrators need efficient tools to quickly evaluate
potential risks in their code base but also the risks introduced
by code from others.

In this paper, we investigate Go and the usage of unsafe
code blocks within its most popular software projects. We
developed two specific tools for developers and security an-
alysts. The first one, called go-geiger (Section 2.2) analyzes
a project including its dependencies for locating usages of
the unsafe API and scoring unsafe usages in Go projects and
their dependencies. It is intended to give a general overview
of unsafe usages in a project.

As unsafe usages are benign when used correctly, safe
usages of unsafe exist. However, we identified several com-
monly used unsafe patterns, e.g., to cast slices and structs,
which can break memory safety mechanisms. They intro-
duce potential vulnerabilities, e.g., by allowing access to
additional memory regions. We provide insights into the
dangers and possible exploit vectors to these patterns, indi-
cating the severe nature of these bugs leading to information
leaks or code execution (Section 3.1).

While the Go tool chain provides a linter, called go vet,
covering invalid unsafe pointer conversions, the linter fails to
flag the potentially insecure usages. Thus, to support devel-
opers we implemented a second tool go-safer (Section 3.2)
covering two types of those.

With the help of go-geiger, we performed a quanti-
tative evaluation of the top 500 most-starred Go projects
on GitHub to see how often unsafe is used in the wild
(Section 4.2). Including their dependencies, we analyzed
more than 62,000 individual packages. We found that 38%
of projects contain unsafe usages in their direct application
code, and 91% of projects contain unsafe usages either in
first-party or imported third-party libraries.

We also created a novel data set with 1,400 labeled
occurrences of unsafe, providing insights into the motivation
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for introducing unsafe in the source code in the first place
(Section 4.3). Finally, we used go-safer to find instances
of our identified dangerous usage patterns within the data
set. So far, in the course of this work we submitted 14 pull
requests to analyzed projects and libraries, fixing over 60
individual potentially dangerous unsafe usages (Section 4.4).

In this paper, we make the following contributions:

• go-geiger, a first-of-its-kind tool for detecting and scor-
ing unsafe usages in Go projects and their dependen-
cies,

• a novel static code analysis tool, go-safer, to aid in
identifying potentially problematic unsafe usage pat-
terns that were previously uncaught with existing tools,

• a quantitative evaluation on the usage of unsafe in 343
top-starred Go projects on GitHub,

• a novel data set with 1,400 labeled occurrences of
unsafe, providing insights into what is being used in
real-world Go projects and for what purpose, and

• evidence on how to exploit unsafe usages in the wild.

2. Scanning for Usages of Go’s unsafe Package

In this section, we give a brief introduction to unsafe
in Go and then present our novel standalone tool go-geiger
to identify unsafe usages in a project and its dependencies.
Thus, it supports auditing a project and perhaps selecting
dependencies more carefully.

2.1. Go’s unsafe Package

The Go programming language, like other memory-safe
languages, provides an unsafe package2, which offers (a) the
functions Sizeof, Alignof, and Offsetof that are evaluated at
compile time and provide access into memory alignment
details of Go data types that are otherwise inaccessible, and
(b) a pointer type, unsafe.Pointer, that allows developers to
circumvent restrictions of regular pointer types.

One can cast any pointer to/from unsafe.Pointer, thus
enabling casts between completely arbitrary types, as illus-
trated in Listing 1. In this example, in.Items is assigned to
a new type (out.Items) in Line 3 without reallocation for ef-
ficiency reasons. Furthermore, casts between unsafe.Pointer
and uintptr are also enabled, mainly for pointer arithmetic.
A uintptr is an integer type with a length sufficient to store
memory addresses. However, it is not a pointer type, hence,
not treated as a reference. Listing 2 presents an example
of casts involving uintptr. In Line 2, the unsafe.Pointer is
converted to uintptr. Thus, the memory address is stored
within a non-reference type. Hence, the back-conversion
in Line 3 causes the unsafe.Pointer to be hidden from the
escape analysis (EA) which Go’s garbage collector uses to
determine whether a pointer is local to a function and can be
stored in the corresponding stack frame, or whether it can
escape the function and needs to be stored on the heap [4].
Storing the address of a pointer in a variable of uintptr type
and then converting it back causes the EA to miss the chain

2. https://golang.org/pkg/unsafe

Listing 1: In-place cast using the unsafe package from the
Kubernetes k8s.io/apiserver module with minor changes.

