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• To assert you as you
• To network
• To share
• To have a good time

• So I can do better 
than a lecture video

Chen Ding, University of Rochester

�����?

• “Nothing travels faster than the 
speed of light with the possible 
exception of bad news, which obeys 
its own special laws.”  Douglas Adams 
The Hitchhiker's Guide to the Galaxy



Chen Ding, University of Rochester

Three problems:
latency/bandwidth and Matthew Hertz’s beer

capacity and Trishul Chilimbi’s cliff
sharing Chen’s Platform

Chen Ding, University of Rochester, INRIA 2014

Beyond Diminishing Returns

Cache System

Madison Itanium2

Released in 2002

L3 Cache

Photo courtesy Intel Corp.
Madison Itanium 2, 2002
slide 3, Anant Agrawal, MIT 6.975 Fall 2007

• Cache
• which most transistors are used for
• where most memory accesses happen
• managed by priority/usage

• Shared cache
• available cache is variable
• throughput/stability/fairness/QoS
• sequential/parallel code

8

Cache System

Chen Ding, University of Rochester
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Hardware Execution 

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes 

one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks; 

and CUDA cores and other execution units in the SM execute threads. The SM executes 

threads in groups of 32 threads called a warp. While programmers can generally ignore warp 

execution for functional correctness and think of programming one thread, they can greatly 

improve performance by having threads in a warp execute the same code path and access 

memory in nearby addresses.    

 

An Overview of An Overview of An Overview of An Overview of the Fermi Architecturethe Fermi Architecturethe Fermi Architecturethe Fermi Architecture    

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA 

cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The 

512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory 

partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM 

memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread 

global scheduler distributes thread blocks to SM thread schedulers. 

 

Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical 
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion 

(execution units), and light blue portions (register file and L1 cache). 

Hierarchical Cache
Parallel Access

Constant 
Interaction
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bandwidth constrained. For existing applications that use Shared memory as software 

managed cache, code can be streamlined to take advantage of the hardware caching system, 

while still having access to at least 16 KB of shared memory for explicit thread cooperation. 

Best of all, applications that do not use Shared memory automatically benefit from the L1 

cache, allowing high performance CUDA programs to be built with minimum time and effort. 

Summary Table 

GPU G80 GT200 Fermi 
Transistors 681 million 1.4 billion 3.0 billion 

CUDA Cores 128 240 512 

Double Precision Floating 
Point Capability 

None 30 FMA ops / clock 256 FMA ops /clock 

Single Precision Floating 
Point Capability 

128 MAD 
ops/clock 

240 MAD ops / 
clock 

512 FMA ops /clock 

Special Function Units 
(SFUs) / SM 

2 2 4 

Warp schedulers (per SM) 1 1 2 
Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or 

16 KB 
L1 Cache (per SM) None None Configurable 16 KB or 

48 KB 
L2 Cache None None 768 KB 

ECC Memory Support No No Yes 
Concurrent Kernels No No Up to 16 

Load/Store Address Width 32-bit 32-bit 64-bit 

 

Second Generation Parallel Thread Execution ISA 

Fermi is the first architecture to support the new Parallel Thread eXecution (PTX) 2.0 instruction 

set.  PTX is a low level virtual machine and ISA designed to support the operations of a parallel 

thread processor. At program install time, PTX instructions are translated to machine 

instructions by the GPU driver.  

The primary goals of PTX are: 

 Provide a stable ISA that spans multiple GPU generations 

 Achieve full GPU performance in compiled applications 

 Provide a machine-independent ISA for C, C++, Fortran, and other compiler targets. 

 Provide a code distribution ISA for application and middleware developers 

 Provide a common ISA for optimizing code generators and translators, which map PTX 
to specific target machines. 

 Facilitate hand-coding of libraries and performance kernels 

 Provide a scalable programming model that spans GPU sizes from a few cores to many 
parallel cores 

Chen Ding, University of Rochester

�����
�����
	��
“
���	����
��
���” 

Henry James

ሹ的ٔ置

量化， 指标，比例

• ১到你定义一个度量
• 科学的૜步
• 工程的෼决条件

• “没有΅量༫没有提高”
• “You can’t improve what you can’t measure”

• 有了度量可以
• ᅰ找关系

• e.g. e = mc2

• 研究趋势
• e.g. 宇宙膨胀

• 比较优劣
• e.g. 程序优化 （明天易青老师的讲座ۤ

12



4/26/2014 Scalable Computing Software Lab, Illinois Institute of  Technology 1 

The Design  
of  

Parallel Memory Systems 

 
 
 
 
 
 
 

Xian-He Sun 
Illinois Institute of Technology 

Chicago, Illinois 
sun@iit.edu 

RESEARCH DRIVE 

Introduction 

8 

Computing  Become Data Intensive 
 Simulation,  visualization, data mining, information retrieval, 

etc. 

PI Project On-Line Data Off-Line Data 
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB 
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB 
Dean, David Computational Nuclear Structure 4TB 40TB 
Baker, David Computational Protein Structure 1TB 2TB 
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB 
Wolverton, Christopher Kinetics and Thermodynamics of Metal and 

Complex Hydride Nanoparticles 

5TB 100TB 

Washington, Warren Climate Science 10TB 345TB 
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB 
Tang, William Plasma Microturbulence 2TB 10TB 
Sugar, Robert Lattice QCD 1TB 44TB 
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB 
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB 

Data requirements for selected INCITE applications at ALCF 

Source: R. Ross et. al., Argonne National Laboratory 
11 4/26/2014 Scalable Computing Software Lab, Illinois Institute of  Technology 12 
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The Memory-wall Problem 

 Processor performance 
increases rapidly 
 Uni-processor: ~52% until 

2004, ~25% since then 
 New trend: multi-core/many-

core architecture 
 Intel TeraFlops chip, 2007 

 Aggregate processor 
performance much higher 

 Memory: ~9% per year 
 Processor-memory speed gap 

keeps increasing 
 

Source: Intel 

Source: OCZ 

25% 

52% 
20% 

9% 

60% 

9% 
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Addressing the HPC Data Challenges 

 Understanding the system, application, and algorithm 
relevant to data access 

 Optimizing current systems 
 Developing new system architectures  
 Developing integrated solutions 

 Algorithm, programming model, system, architecture, co-design 
 In situ application-aware data access optimization 

 

Trends  indicate  that  the  “data  tsunami”  and  “memory-
wall”  will  continue,  waiting  for  miracle  is  not  an  answer 

Need rethinking from the data-centric point-of-view in:  

Big-Data problem is a HPC problem:  
   Data access & Interface 

MEMORY SYSTEM BEHAVIOR 

Understanding 

14 



Memory System Performance 

 
    
 
 
 
 
 
 
 
 
 
 

µProc 
1.52/yr. 
(2X/1.5yr) 

Processor-Memory 
Performance Gap: 
(grows 50% / year) 

DRAM 
7%/yr. 
(2X/10 
yrs) 

“Moore’s  Law” 

Processor-DRAM Memory Gap 
µProc 
1.20/yr. 

• 1980: no cache in micro-processor; 2010: 3-level cache on chip, 4-level cache off chip 
• 1989 the first Intel processor with on-chip L1 cache was Intel 486, 8KB size 
• 1995 the first Intel processor with on-chip L2 cache was Intel Pentium Pro, 256KB size 
• 2003 the first Intel processor with on-chip L3 cache was Intel Itanium 2, 6MB size 
 
 Source: Computer Architecture A Quantitative Approach 

CPU Registers 
<8KB 
<0.2~0.5 ns, 500~800 GB/s/core 
Cache 
<50MB 
1-10 ns, 50~150GB/s/core  

Main Memory 
Giga Bytes 
50ns-100ns 5~10GB/s/channel 

Disk 
Tera Bytes, 5 ms 
100~300MB/s 

Capacity 
Access Time, Bandwidth 
 

Tape 
Peta Bytes or 
infinite  
sec-min 

Registers 

Cache 

Memory 

Disk 

Tape 

Instr. Operands 

Blocks 

Pages 

Files 

Staging 
Xfer Unit 

prog./compiler 
1-8 bytes 

cache cntl 
32-128 bytes 

OS 
4K-4M bytes 

user/operator 
Mbytes 

Upper Level 

Lower Level 

faster 

Larger 

Improve via Memory Hierarchy 

Improve via Data Access Concurrence 

 The complexity of CPU Design 
o Out-of-order Execution 
o Multithreading technology 
o Speculation mechanisms 

 

 The complexity of Memory Design 
o Advanced Cache Technologies 
o Allow tens or hundreds of cache accesses to overlap with each other 
o Processor continue execution instructions under multiple cache misses 
 

Multi-core 
Multi-threading 
Multi-issue 

Multi-banked Cache 
Multi-level Cache 

Multi-channel 
Multi-rank 
Multi-bank 

CPU 

Cache 

Memory 

Out-of-order Execution 
Speculative Execution 
Runahead Execution 

Pipelined Cache 
Non-blocking Cache  
Data Prefetching 
Write buffer 
 

Solution: Memory Hierarchy & Parallelism 

Parallel File System 
Input-Output (I/O) 

Disks 

Pipeline 
Non-blocking  
Prefetching 
Write buffer 
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IO Access 5~15M cycles 

Assumption of  Current Solutions 

 Memory Hierarchy: Locality 
 Concurrence: Data access pattern 

o Data stream 
 

Performances vary 
largely 

Existing Memory Metrics 
 Miss Rate(MR) 

o {the number of miss memory accesses} over {the number of total memory accesses} 

 Misses Per Kilo-Instructions(MPKI) 
o {the number of miss memory accesses} over {the number of total committed Instructions × 

1000} 

 Average Miss Penalty(AMP) 
o {the summary of single miss latency} over {the number of miss memory accesses} 

 Average Memory Access Time (AMAT) 
o AMAT = Hit time + MR×AMP 

 Flaw of Existing Metrics  
o Focus on a single component or 
o A single memory access   

Missing memory parallelism/concurrency 



The Introduction of APC 
 Access Per Cycle (APC) 

 APC = A/T 
 APC is measured as the number of memory accesses per 

memory active cycle or Access Per Memory Active Cycle 
(APMAC) 

 Benefits of APC (APMAC) 
 Separate memory evaluation from CPU evaluation 
 Each memory level has its own APC value 
 A better understanding of memory system as a whole, and at each layer 
 A better understanding of the match between computing capacity and 

memory system performance 

X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory Systems",  
ACM SIGMETRICS Performance Evaluation Review, Volume 40 , Issue 2, 2012. 

APC Measurement 

 The difficulty is measuring the total cycle T 
 Hundreds of memory accesses co-exist the memory system 

 
 Measure T based on the overlapping mode 

 When there are several memory accesses co-existing during the same 
clock cycle, T only increases by one 

 Measure the concurrence  
 Measure the concurrence at each level 

 
 Hardware cost: one bit 
 Concurrence and Data-Centric view 

 
 
 

Exhausted Testing  

 With different benchmarks, and with different 
configurations 

 With advanced cache technologies 
 Non-block cache 
 Pipelined cache 
 Multi-port cache 
 Hardware prefetcher 

 With single core or multicore 

 APC always has the highest CC values 
among all the memory metrics 

D. Wang, X.-H. Sun "Memory Access Cycle and the Measurement of Memory Systems",  
IEEE Transactions on Computers, (May-June) 2014 

APC and C-AMAT Applications 

 Provide a new way to measure and analyze the contribution 
of memory concurrence 

 Provide new approaches to reduce memory access delay 

 Reveal the importance of memory parallelism and its 
relation to data locality 

 Provide a mean to study the matching between memory 
organization and microprocessor architecture,  

 Provide a mean to study the matching between memory 
organization and a given application 

 Design and Co-Design of Parallel Memory Systems 

APPLICATION BEHAVIOR 

Understanding 

27 

Data Access is Application Dependent 

  Conventional algorithm analysis 
 Floating point operation 

 

 Data-centric algorithm analysis 
  Floating point operation 
  Memory requirement 
  Data reuse rate 
  Data access/movement pattern  



29 

The Memory-bounded Speedup 
 Tacit  assumption  in  Amdahl’s  law 

 The problem size is fixed 
 The speedup emphasizes time reduction 

 Gustafson’s  Law, 1988 
 Fixed-time speedup model 

 
 

 Sun  and  Ni’s  law, 1990 
 Memory-bounded speedup model 

 

(1 )

fixed time
Sequential Time of Solving Scaled WorkloadSpeedup
Parallel Time of Solving Scaled Workload

f nf


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memory bounded
Sequential Time of Solving Scaled WorkloadSpeedup
Parallel Time of Solving Scaled Workload

f fG n
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
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 
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 

1-f f 

1-f f*n 

Work: (1-f)+nf 

Work: 1 

X.-H.  Sun,  and  L.  Ni,  “Another  View  of  Parallel  Speedup,”   
Proc. of IEEE Supercomputing'90, NY, NY, Nov.12--Nov.16, 1990. 

Contribution of Memory-bounded Speedup 
 Data-centric thinking 
 Where the memory-bound function W = G(M) provide 

 W, the work in floating point operation 
 M, the memory requirement 
 G, the data reuse rate 
 Enough for memory hierarchy, but not concurrence 

 Need to find the data access/movement patterns for data access 
concurrency 
 

 Dense Linear Algebra, M memory, M3/2 work 
 FFT, M memory, O(M log(M)) work 
 G(pM) > pW, can lead to large increase in execution time 

 (ex) 10K x 10K matrix factorization: 800MB, 1 hr in uniprocessor 
with 1024 processors, 320K x 320K matrix, 32 hrs 

 Comprehensive access pattern classification 
 Implemented for I/O and memory access (MPI datatype) 

Spatial Patterns 
 

Contiguous 
Non-contiguous 
Fixed strided 
2d-strided 
Negative strided 
Random strided 
kd-strided 
Combination of contiguous and 
non-contiguous patterns 

Repetition 
 

Single occurrence 
Repeating 

Request size 
 

 Fixed 
 Variable 

 

 Small 
 Medium 
 Large 

Temporal Intervals 
 

Fixed 
Random 

 

I/O Operation 
Read only 
Write only 
Read/write 
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Data Access Signature: Patterns and Notation 

S. Byna, X.-H. Sun, et. al, "Parallel I/O Prefetching Using MPI File Caching and 
 I/O Signatures," SC'08  

I/O Pattern Detection  

32 

 Developed a pattern detection 
tool 

 Five pattern detectors for 
finding patterns among initial 
positions, offsets, request 
sizes, temporality, and 
repetitions 

 Outputs I/O Signature that can 
be used for prefetching, data 
layout, and data 
reorganization 

I/O Trace Signature 

Pattern Signature 

 Description of a sequence of 
I/O accesses in a pattern  

 Form: {I/O operation, init 
position, dimension, ([{offset 
pattern}, {request size 
pattern}, {pattern of number 
of repetitions}], […]), # of 
repetitions} 

 provides a simple description 
that explains the nature of a 
pattern 

 Form: {I/O operation, 
<Spatial pattern, 
Dimension>, <Repetitive 
behavior>, <Request size>, 
<Temporal Intervals>} 

• Collects parallel I/O calls of an application  
• Does not require any code modification 

Trace collection 

• Analyzes the collected information to give a clear 
understanding of I/O behavior of the application 

• Handles trace files in any text-based format 

Trace analysis 

IOSIG: An I/O Characterization Tool 

To provide a better understanding of parallel I/O accesses 
and information to be used for optimization techniques. 