1 func a u t o C o n v e r t ( i n * P o l i c y L i s t , o u t * a u d i t .
↪→ P o l i c y L i s t ) e r r o r {

2 / / [ . . . ]
3 o u t . I t e m s = * ( * [ ] a u d i t . P o l i c y ) ( u n s a f e .

↪→ P o i n t e r (& i n . I t e m s ) )
4 r e t u r n n i l
5 }

Listing 2: Hiding a value from escape analysis from the
modern-go/reflect2 module.

1 func NoEscape ( p u n s a f e . P o i n t e r ) u n s a f e . P o i n t e r {
2 x := u i n t p t r ( p )
3 r e t u r n u n s a f e . P o i n t e r ( x ˆ 0 )
4 }

of references to the underlying value in memory. Therefore,
Go will assume a value does not escape when it actually
does, and may place it on the stack. Correctly used it can
improve efficiency because deallocation is faster on the stack
than on the heap [4]. However, used incorrectly it can cause
security problems as shown later in Section 3.1.

2.2. go-geiger: Identification of Unsafe Usages

To identify and quantify usages of unsafe in a Go
project and its dependencies, we developed go-geiger3. Its
development was inspired by cargo geiger4, a similar tool
for detecting unsafe code blocks in Rust programs.

Figure 1 shows an overview of the architecture of go-
geiger. We use the standard parsing infrastructure provided
by Go to identify and parse packages including their de-
pendencies based on user input. Then, we analyze the AST,
which enables us to identify different usages of unsafe and
their context as described in the next paragraph. Finally,
we arrange the packages requested for analysis and their
dependencies in a tree structure, sum up unsafe usages for
each package individually, and calculate a cumulative score
including dependencies. We perform a deduplication if the
same package is transitively imported more than once. The
unsafe dependency tree, usage counts, as well as identified
code snippets, are presented to the user.

We detect all usages of methods and fields from the
unsafe package, specifically: Pointer, Sizeof, Offsetof, and
Alignof. Furthermore, because they often are used in unsafe
operations, we also count occurrences of SliceHeader and
StringHeader from the reflect package, and uintptr. All of
these usages are referred to as unsafe usages in this paper.
Additionally, we determine the context in which the unsafe
usage is found, i.e., the type of statement that includes
the unsafe usage. In go-geiger we distinguish between as-
signments (including definitions of composite literals and
return statements), calls to functions, function parameter
declarations, general variable definitions, or other not further
specified usages. We determine the context by looking up
in the AST starting from the node representing the unsafe
usage, and identifying the type of the parent node.

3. https://github.com/jlauinger/go-geiger

4. https://github.com/rust-secure-code/cargo-geiger
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Figure 1: Architecture of go-geiger tool to detect unsafe usages

Listing 3: Conversion from string to bytes using unsafe
1 func S t r i n g T o B y t e s ( s s t r i n g ) [ ] b y t e {
2 s t r H e a d e r := (* r e f l e c t . S t r i n g H e a d e r ) ( u n s a f e .

↪→ P o i n t e r (& s ) )
3 b y t e s H e a d e r := r e f l e c t . S l i c e H e a d e r {
4 Data : s t r H e a d e r . Data ,
5 Cap : s t r H e a d e r . Len ,
6 Len : s t r H e a d e r . Len ,
7 }
8 r e t u r n * ( * [ ] b y t e ) ( u n s a f e . P o i n t e r (&

↪→ b y t e s H e a d e r ) )
9 }

3. Identifying Insecure Usages of unsafe

In this section, we present problematic code snippets
including exploit information that we identified. Further,
we introduce our linter go-safer to identify two known
potentially dangerous unsafe patterns for slice and struct
casts.