Goal:  

Two 
steps:  

Website:   www.cs.iit.edu/~scs/iosig/ 

Y. Yin, et.al, "Boosting Application-Specific Parallel I/O Optimization Using IOSIG", 
 in Proc. of IEEE/ACM CCGrid, 2012.  

More about IOSIG 
 Additional contributions 

 Data access pattern categories 
 Local and global I/O signatures 

 Applications 

Prefetching SC’08 
S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp 
Parallel I/O Prefetching Using MPI File Caching and I/O 
Signatures 

 
Data Layout 
 
Data 
Coordination 
 
Data 
Organization 

HPDC11 
H. Song, Y. Yin, Y. Chen, X.-H. Sun,  
A Cost-intelligent Application-specific Data layout Scheme for 
Parallel File Systems 

SC11 H. Song, Y. Yin, X.-H. Sun, et. al,  
Server-Side I/O Coordination for Parallel File Systems 

PDSW11 J.He, H. Song, X.-H. Sun, Y. Yin, and R. Thakur  
Pattern-aware File Reorganization in MPI-IO 

Data 
Replication IPDPS13 Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, Pattern-Direct and 

Layout-Aware Replication Scheme for Parallel I/O Systems 

• Website:   www.cs.iit.edu/~scs/iosig/ 
Data Compression 



OPTIMIZATION FROM DATA VIEW 

I/O System  

35 

INTEGRATED SYSTEM DESIGN 

Developing  

46 
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In Situ Application-aware Optimization 

L2 

L1 
DF 

Memory Wall 

 Data access is application dependent 

 Dynamic, application-aware optimization for parallelism 

 Data access pattern, feed back control 

 Integrating language, memory system, and 

hardware/software infrastructures 

 Understanding design trade-off  

Ours Method: Application-Aware I/O (1) 

Core 

Disk 

Supercomputer  or  
many-core  computing system 
for execution of computing  
intensive part of an application 

Data cloud or storage cluster 
for execution of data 
intensive part of an application 

High speed network 

Network 
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Decoupled-Execution Paradigm:  
  Handle computation- and data- intensive phases separately 
 One interface-Two systems, transparent to users 
 Integration, scheduling, optimization 

Y. Chen, et.al. "A Decoupled Execution Paradigm for Data-Intensive High-End Computing,"  
Cluster'12, September, 2012. 
 

 Combine SSD 
technology with Parallel 
File Systems 

 Plug-in as a Data-
Service with SSD cache 

 Optimize via 
application-aware 

 Storage Class Memory  
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Application-Aware I/O Optimization (3) 

S. He, X.-H. Sun, et.al. "S4D-Cache: Smart Selective SSD Cache for Parallel I/O 
Systems”,  accepted to appear in ICDCS2014 

Smart Selective SSD 
Cache (S4D-Cache) 

File System

Network

SSD SSD

Compute Nodes

DServers

CSservers

HDD

…

…

SSDCache

High Level I/O Library

Parallel I/O Programming Environment

P P P P P P P P

HDD HDD HDD HDD HDD HDD HDD

Cache File System

51 

 Dynamic,  Application-aware 
 System and algorithm re-design 

forwarding MPI PFS Application 

Data Access is a Complex Matter 

Operation of Memory Hierarchy 

Layers of parallel I/O 

Big Data, Big Deal, Big Challenge 
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 Energy and Power 
 Memory and Storage 
 Concurrency and Locality (programming model)  
 Resiliency 

Challenges of Exascale Computing 
(Cloud, data center) 

Ours Solution:  
Concurrent memory and storage systems  
(with programming support) 

4/26/2014 Scalable Computing Software Lab, Illinois Institute of  Technology 53 
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Conclusion: HPC Data-centric Rethinking 
 Power & fault-tolerant depending on data handling 
 Data access is a major concern of big data, cloud, HPC 
 Data intensive computing requires the rethinking of 

program model, system, algorithm, and architecture 
 C-AMAT and APC build the foundation of rethinking 

computing systems 
 Integrated parallel data-access system design is the first 

step 
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My Interests

• Is research for knowledge or utility?
• Pythagorean or Baconian?
• The science of systems research

• what can we ultimately create
• New knowledge <-> more useful systems

• How to do research?
• “Don’t do what everybody else is doing” ---Jim Larus

• supercomputing, ILP, pointer analysis, multi-core, ... ...
• Look forward to the next limit

• Basic research question
• How much a program can understand other programs?

47
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This Course

• Three basic problems in (computer) systems
• locality, parallelism, synchrony

• The material
• key studies that illuminate the limits or overcome some of 

the limits
• computational solutions and experimental verification
• what we have learned collectively in the last decade

• Class dynamics
• explanation of basic concepts and questions
• selection of specific material (from the reading list) 

based on common interests

48
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1994: Instruction-level Parallelism

49

• Studying under Philip Sweany and Steven Carr at MTU
• Hiding the latency of operations and branches

• most operations have predictable latency 
• except for ... ...

• Memory accesses
• papers assumed L1 miss and L2 hit

• What about L2 misses?
• the latency can be over a hundred cycles
• ILP may not matter
• no discussion in ILP papers
• no one really knows the general answer until this decade

Scalability and Data Placement on SGI Origin ⇤

Arun CHAUHAN Chen DING Barry SHERAW

Dept of Computer Science
6100 S Main, Rice University

Houston, TX 77005
{achauhan,cding,sheraw}@rice.edu

April 28, 1997

Abstract

Cache-coherent non-uniform memory access (ccNUMA) architectures have attracted lots
of academic and industry interests as a promising direction to large scale parallel computing.
Data placement has been used as a major optimization method on such machines. This study
examined the scalability and the e↵ect of data placement on a state-of-the-art ccNUMA
machine, SGI Origin, using 16 processors. Three applications from SPLASH-2 are used,
FFT, Radix and Barnes-Hut. The results showed that FFT and Radix cannot scale to 16
processors with 70% e�ciency even for the largest data sizes tested. Barnes-Hut doesn’t
scale for small data size but scales linearly for large input size. The results also showed that
data placement does not make any di↵erence on performance for all three applications. We
attribute these results to the e↵ect of the advanced uni-processor used on the Origin, R10K,
the optimizing compiler, and the aggressive communication architecture.

Some of our results are quite di↵erent from the predictions of two recent simulation studies
on directory-based ccNUMA machines ([HSH96] and [PRA97]), especially on FFT. These
di↵erences are partly due to the fact that the machine models used in previous simulation
studies are di↵erent from the Origin machine in some important aspects. Our results also
include data sizes that are larger than any of the previous simulation studies. To increase
our confidence on the latency numbers and data placement tools, we also measured memory
latencies using micro-benchmarks.

1 Introduction

In the last few years, there has been increasing interest in ccNUMA architectures, specifically in
its potential for large scale parallel computing. As a result, many commercial machines based
on the ccNUMA architecture have recently been introduced. These include machines such as
the SGI Origin and HP-Convex Exemplar. Such machines utilize the ccNUMA architecture as

⇤Available as TR98-305, Dept of Computer Science, Rice University
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2002: Mark Wegman

• Compiler legend, co-invented many classic techniques
• compression, universal hashing, global value numbering, 

constant propagation, congruence, and static single 
assignement

• First ACM Workshop on Memory System Performance and 
Correctness (MSPC) in 2002
• recurring comment during the PC meeting

• “The first load takes a long time, the next 10 do not 
matter!”

• Performance depends on not instruction count and not 
instruction type but when and how often there is a miss
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The Memory Problem

52

• The journey of an idea
1997 summer, I told Ken the problem of memory bandwidth
1998(?) John Hennessy “single-node bandwidth” is fundamental problem
1998 (?) John McCalpin “It is the bandwidth, stupid”
1999 summer, Burton Smith at LCPC at UCSD
2000, my dissertation done, talk w/ Crawford of Intel and Carter of Utah
2001, my visits at Intel Itanium compiler group and Lawrence Livermore
2002, Intel used RAMBUS in Pentium 4
2002, Earth Simulator became world’s fastest computer
2002, Utah work won ICS best student paper award
2003/4, US invested in high-end computing
2003 PACT, global loop fusion by Intel
2005 ICS, array regrouping by IBM
2005 ICS, data packing used by Lawrence Livermore
2003--2007, a new understanding of locality emerged
2007, DARPA MIT multi-core workshop listed off-chip bw as #1 problem
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Program Behavior Research

Introduction

1. The “memory problem”
Large-Scale Program Behavior

Analysis and Adaptation

Chen Ding

Associate Professor

Computer Science Department

University of Rochester

Visiting Associate Professor

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

School of Informatics, University of Indiana, September 14 2007

1. The “memory problem”

TILE64™ Processor
Product Brief

Overview

The TILE64™ family of multicore processors delivers 
immense compute performance to drive the latest 
generation of embedded applications. This 
revolutionary processor features 64 identical 
processor cores (tiles) interconnected with Tilera's 
iMesh™ on-chip network. Each tile is a complete full-
featured processor, including integrated L1 & L2 
cache and a non-blocking switch that connects the 
tile into the mesh.  This means that each tile can 
independently run a full operating system, or multiple 
tiles taken together can run a multi-processing OS like 
SMP Linux. 

The TILE64 processor family slashes board real estate and system cost by integrating a complete 
set of memory and I/O controllers, therefore eliminating the need for an external North Bridge or 
South Bridge.  It delivers scalable performance, power efficiency and low processing latency in an 
extremely compact footprint.

The TILE64 Processor is programmable in ANSI standard C, enabling developers to leverage their 
existing software investment. Tiles can be grouped into clusters to apply the appropriate amount 
of horsepower to each application.  Since multiple operating system instances can be run on the 
TILE64 simultaneously, it can replace multiple CPU subsystems for both the data plane and 
control plane.

Combining multiple C-programmable processor tiles with the iMesh multicore technology 
enables the TILE64 processor to achieve the performance of a fixed function ASIC or FPGA in a 
powerful software-programmable solution. 

For more information on Tilera products, visit www.tilera.com© 2007 Tilera Corporation All Rights Reserved

Product Differentiators

Features Enables

Massively 
Scalable 
Performance

Power Efficiency 

Integrated Solution 

Multicore 
Development 
Environment

•  8 X 8 grid of identical, general purpose processor cores (tiles) 
•  3-way VLIW pipeline for instruction level parallelism
•  5 Mbytes of on-chip Cache
•  192 billion operations per second (32-bit)
•  27 Tbps of on-chip mesh interconnect enables linear application scaling
•  Up to 50 Gbps of I/O bandwidth

•  600MHz - 1GHz operating frequency 
•  170 - 300mW per core
•  Idle Tiles can be put into low-power sleep mode
•  Power efficient inter tile communications

•  Four DDR2 memory controllers with optional ECC
•  Two 10GbE XAUI configurable MAC or PHY interfaces 
•  Two 4-lane 10Gbps PCI-e MAC or PHY interfaces
•  Two GbE MAC interfaces
•  Flexible I/O interface

•  ANSI standard C compiler
•  Advanced profiling and debugging designed for multicore programming 
•  Supports SMP Linux with 2.6 kernel
•  iLib API's for efficient inter-tile communication 

•  10 Gbps Snort® processing
•  20+ Gbps iptables (firewall)
•  20+ Gbps nProbe
•  16 X 16 SAD at 540 MBlocks/s
•  H.264 HD video encode for two streams of 720p @ 30 Fps

•  Highest performance per watt
•  Simple thermal management & power supply design
•  Lower operating cost 

•  Reduces BOM cost - standard interfaces included on-chip
•  Dramatically reduced board real estate
•  Direct interface to leading L2-L3 switch vendors

•  Run off-the-shelf C programs 
•  Reduce debug and optimization time
•  Faster time to production code
•  Standard multicore communication mechanisms
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TILE64™ Processor
Product Brief

Overview

The TILE64™ family of multicore processors delivers 
immense compute performance to drive the latest 
generation of embedded applications. This 
revolutionary processor features 64 identical 
processor cores (tiles) interconnected with Tilera's 
iMesh™ on-chip network. Each tile is a complete full-
featured processor, including integrated L1 & L2 
cache and a non-blocking switch that connects the 
tile into the mesh.  This means that each tile can 
independently run a full operating system, or multiple 
tiles taken together can run a multi-processing OS like 
SMP Linux. 

The TILE64 processor family slashes board real estate and system cost by integrating a complete 
set of memory and I/O controllers, therefore eliminating the need for an external North Bridge or 
South Bridge.  It delivers scalable performance, power efficiency and low processing latency in an 
extremely compact footprint.

The TILE64 Processor is programmable in ANSI standard C, enabling developers to leverage their 
existing software investment. Tiles can be grouped into clusters to apply the appropriate amount 
of horsepower to each application.  Since multiple operating system instances can be run on the 
TILE64 simultaneously, it can replace multiple CPU subsystems for both the data plane and 
control plane.

Combining multiple C-programmable processor tiles with the iMesh multicore technology 
enables the TILE64 processor to achieve the performance of a fixed function ASIC or FPGA in a 
powerful software-programmable solution. 