3.1. Potential Usage and Security Problems

In the following, we discuss potential threat models
and exploit vectors against real-world unsafe Go code. We
present a code pattern in Listing 3 that is very common
in popular open-source Go projects (cf. Section 4). It is
used to convert a string to a byte slice without copying the
data. As in Go strings essentially are read-only byte slices,
this is commonly done by projects to increase efficiency of
serialization operations. Internally, each slice is represented
by a data structure that contains its current length, allocated
capacity, and memory address of the actual underlying data
array. The reflect header structures provide access to this
internal representation. In Listing 3 this conversion is done
in Lines 2, 3, and 8 respectively. First, an unsafe.Pointer
is used to convert a string to a reflect.StringHeader type.
Then, a reflect.SliceHeader instance is created and its fields
are filled by copying the respective values from the string
header. Finally, the slice header object is converted into a
slice of type []byte.

Implicit Read-Only. The conversion pattern shown in List-
ing 3 is efficient as it directly casts between string and
[]byte in-place. Using bytes := ([]byte)(s) for the conversion
would make the compiler allocate new memory for the slice
header as well as the underlying data array. However, the
direct cast creates an implicitly read-only byte slice that
can cause problems, as described in the following. The Go
compiler will place strings into a constant data section of the
resulting binary file. Therefore, when the binary is loaded
into memory, the Data field of the string header may contain

an address that is located on a read-only memory page.
Hence, strings in Go are immutable by design and mutating
a string causes a compiler error. However, when casting a
string to a []byte slice in-place, the resulting slice loses the
explicit read-only property, and thus, the compiler will not
complain about mutating this slice although the program
will crash if done so.

Garbage Collector Race. Go uses a concurrent mark-and-
sweep garbage collector (GC) to free unused memory [5].
It is triggered either by a certain increase of heap memory
usage or after a fixed time. The GC treats pointer types,
unsafe.Pointer values, and slice/string headers as references
and will mark them as still in use. Importantly, string/slice
headers that are created manually as well as uintptr values
are not treated as references. The last point, although doc-
umented briefly in the unsafe package, is a major pitfall.
Casting a uintptr variable back to a pointer type creates a
potentially dangling pointer because the memory at that ad-
dress might have already been freed if the GC was triggered
right before the conversion.

Although not directly obvious, Listing 3 contains such a
condition. Because the reflect.SliceHeader value is created
as a composite literal instead of being derived from an actual
slice value, its Data field is not treated as a reference if
the GC runs between Lines 3 and 8. Thus, the underlying
data array of the []byte slice produced by the conversion
might have already been collected. This creates a potential
use-after-free or buffer reuse condition that, even worse, is
triggered non-deterministically when the GC runs at just
the ”right” time. Therefore, this race condition can crash
the program, create an information leak, or even potentially
lead to code execution. Figure 2 shows a visualization of
the casting process that leads to the problems described
here. The original slice is being cast to a string via some
intermediate representations. The slice header is shown in
green (at memory position 1), while the underlying data
array (memory position 2) is shown in red. When the
resulting string header (shown in blue at memory position
3) is created, it only has a weak reference to the data, and
when the GC runs before converting it to the final string
value, the data is already freed.