For more information on Tilera products, visit www.tilera.com© 2007 Tilera Corporation All Rights Reserved

Product Differentiators

Features Enables

Massively 
Scalable 
Performance

Power Efficiency 

Integrated Solution 

Multicore 
Development 
Environment

•  8 X 8 grid of identical, general purpose processor cores (tiles) 
•  3-way VLIW pipeline for instruction level parallelism
•  5 Mbytes of on-chip Cache
•  192 billion operations per second (32-bit)
•  27 Tbps of on-chip mesh interconnect enables linear application scaling
•  Up to 50 Gbps of I/O bandwidth

•  600MHz - 1GHz operating frequency 
•  170 - 300mW per core
•  Idle Tiles can be put into low-power sleep mode
•  Power efficient inter tile communications

•  Four DDR2 memory controllers with optional ECC
•  Two 10GbE XAUI configurable MAC or PHY interfaces 
•  Two 4-lane 10Gbps PCI-e MAC or PHY interfaces
•  Two GbE MAC interfaces
•  Flexible I/O interface

•  ANSI standard C compiler
•  Advanced profiling and debugging designed for multicore programming 
•  Supports SMP Linux with 2.6 kernel
•  iLib API's for efficient inter-tile communication 

•  10 Gbps Snort® processing
•  20+ Gbps iptables (firewall)
•  20+ Gbps nProbe
•  16 X 16 SAD at 540 MBlocks/s
•  H.264 HD video encode for two streams of 720p @ 30 Fps

•  Highest performance per watt
•  Simple thermal management & power supply design
•  Lower operating cost 

•  Reduces BOM cost - standard interfaces included on-chip
•  Dramatically reduced board real estate
•  Direct interface to leading L2-L3 switch vendors

•  Run off-the-shelf C programs 
•  Reduce debug and optimization time
•  Faster time to production code
•  Standard multicore communication mechanisms
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The Memory Problem

What was the problem??
http://www.birminghamfreepress.com/commercial/illustrations/Thinker.jpg Chen Ding, DragonStar lecture, ICT 2008
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Memory Performance

Problem

high memory latencyCPU

memory

cache
Improvement 1

fast cache

Improvement 2 & 3

Data prefetching

Multi-threading

Is there enough bandwidth?

Chen Ding, DragonStar lecture, ICT 2008
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Bandwidth Bottleneck

• Hardware trends
• CPU speed improved 6400 times in 20 years
• Memory bandwidth improved 139 times

• Software trends
• large data sets
• dynamic content and computation
• modularized programming

• “Moore’s gap”
• data supply cannot keep up with CPU speed

Chen Ding, DragonStar lecture, ICT 2008
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Performance Model

• Balance
• Callahan, Cocke, and Kennedy. JPDC 1988.
• Ding and Kennedy.  JPDC 2004.

• Machine balance
• max words per cycle divided by max flops per cycle

• Program balance
• # words accessed divided by # flops executed
• total loads/stores divided by total floating-point ops

• Consequences
• MB = PB  full utilization
• MB > PB  memory idle
• MB < PB  CPU idle

CSC573, Computer Science, U. of Rochester 59

Program and Machine Balance
[Callahan, Cocke, and Kennedy, JPDC 1988]

[Ding and Kennedy, IPDPS 2000 and JPDC 2004]

Program/machine balanceprogram/
machine L1-Reg L2-L1 Mem-L2

Convolution 6.4 5.1 5.2
Dmxpy 8.3 8.3 8.4

Mmjki (-O2) 24.0 8.2 5.9
Mmjki (-O3) 8.1 1.0 0.04

FFT 8.3 3.0 2.7
SP 10.8 6.4 4.9

Sweep3D 15.0 9.1 7.8
Origin2000 4.0 4.0 0.8

Chen Ding, DragonStar lecture, ICT 2008
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Memory-Bandwidth Bottleneck

• Ratios of demand to supply

• Memory bandwidth is least sufficient
• Maximal CPU utilization: 10% to 33%
• The imbalance is getting worse
• Software solution: Better caching
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Steve Wallach’s Fall 1999 Seminar
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MEMORY
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How about
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Abstract

This paper makes the case that pin bandwidth will be a critical
consideration for future microprocessors. We show that many of
the techniques used to tolerate growing memory latencies do so at
the expense of increased bandwidth requirements. Using a decom-
position of execution time, we show that for modern processors
that employ aggressive memory latency tolerance techniques,
wasted cycles due to insufficient bandwidth generally exceed those
due to raw memory latencies. Given the importance of maximizing
memory bandwidth, we calculate effective pin bandwidth, then
estimate optimal effective pin bandwidth. We measure these quan-
tities by determining the amount by which both caches and mini-
mal-traffic caches filter accesses to the lower levels of the memory
hierarchy. We see that there is a gap that can exceed two orders of
magnitude between the total memory traffic generated by caches
and the minimal-traffic caches—implying that the potential exists
to increase effective pin bandwidth substantially. We decompose
this traffic gap into four factors, and show they contribute quite
differently to traffic reduction for different benchmarks. We con-
clude that, in the short term, pin bandwidth limitations will make
more complex on-chip caches cost-effective. For example, flexible
caches may allow individual applications to choose from a range
of caching policies. In the long term, we predict that off-chip
accesses will be so expensive that all system memory will reside on
one or more processor chips.

1  Introduction

The growing inability of memory systems to keep up with pro-
cessor requests has significant ramifications for the design of
microprocessors in the next decade. Technological trends have
produced a large and growing gap between CPU speeds and
DRAM speeds. The number of instructions that the processor can
issue during an access to main memory is already large. Extrapo-
lating current trends suggests that soon a processor may be able to
issue hundreds or even thousands of instructions while it fetches a
single datum into on-chip memory.

Much research has focused on reducing or tolerating these
large memory access latencies. Researchers have proposed many

techniques for reducing the frequency and impact of cache misses.
These include lockup-free caches [28, 40], cache-conscious load
scheduling [1], hardware and software prefetching [6, 7, 13, 14,
26, 32], stream buffers [24, 33], speculative loads and execution
[11, 35], and multithreading [30, 38].

It is our hypothesis that the increasing use and success of
latency-tolerance techniques will expose memory bandwidth, not
raw access latencies, as a more fundamental impediment to higher
performance. Increased latency due to bandwidth constraints will
emerge for four reasons:

1. Continuing progress in processor design will increase the
issue rate of instructions. These advances include both archi-
tectural innovation (wider issue, speculative execution, etc.)
and circuit advances (faster, denser logic).

2. To the extent that latency-tolerance techniques are successful,
they will speed up the retirement rate of instructions, thus
requiring more memory operands per unit of time.

3. Many of the latency-tolerance techniques increase the abso-
lute amount of memory traffic by fetching more data than are
needed. They also create contention in the memory system.

4. Packaging and testing costs, along with power and cooling
considerations, will increasingly affect costs—resulting in
slower, or more costly, increases in off-chip bandwidth than
in on-chip processing and memory.

The factors enumerated above will render memory band-
width—particularly pin bandwidth—a more critical and expensive
resource than it is today. Given the complex interactions between
memory latency and bandwidth, however, it is difficult to deter-
mine whether memory-related processor stalls are due to raw
memory latency or increased latency from insufficient bandwidth.
Current metrics (such as average memory access time) do not
address this issue. This paper therefore separates execution time
into three categories: processing time (which includes idle time
caused by lack of instruction-level parallelism [ILP]), memory
latency stall time, and memory bandwidth stall time.

Assuming that a growing percentage of lost cycles are due to
insufficient pin bandwidth, the performance of future systems will
increasingly be determined by (i) the rate at which the external
memory system can supply operands, and (ii) how effectively on-
chip memory can retain operands for reuse. By retaining operands,
on-chip memory (caches, registers, and other structures) can
increase effective pin bandwidth. By measuring the extent to
which on-chip memory shields the pins from processor requests,
we can determine how much computational power a given package
can support.

The miss rate provides a good estimate of traffic reduction for
simple caches. Since many techniques can trade increased traffic
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method of hiding memory latencies. Although this technique does
not increase the amount of traffic to main memory, lockup-free
caches worsen bandwidth stalls by allowing multiple memory
requests to issue—making queueing delays possible in the mem-
ory system. Furthermore, the presence of lockup-free caches will
likely encourage more speculative execution.