Escape Analysis Flaw. A third problem found in Listing 3
is that the escape analysis (EA) algorithm can not infer
a connection between the string parameter s and the re-
sulting byte slice. Although they use the same underlying
data array, the EA misses this due to the fact that the
intermediate representation as a uintptr is not treated as a
reference type. This can cause undefined behavior if the
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Figure 2: GC race and escape analysis flaw

Listing 4: Escape analysis flaw example

1 func main ( ) {
2 b y t e s R e s u l t := Ge tBy tes ( )
3 fmt . P r i n t f ( ” main : %s\n ” , b y t e s R e s u l t )
4 }
5
6 func Ge tBy tes ( ) [ ] b y t e {
7 r e a d e r := b u f i o . NewReader ( s t r i n g s . NewReader (

↪→ ” a b c d e f g h ” ) )
8 s , := r e a d e r . R e a d S t r i n g ( ’\n ’ )
9 o u t := S t r i n g T o B y t e s ( s )

10 fmt . P r i n t f ( ” Ge tBy tes : %s\n ” , o u t )
11 r e t u r n o u t
12 }

returned value from the casting function is used incorrectly.
Listing 4 shows a program that uses the conversion function
presented earlier (Listing 3). In the main function, GetBytes
is called (Line 2), which creates a string and turns it into a
byte slice using the conversion function. Within the GetBytes
function, we create the string using a bufio reader similarly
to if it were user-provided input. After the cast, GetBytes
prints the resulting bytes (Line 10) and returns them to
main, which also prints the bytes (Line 3). Although one
might assume that both print statements result in the same
string to be displayed, the second one in main fails and
prints invalid data.

Because the string s is allocated in GetBytes the Go EA
is triggered. It concludes that s is passed to StringToBytes
and the EA transitively looks into that function. Here, it
fails to connect s to the returned byte slice as described
previously. Therefore, the EA concludes that s does not
escape in StringToBytes. As it is not used after the call
in GetBytes, the EA algorithm incorrectly assumes that it
does not escape at all and places s on the stack. When
GetBytes prints the resulting slice, the data is still valid and
the correct data is printed, but once the function returns
to main, its stack is destroyed. Thus, bytesResult (Line 2)
is now a dangling pointer into the former stack of GetBytes
and, therefore, printing data from an invalid memory region.

Code Execution. To show the severity of the issues iden-
tified above and that they are not just of theoretical nature,
e.g., resulting in simple program crashes, we created a
proof of concept for a code execution exploit using Return
Oriented Programming (ROP) on a vulnerable unsafe usage.
The sample incorrectly casts an array on the stack into a
slice without constricting it to the proper length. This vulner-
ability causes a buffer overflow which we use to overwrite
the stored return address on the stack, thus, changing the
control flow of the program. Since Go programs are typically
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Figure 3: Architecture of go-safer static code analysis tool

statically linked with a big runtime, there is a large number
of ROP-gadgets available within the binary itself. We use
gadgets to set register values and dispatch to system calls.
Using the mprotect syscall, we set both the writable and
executable permission bits on a memory page that is mapped
to the program, and store an exploit payload provided via
standard input there using the read syscall. Finally, we jump
to this payload and execute it using a final ROP-gadget to
open a shell. An in-depth discussion of the exploit would
go beyond the scope of this paper and exceed the space
available to present our research. Therefore, we made it
available online5 together with five other proof-of-concept
exploits. Furthermore, we published an in-depth write-up
about exploiting unsafe issues in Go as a series of blog
articles6.

3.2. go-safer: Finding Potentially Insecure Usages

We designed go-safer7 to automatically give advice for
some of the unsafe usage patterns introduced in the previous
section. It is meant for assistance during manual audits and
also for integration in build chains during development.
Avoiding the patterns that go-safer detects prevents the
garbage collector race and escape analysis flaw vulnerabili-
ties that we discussed in Section 3.1. They are not covered
by existing linters such as go vet. We found instances of
these unsafe code patterns through the usage of go-safer in
real-world code (cf. Section 4).

Figure 3 shows an overview of the architecture of go-
safer. First, it uses go vet to build a list of packages to be
analyzed and parses their sources. Then, a number of static
code analyzers, called passes, run. Our analyses depend on
existing passes to acquire the abstract syntax tree (AST) and
control flow graph (CFG). Two separate analyses are run by
go-safer: the sliceheader and the structcast passes.