Both software [6, 8, 26, 32] and hardware [13, 14] prefetching
techniques can increase traffic to main memory. They may
prefetch data too early, causing other references to evict the
prefetched data from the cache before their use. They may also
evict needed data from the cache before their use, causing an extra
cache miss. Stream buffers [24, 33] prefetch unnecessary data at
the end of a stream. They also falsely identify streams, fetching
unnecessary data. Speculative prefetching techniques—such as
lifting loads above conditional branches [35]—increase memory
traffic whenever the speculation is incorrect.

Multithreading increases processor throughput by switching to
a different thread when a long-latency operation occurs [30, 38].
Frequent switching of threads will increase interference in the
caches and TLB, however, causing an increase in cache misses and
total traffic. Poorer cache performance—resulting from the
increased size of the threads’ combined working set—may offset
some or all of the gains of the latency tolerance.

Finally, larger block sizes may decrease cache miss rates. Miss
rate improvement occurs until the coarser granularity of address
space coverage (i.e., the reduced number of blocks in the cache)
overshadows the reduction in misses obtained by fetching larger
blocks. Even when larger blocks reduce the miss rate, however, the
increased traffic may cause bandwidth stalls that outweigh the
miss rate improvements.

2.2  Advanced processors

Several factors other than latency-reduction techniques will
increase the needed bandwidth across the processor module
boundary. These factors include advanced processor design tech-
niques and shifts in characteristic uniprocessor workloads.

As processors get faster, they consume operands at a higher
rate. Faster processor clocks run programs in a shorter time,
increasing off-chip bandwidth requirements. Other processor
enhancements (such as wider-issue processors) also reduce execu-
tion time and increase needed bandwidth.

Processors that rely heavily on coarse-grained speculative exe-
cution to increase ILP—such as the Wisconsin Multiscalar [39]—
increase memory traffic whenever they must squash a task after an
incorrect speculation. Multiple distinct execution units in such pro-
cessors can execute different parts of the instruction stream simul-
taneously. This execution may reduce locality in shared, lower-

level caches, thus increasing the miss rate, and therefore the total
traffic.

The emergence of single-chip multiprocessors would substan-
tially increase the number of data loaded per cycle. The increased
bandwidth results primarily from multiple concurrently-running
contexts, but also because of shared-cache interference. The pri-
mary barrier to the implementation of single-chip multiprocessors
will not be transistor availability but off-chip memory bandwidth.
If one processor loses performance due to limited pin bandwidth,
then multiple processors on a chip will lose far more performance
for the same reason.

Finally, throughout the computer industry, there is an increas-
ing software emphasis on visualization, graphics, and multimedia.
These codes tend to have large data sets, with much floating-point
computation. Traditional caches are remarkably ineffective at
reducing the bandwidth requirements of these types of codes [5].
The increased use of this type of software may therefore exacer-
bate bandwidth limitations.

2.3  Physical limits

The rate of increase of processor pins has traditionally been
much slower than that of transistor density. Although large
increases in pin counts have recently occurred—and significant
breakthroughs in packaging technology undoubtedly lie on the
horizon—the issues of reliability, power, and especially cost will
prevent pins from sustaining growth in numbers commensurate
with the growth rate of processor performance.

Figure 1 shows trends in pin, performance, and off-chip band-
width from 1978 to 1997. We compiled this data by hand, from
both the processors’ original manuals and back issues of Micro-

processor Report. All three y-axes use log scales. The x-axes use a
linear scale.

Figure 1a plots the number of pins per processor from 1978 to
1997. We see from the dotted line that pin counts are increasing by
about 16% per year. More striking is the result in Figure 1b, which
plots processor performance1 per pin versus time. The raw perfor-
mance per pin is also increasing explosively, despite the rapid
increase in pin count shown in Figure 1a.

Packages and buses are designed to provide sufficient off-chip
bandwidth to each generation of processors. Figure 1c—which
plots the raw performance-to-package bandwidth ratio over time—
shows that performance increases are quickly outstripping the

1. Performance here is measured in VAX MIPS for the 680x0 and early

80x86 processors, and issue width times clock rate for the others. These

two measures cannot be compared directly, but are sufficient to view 20-

year trends.
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IBM BlueGene/L 2005
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Traditional Processors

• NEC SX-4
• vector processor, June 1997, 2 Gflops, 7.4GB/s 

bandwidth, 3.7 bytes per flop
• Alpha Server

• May 1999, 600MHz CPU, 2MB cache, 932 Mflops, 50MB/s 
bandwidth, 0.48 byte per flop

• Pentium 4
• Sept. 2003, 2.4GHz, 4.8 Gflops, 1.58GB/s bandwidth, 

0.33 byte per flop
• Opteron

• Dec. 2003, 2.2GHz, 4 Gflops, 1.1GB/s bandwidth, 0.28 
byte per flop

67
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Chip Multi-processors

• 4-way Power 4
• May 2003, 1.7GHz, 6MB partitioned L2, 27.2 Gflops, 6GB/

s, 0.22 byte per flop
• Intel Core2 Quad

• April 2007, 2.4GHz, 154 Gflops, 5.3 GB/s bandwidth, 0.07 
byte per flop

• 64-core Tilera
• Dec. 2007, 750MHz, 25GB/s peak memory bandwidth, 3.8 

TB on-chip bandwidth
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Current Expert Opinion
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Ramesh PeriRamesh Peri
Principal Engineer & Engineering Manager, Principal Engineer & Engineering Manager, 

Performance and Threading Tools LabPerformance and Threading Tools Lab

IntelIntel®® Corporation, Austin, TX 78738Corporation, Austin, TX 78738

MultiMulti--Core Processors Core Processors –– Are they Are they 
Here Yet ?Here Yet ?

!! My shopping basket at FryMy shopping basket at Fry’’s electronics on s electronics on BlackFridayBlackFriday

ItemItem CostCost

Motherboard+IntelMotherboard+Intel®® Quad core 2.4GhzQuad core 2.4Ghz 200200

4GB Memory4GB Memory 7070

0.5TB Disk0.5TB Disk 8080

Case Case 1010

GraphicsGraphics 1010

CD/DVDCD/DVD 1010

TotalTotal 380380

Languages and Compilers
for Multicore 

Computing Systems

FRAN ALLEN
allen@watson.ibm.com

Workshop Keynote
IIT Kanpur, India

December 13, 2007
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Parallelism Solves the Performance Problem!  
(or does it?)

14

OPPORTUNITIES

! New very high level languages

! New compiler techniques to manage data locality, 

integrity, ownership, … in the presence of parallelism. 

! Influence the architects before it is too late

! Rebuild the software stack 

! Establish overall system goals:

" User Productivity

" Application Performance

Temporal and Spatial Locality:
A Time and a Place for Everything

Rick Bunt
University of Saskatchewan

Carey Williamson
University of Calgary

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 4 of 29

December 6, 2003

What is Locality

 Parachor Curve
 “during any interval of execution, a

program favors a subset of its pages,
and this set of favored pages

changes slowly” [Denning 1970]

An empirically observed phenomenon that has substantial 
intuitive appeal and numerous practical implications 

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 5 of 29

December 6, 2003

Impact of Locality

 Acceptable page fault rates can be achieved even
when the memory allocated to a program is much less
than that required to store all of its pages

 Internet routers can make high speed routing decisions
with very modest forwarding caches

 Mobile users can work with remotely stored files even
though they are located far from the file server

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 6 of 29

December 6, 2003

Known Aliases

The law of scattering
The principle of least effort
The 80-20 rule
Concentration of productivity
The law of diminishing returns



Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 8 of 29

December 6, 2003

Locality Through the Ages

 Bradford’s Law of Scattering [1934]
 Zipf’s Principle of Least Effort [1949]
 Many applications before we discovered it

 population distribution, distribution of wealth, distribution of biological
species, article distribution in journals, and word usage in natural
language.

 has been used to plan the location of libraries and other facilities, to
model the popularity of television programs, and to order search keys in
hashing tables

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 7 of 29

December 6, 2003

The Underlying Concept

There is a very large population of items, many
more than we can manage

There is a small core of relevant items on
which we can productively focus our attention

This core will continue to be relevant long
enough to justify our attention

Locality: Innate or Emergent?

Leonard Mandel

How to Analyze Locality?
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Programming and Program Analysis

• Language design & implementation [Scott 
Programming Language Pragmatics]
• naming, types, control and data 

abstractions, imperative, functional, 
logical, parallel, ...

• Program analysis and optimization 
[Cooper&Torczon Engineering a Compiler]
• invariance in (cyclic) graphs

• Dependence and parallelization 
[Allen&Kennedy Optimizing Compilers for Modern 
Architectures]
• (re)ordering constraints
• reorganization of loop and data spaces

long

ogram analysis & optimization                                
Engineering a Compiler]

Dependence & parallelization                         

long

long
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Program Analysis Methods

• Compilers
• effective for scalars
• for loop nests with linear index expressions
• not for branches, recursion, indirect data access

• Profiling
• accurate for one input
• not for other inputs

• Run-time analysis
• needed for input-dependent patterns
• costly for detailed analysis and large-scale transformation

86
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Programs and Program Behavior

• Software trends
• data intensive

• dynamic and input dependent
• parameterized code

• templates, polymorphism
• outside code

• library, VM, VMM, OS, network, hardware
• Program behavior

• a long sequence of operations
• large-scale, compound effects

• Behavior-based analysis
• identify composite patterns through off-line training or 

online monitoring
87
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Reuse Distance

• Reuse distance of an access to data d
• the volume of data between this and the 

previous access to d
• Reuse signature of an execution

• the distribution of all finite reuse distances
• gives the miss rate of fully associative 

cache of all sizes
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Working SetIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

r(t) is not in the resident set established at time t - 1, a seg-
ment (or page) fault occurs at time t. This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
"loaded on demand" (others are "preloaded").
The memory policies of interest here determine the content

of the resident set by loading segments on demand and then
deciding when to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a "cold start," and an
initially nonempty resident set as a "warm start" [60].)
The memory policy's control parameter, denoted 0, is used

to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of 0
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 0 could
be generalized to a set of parameters, e.g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.
The performance of a memory policy can be expressed

through its swapping curpe, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 0 as the size of the
resident set; in this case the swapping curve f(0) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter 0 to determine a bound
on the residence times of segments. Thus a value of 0 implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f(x), is determined
parametrically from the set of (x, y) points generated for the
various 0. (See [53].)
One of the parameters needed in a queuing network model

of a multiprogramming system is the paging rate [47] - [49],
[521. This parameter is easily determined from the lifetime
curve, which is the function g(x) = 1 /f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum ofg(x)/x.
(See Fig. 2.)
A memory policy's resident set at virtual time t for control

parameter 0 is denoted R (t1 0).
A memory policy satisfies the inclusion property ifR (t, 0) C

R (t, 0 + a) for a > 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases. In Fig. 2, this means that the lifetime
curve increases uniformly as 0 increases. (See [52], [53],
[66].)
Several empirical models of the lifetime curve have been

proposed. One is the Belady model [15]

g(x) = a . xk

where x is the mean resident set size, a is a constant, and k is
normally between 1.5 and 3 (a and k depend on the program).
This model is often a reasonable approximation of the portion

time/fault

g(o)

E
._
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PRwR g(x)
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// [ secondary knee
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Fig. 2. A lifetime curve.

of the lifetime curve below the primary knee, but it is other-
wise poor ([49], [117] ).1 A second model is the Chamberlin
model [28]

T/2
g(x) =1 + (d/X)2

where T is the program execution time and d is the resident
set size at which lifetime is T/2. Though this function has a
knee, it is a poor match for real programs. The recent empiri-
cal studies by Burgevin, Lenfant, and Leroudier contain many
interesting observations about and refinements of these models
([81], [83] ). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], [74],
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram's behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults-an event that might not be predicted if the mean life-
time is long.

Space-Time Product
A program's space-time product is the integral of its resi-

dent set size over the time it is running or waiting for a missing

'Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident set
initially empty) to "warm start" [60]; however, the "warm start"
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also [73], [78], [1171.)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady model to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [971; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)
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r(t) is not in the resident set established at time t - 1, a seg-
ment (or page) fault occurs at time t. This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
"loaded on demand" (others are "preloaded").
The memory policies of interest here determine the content

of the resident set by loading segments on demand and then
deciding when to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a "cold start," and an
initially nonempty resident set as a "warm start" [60].)
The memory policy's control parameter, denoted 0, is used

to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of 0
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 0 could
be generalized to a set of parameters, e.g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.
The performance of a memory policy can be expressed

through its swapping curpe, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 0 as the size of the
resident set; in this case the swapping curve f(0) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter 0 to determine a bound
on the residence times of segments. Thus a value of 0 implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f(x), is determined
parametrically from the set of (x, y) points generated for the
various 0. (See [53].)
One of the parameters needed in a queuing network model

of a multiprogramming system is the paging rate [47] - [49],
[521. This parameter is easily determined from the lifetime
curve, which is the function g(x) = 1 /f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum ofg(x)/x.
(See Fig. 2.)
A memory policy's resident set at virtual time t for control

parameter 0 is denoted R (t1 0).
A memory policy satisfies the inclusion property ifR (t, 0) C

R (t, 0 + a) for a > 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases. In Fig. 2, this means that the lifetime
curve increases uniformly as 0 increases. (See [52], [53],
[66].)
Several empirical models of the lifetime curve have been

proposed. One is the Belady model [15]

g(x) = a . xk

where x is the mean resident set size, a is a constant, and k is
normally between 1.5 and 3 (a and k depend on the program).
This model is often a reasonable approximation of the portion
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of the lifetime curve below the primary knee, but it is other-
wise poor ([49], [117] ).1 A second model is the Chamberlin
model [28]

T/2
g(x) =1 + (d/X)2

where T is the program execution time and d is the resident
set size at which lifetime is T/2. Though this function has a
knee, it is a poor match for real programs. The recent empiri-
cal studies by Burgevin, Lenfant, and Leroudier contain many
interesting observations about and refinements of these models
([81], [83] ). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], [74],
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram's behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults-an event that might not be predicted if the mean life-
time is long.