The sliceheader pass discovers incorrect string and slice
casts as shown in Listing 3. It finds composite literals

5. https://github.com/jlauinger/go-unsafepointer-poc

6. https://dev.to/jlauinger/exploitation-exercise-with-unsafe-pointer-in-
go-information-leak-part-1-1kga

7. https://github.com/jlauinger/go-safer
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and assignments in the AST. Then, for each it checks
whether the type of the receiver is reflect.StringHeader,
reflect.SliceHeader, or some derived type with the same
signature. For assignments, the analysis pass then finds the
last node in the CFG where the receiver object’s value is
defined, and checks if it is derived correctly by casting a
string/slice. If go-safer can not infer with certainty that the
assignment receiver object was created by a cast, a warning
is issued.

The structcast pass discovers instances of in-place casts
between different struct types that include architecture-
dependent field sizes. This can create a security risk when
ported to other platforms because unsafe casts can lead
to misaligned fields, and thus, memory access outside a
value’s bounds on some platforms, allowing the same exploit
vectors as a buffer overflow does. The pass finds struct cast
instances that involve unsafe.Pointer in the AST. Then, it
compares the struct types and checks if they contain an
unequal amount of fields with types int, uint, or uintptr,
which are the architecture-dependent types supported by Go.
If the numbers do not match, go-safer issues a warning.

4. A Study of Go’s unsafe Usages in the Wild

We designed and performed a study of Go unsafe usage
to answer the following research questions:

RQ1 How prevalent is unsafe in Go projects?
RQ2 How deep are unsafe code packages buried in the

dependency tree?
RQ3 Which unsafe keywords are used most?
RQ4 Which unsafe operations are used in practice, and for

what purpose?

In the following, we first describe our evaluation data
set and then provide in-depth analyses of unsafe usage in
the wild using go-geiger. Our evaluation scripts as well as
the results are available online8.

4.1. Data Set

As our research is focused on open-source projects,
we crawled the 500 most-starred Go projects available on
GitHub. To further understand the influence of dependen-
cies, we then selected the applications supporting go mod-
ules. With the introduction of Go 1.13, go modules9 are
the official way to include dependencies. Unfortunately, 150
of the projects did not yet support Go modules. Thus, we
excluded them from our set. Furthermore, 7 projects that did
not compile were also removed. As a result, we ended up
with 343 top-rated Go projects. These have between 72,988
and 3,075 stars, with an average of 7,860.

4.2. Unsafe Usages in Projects and Dependencies

We used the Go tool chain to identify the root module
of each project. This is the module defined by the top-
level go.mod file in the project. Then we enumerated the

8. https://github.com/stg-tud/unsafe go study results

9. https://blog.golang.org/using-go-modules

dependencies of the project, and built the dependency tree.
For each package, we used go-geiger to generate CSV
reports of the found unsafe usages. Through these analyses
we answer the research questions of how many projects use
unsafe either in their own code or dependencies (RQ1), and
how deep in the dependency tree are the most unsafe code
usages (RQ2). By selecting only results from the project
root modules, we can easily find out how many applications
contain a first-hand use of unsafe code. Our data shows
that 131 (38.19%) projects have at least one unsafe usage
within the project code itself. By looking closer at the
imported packages, we see that 3,388 of 62,025 (5.46%)
transitively imported packages use unsafe. There are 312
(90.96%) projects that have at least one non-standard-library
dependency with unsafe usages somewhere in their depen-
dency tree. Since all projects include the Go runtime, which
uses unsafe, counting it as an unsafe dependency would
mean that 100% of projects transitively include unsafe. We
consider this to be less meaningful, as we assume the Go
standard library is well audited and safer to use.

Answer to RQ1

About 38% of projects directly contain unsafe us-
ages. Furthermore, about 91% of projects transitively
import at least one dependency that contains unsafe.

Figure 4 shows the number of packages with at least one
unsafe usage by their depth in the dependency tree for every
project on its own as a heatmap, alongside the distribution
for all projects combined as bars on the left side. It is
evident that most packages with unsafe are imported early
in the dependency tree with an average depth of 3.08 and a
standard deviation of 1.62. This number is very similar to the
overall average depth of imported packages (3.04). While
the packages containing unsafe can be manually found
and evaluated, this process requires significant resources
to handle the increasing number of packages introduced
through each dependency. For developers only the first level
of dependencies, the ones they added themselves, are really
obvious. On this level, 569 out of 8,952 imported packages
(3.63%) contain unsafe.

Answer to RQ2

Most imported packages containing unsafe usages are
found around a depth of 3 in the dependency tree.

4.3. Types and Purpose of Unsafe in Practice

This section answers RQ3 and RQ4. Figure 5 shows
the distribution of the different unsafe types in our data
set. Packages that are imported in different versions by the
projects are counted once per version, as they might contain
different unsafe usages and coexist in the wild. In our
data set uintptr and unsafe.Pointer are used about equally
often and are by far the most common with almost 100,000
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Figure 4: Import Depth of Unsafe Packages. Unsafe packages are around a depth of 3.08 (sd=1.62)

Figure 5: Distribution of different types of unsafe tokens

TABLE 1: Projects selected for labeled data set

Name Stars Forks Revision
1 kubernetes/kubernetes 66,512 23,806 fb9e1946b0
2 elastic/beats 8,852 3,207 df6f2169c5
3 gorgonia/gorgonia 3,373 301 5fb5944d4a
4 weaveworks/scope 4,354 554 bf90d56f0c
5 mattermost/mattermost-server 18,277 4,157 e83cc7357c
6 rancher/rancher 14,344 1,758 56a464049e
7 cilium/cilium 5,501 626 9b0ae85b5f
8 rook/rook 7,208 1,472 ff90fa7098
9 containers/libpod 4,549 539 e8818ced80
10 xo/usql 5,871 195 bdff722f7b

findings. Next, unsafe.Sizeof is still used a bit (∼ 3, 700),
while the other unsafe types are rarely used (< 1, 000).

Answer to RQ3

In the wild, uintptr and unsafe.Pointer are orders of
magnitude more common than other unsafe usages.

To learn about the purpose and context in which unsafe
is used, we needed to manually analyze code. Thus, we
selected the top 10 projects (Table 1) with the most unsafe
usages in non-standard library packages. From these projects
and all their transitive dependencies, we randomly sampled
400 code snippets that were found in the standard library
(std) and 1,000 snippets from the remaining packages (app).
We define standard library code as all packages that are part
of the Go standard library or the golang.org/x/sys module,
as the syscall standard library package is deprecated in favor
of this module10. We split the snippets into two groups to
analyze if there is a difference between the official standard
library and non-standard library code regarding the usage of
unsafe. Then, we identify class labels in two dimensions:
what is being done, and for what purpose. Finally, we
manually analyze all 1,400 code snippets and label them
accordingly. The results of this process are shown in Table 2.

In the following, we outline the identified usage type
classes describing what is being done in code. The most

10. https://golang.org/pkg/syscall

prevalent are cast operations from arbitrary types to other
structs, basic Go types such as integers, slice/string headers,
byte slices, or raw unsafe.Pointer values. The memory-
access class is applied where unsafe.Pointer values are
dereferenced, used to manipulate corresponding memory
or for comparison with another address. Pointer-arithmetic
denotes usages of unsafe to do some form of arithmetic
manipulation of addresses, such as advancing an array.
Definition groups usages where a field or method of type
unsafe.Pointer is declared for later usage. Delegate are
instances where unsafe is only needed in a function to pass
it along to another function requiring a parameter of type
unsafe.Pointer. Thus, the need to use unsafe is actually
located elsewhere. Syscall are calls using the Go syscall
package or golang.org/x/sys module. As the name suggests,
unused is a class of occurrences that are not actually used
in the analyzed code, e.g., dead code or unused parameters.

Our identified purpose classes, providing hints on why
unsafe is used, are described in the following. Efficiency
includes cases where unsafe is used only for the aim to im-
prove time or space efficiency of the code. The serialization
class contains (un)marshalling and (de)serialization opera-
tions such as in-place casts from complex types to bytes.
Generics applies when unsafe is used to build functionality
that would otherwise be solved with generics if they were
available in Go. Samples in the avoid garbage collection
class are used to tell the Go compiler to not free a value
while it is used, e.g., by a function written in assembly.
The atomic operations class contains usages of the atomic
API which expects unsafe for some functions. The foreign
function interface (FFI) class contains interoperability with
C code (CGo), and calling functions that expect their param-
eters as unsafe pointers. Hide from escape analysis includes
the pattern described earlier (Listing 2) to break the escape
analysis chain. The memory layout control class contains
code used for low-level memory management. Types snip-
pets are used by the standard library to implement the Go
type system. Reflect includes instances of type reflection
and re-implementations of some types of the reflect package,
e.g., using unsafe.Pointer instead of uintptr for slice headers.
Again, unused is a class of unused occurrences.

Using unsafe for the sake of efficiency is the most
prevalent motivation to use unsafe in the wild covering
58% in application code, whereas it is only used for this
purpose in 5% of the cases in std. From these, 97% resp.
80% are achieved by casting different types. The second
biggest reason to use unsafe in app is to perform some form
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TABLE 2: Labeled unsafe.Pointer usages in application code (non standard library) and standard library samples
eff: efficiency, ser: (de)serialization, gen: generics, no GC: avoid garbage collection, atomic: atomic operations, FFI: foreign function interface, HE: hide
from escape analysis, layout: memory layout control, types: Go type system, reflect: type reflection, unused: declared but unused

eff ser gen no GC atomic FFI HE layout types reflect unused total
app std app std app std app std app std app std app std app std app std app std app std app std

cast 562 16 178 33 18 24 6 2 3 13 45 1 786 115
memory-access 2 1 9 1 4 6 4 15 12

pointer-arithmetic 7 2 6 1 1 3 1 2 3 8 9 17 26
definition 4 1 23 2 4 5 9 8 6 3 39 26

delegate 4 64 2 11 5 29 45 4 14 6 1 110 75
syscall 17 138 17 138

unused 16 8 16 8
total 579 20 280 34 22 0 17 138 11 6 57 60 1 8 10 50 0 72 7 4 16 8 1000 400

of (de)serialization, accounting for 28%. For the standard
library, the most relevant motivation is avoiding garbage
collection with 35%, whereas this is only used in 2% of the
usages in the app sample. Furthermore, in std type 18%,
FFI 15% and memory layout 13% related unsafe usages are
rather common. Both subsets share that hiding from escape
analysis with 0.1% (app) and 2% (std) and using unsafe for
reflection with 1% (both) are rare. Implementation of gener-
ics functionality which is currently missing in Go is only
done in few samples (2%), although some of the findings in
the serialization class could alternatively be achieved with
generics as well.

Answer to RQ4

More than half of the unsafe usages in projects and
3rd party libraries are to improve efficiency via unsafe
casts. In the Go standard library, every third use of
unsafe is to avoid garbage collection.

4.4. Vulnerable Usages

Looking at the study results, we see that unsafe is used
consistently and wide-spread in the most popular open-
source Go projects. One might argue that the usages found
by go-geiger are only minor annoyances, not severe or
would require a manual case-to-case inspection. Still, the
exploitability of several of these usages was discussed in
Section 3.1 with a reference to six proof-of-concept exploits
that we developed. This clearly shows that it is indeed
possible to use the memory corruptions to one’s advantage.
However, not all unsafe usages contain a vulnerability. As
already discussed, we implemented more specific checks
for two patterns known to be problematic in go-safer (Sec-
tion 3.2). With it, three of the proof-of-concept exploits are
mitigated, leaving the others which are much harder to detect
statically for future work. The application of go-safer to our
data set revealed more than 60 insecure usages of unsafe in
different projects. Based on the results, we submitted so
far 14 pull requests to fix these usages. By now, 10 have
already been reviewed, acknowledged, and accepted by the
corresponding project maintainers.

5. Threats to Validity

Potential internal threats to validity for our study include
bias towards bigger projects because those might be over-
represented in the manually labeled data set. External threats

include a bias towards more active projects with many
developers because we selected a subset of the most-starred
open-source projects on GitHub. Also we only considered
projects that use the Go module system and about a third
of the top 500 projects are not covered by the analysis
yet. Further, we could have missed projects from a special
domain not having that many stars which might have other
usage scenarios for unsafe Go. Nevertheless, one can argue
that the biggest projects also have professional developers,
higher standards and code gets more reviewed, thus, code
quality should be higher.

6. Related Work
Previous research on Go mostly concentrated on issues

related to its concurrency model including the channel im-
plementation [6], [7], [8], [9], [10], [11]. The work by Wang
et al. [4] suggests an improvement of the existing escape
analysis in Go which we also discussed in our paper.

Moreover, the usage of unsafe in other languages has
already been studied to varying degrees. For Java, Mas-
trangelo et al. [12] identified that 25% of the analyzed
artefacts depend on the Java unsafe library. The different
JVM crash patterns caused by those usages are analyzed
by Huang et al. [13]. Recently, two studies analyzed unsafe
usages in Rust projects and identified that unsafe is widely
used to improve performance or to reuse existing code [3],
[14]. Furthermore, work was presented on how to ensure
memory safety while using unsafe in Rust [15]. Lehmann
et al. [16] studied to which extent unsafe programs com-
piled to WebAssembly can lead to vulnerabilities within the
virtual machine environment. For C/C++, non memory-safe
languages, research exists on how to support at least partial
memory safety [17], [18] and work on identifying vulnera-
bilities by program analyses [19]. A comprehensive study on
memory-management-related vulnerabilities, like the ones
we discussed earlier, and their mitigations is presented in
earlier work [20].

Concerning project dependencies, it is difficult to count
the dependencies that matter the most, e.g., by excluding test
dependencies [21]. A common problem is that dependencies
are often updated slowly, keeping old bugs alive, although
measures such as automated pull requests exist to mitigate
this problem [22], [23], [24].

7. Conclusion
In this paper, we gave a systematic description of differ-

ent dangerous programming patterns involving unsafe and
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novel evidence on how to exploit these patterns. Further-
more, we presented two novel tools to help Go developers
write safer code with respect to unsafe Go and security
analysts to evaluate unsafe code. First, go-geiger identifies
unsafe usages not only within the main project package, but
also in its transitive dependencies. Therefore it represents an
effective tool to focus audit efforts on the code locations that
are the most dangerous, raising awareness into how unsafe is
included into a project, and helps getting a general sense for
the potential risks of deploying a specific project. Second,
go-safer is a new static code analysis tool that helps devel-
opers identify dangerous code patterns that were previously
uncaught with existing tools for linting. Additionally, we
conducted a study of 62,025 packages from 343 top-starred
open-source Go projects. Here, we have shown that unsafe is
very common, especially when taking project dependencies
into account. Finally, derived from this study, we presented
a new data set of manually labeled code snippets, providing
insight into how and for what purpose unsafe is used by
developers. The reasons for introducing unsafe operations
are often tied to optimization, interoperability with external
libraries or to circumvent language limitations.

In the future, supervised learning algorithms could use
our labeled data set to train classifiers, which can then
identify the purpose and domain of unsafe usages by looking
at new code. Furthermore, plugins for common IDEs that
integrate our tools, go-geiger and go-safer, could be built
to incorporate them into developers’ workflow.
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