Space-Time Product
A program's space-time product is the integral of its resi-

dent set size over the time it is running or waiting for a missing

'Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident set
initially empty) to "warm start" [60]; however, the "warm start"
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also [73], [78], [1171.)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady model to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [971; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)
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Measuring Reuse Distance
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Measuring Reuse Distance

• Naive counting, O(N) time per access, O(N) space
• N is the number of memory accesses
• M is the number of distinct data elements

• Too costly
• N is up to 120 billion, M 25 million
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Precise Methods

• stack algorithm [Mattson+ IBM 70]
• O(M) time per access, O(M) space

• vector tree [Bennett&Kruskal IBM 75]
• O(log N) time per access, O(N) space

• search tree [Olken LBL 81, Sugumar&Abraham UM 93]
• O(log M) time per access, O(M) space

• space cost remains a major problem
95

Approximation

• Basic idea
– measure only the first few digits of a long distance
– use non-unit size tree nodes

• tree size = M / average node size
– bound the error by tree node size

• Guaranteed relative accuracy
– a <= measured/actual_distance <= 1

• e.g. a = 99%
– logarithmic space cost

• Hashtable cost
– space problem solved by Bennett-Kruskal in 1975
– not considered in the discussion



(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

(time range, weight, capacity, size)

Tree node

The three tree nodes 
have capacities 

1, 2, and 6.
It guarantees 33% 

accuracy.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Search for last access 
of b, whose access 

time is 4. 

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

4 ∈ (1-7)

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Set d to be 0 first.
The error in distance 

is at most 4.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Add node size: 
d += 2 

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)



Add node weight: 
d += 1.

Measured distance is 3, 
60% of the actual 

distance.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Complexity

• Tree size at full occupancy (a is the accuracy, 1>a>0)

– node i (i > 1) capacity and size =  

– number of tree nodes ≤ 2 

• Dynamic tree compression
– compresses when below 25% occupancy
– always increases occupancy to 50% or more
– O(log M) space, O(log log M) time per access

• Observations
– can use any balanced tree 
– accuracy can be arbitrarily close to 1
– log log M is almost constant
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Reuse Distance Measurement
Measurement algorithms since 1970 Time Space
Naive counting O(N2) O(N)
Trace as a stack [IBM’70] O(NM) O(M)

Trace as a vector [IBM’75, Illinois’02] O(NlogN) O(N)

Trace as a tree [LBNL’81], splay tree 
[Michigan’93], interval tree 
[Illinois’02]

O(NlogM) O(M)

Fixed cache sizes [Winsconsin’91] O(N) O(C)
Approximation tree [Rochester’03] O(NloglogM) O(logM)
Approx. using time [Rochester’07] O(N) O(1)

N is the length of the trace. M is the size of data.  C is the size of cache.

Chen Ding, DragonStar lecture, ICT 2008

A Lower Bound Result

• Accurate methods need at least Omega(M log M) bits space
• Proof sketch

• a trace accessing M elements
• at time t

• M! possible orders of the last accesses
• an accurate method must distinguish all possible orders

• otherwise let T & R be two permutations where x is last 
accessed at different points in the permutation

• reuse distance for Tx and Rx will be the same and 
contradiction

• it needs Omega(M log M) bits
• Approximation seems necessary to improve upon Olken
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Analysis Accuracy for FFT
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Analysis Speed on 1.7GHz Pentium 4
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Full-scale model of the James Webb Space Telescope. Courtesy of ITT Industries Space Systems Division 
and the Rochester Museum and Science Center. Photo by Steven D. Adams.

Full-scale model of the James Webb Space Telescope. Courtesy of ITT Industries Space Systems Division 
and the Rochester Museum and Science Center. Photo by Steven D. Adams.

Whole-Program Locality
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The Basic Tool Box

• Reuse distance
• independent of coding styles, memory allocation, or 

hardware
• possible to correlate between different runs

•Reuse signature is a 
spectrogram

•behavior decomposition
•pattern analysis

•Reuse distance trace is a signal
•zooming in or out
•period analysis

0

25

50

0 1 2 3

a b c a a c b
2 0 1 28 8 8
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Pattern Recognition and Prediction

• Behavior decomposition
• variable size: distance histogram

• bins in distance histograms: logarithmic, log-linear
• fixed size: reference histogram

• divide the references into k, e.g. 1000, groups
• Pattern analysis

• correlation among training inputs
• constant, linear, sub-linear

• single model or multi-model regression
• input size defined computationally

• memory footprint or distance-based sampling

114



g1
jg1

i g1
k

Reuse distance

Groupings for data set 1

Pe
rc

en
t r

ef
er

en
ce

s

0.1%
g2

i g2
kg1

j g2
j g1

k

1/2

Groupings for data set 2

0.1%

Pe
rc

en
t r

ef
er

en
ce

s

constant O(s    ) O(s)

Reuse distance

g1
jg1

i g1
k

Reuse distance

Groupings for data set 1

Pe
rc

en
t r

ef
er

en
ce

s

0.1%
g2

i g2
kg1

j g2
j g1

k

1/2

Groupings for data set 2

0.1%

Pe
rc

en
t r

ef
er

en
ce

s

constant O(s    ) O(s)

Reuse distance

Yutao Zhong
Assist. Prof., George Mason U.

Fairfax, VA 
Ph.D. Rochester 2005

B.S./M.S. Nanjing U. 2000

Reference 
histogram:
each bin has 
0.1% accesses

Input Size 8*S0

Combine

Input Size S0

Decompose

Input Size Change Input Size Change

(a)

(b) (c)

(d) (e)

(f)

Training

Process

Prediction

Process

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

e
fe

re
n

c
e
s Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

e
fe

re
n

c
e

s Constant Pattern

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

e
fe

re
n

c
e
s Linear Pattern

Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

e
fe

re
n

c
e

Linear Pattern

Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

e
fe

re
n

c
e
s

Linear Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

e
fe

re
n

c
e
s Linear Pattern

Xipeng Shen, Ph.D. 2006
M.S. CAS 2001

Assist. Prof.,William&Mary

Distance 
histogram:
log or log-
linear scale

Divide and Unite

Whole-program pattern is an aggregate of all behavior 
groups.  In multi-model prediction, each behavior group 
contains multiple pattern components.
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• Observations
– code and data independent
– does not predict execution time
– not all programs have a consistent pattern
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Lucas: Large Prime Number Testing
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GNU C Compiler Compiling Itself
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Regularity in Gcc

• Complex program
• 222K lines of code in 120 files

• Two possible explanations
• maybe aggregate effect “law of large numbers”

• average coding style by programmers
• overall distribution is regular
• but num. of functions not important

• input files may be similar
• for extreme inputs, 70% similarity

• Part of the regularity seems inherent
• Gcc in Spec95 and Spec2K 89% similar
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Temporal Behavior of Gcc
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Latex by Knuth & Lamport
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A  compiler pattern?

• Reuse signature
• differ by programs
• consistent within the same 

program
• Emergent behavior

• an observation
• a computational discovery
• implementation independent

• Limitations
• not complete
• no structure yet
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Summary So Far

• Program behavior analysis
• the composite effect of complex code
• modeling and prediction based on past observations
• very much like physical and biological sciences

• Strengths
• behavior-based decomposition
• discovery of major behavior components
• cross-execution modeling and statistical analysis

• Later lectures
• behavioral dimensions
• relation with program analysis
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Instruction Based Memory Distance Analysis 
and its Application to Optimization

 Changpeng Fang
 Steve Carr
 Soner Önder
 Zhenlin Wang

Exercises

• Give the definition of machine and program balance 
• on modern systems, which balance is greater?
• why is balance important for performance?

• specifically, if machine M has a balance of 1 byte per flop and 
program P has a balance of 4 bytes per flop, what is the 
maximal performance of running program P on machine M?

• Give the definition of reuse distance
• Give the definition of temporal/spatial reuse

• How does reuse distance explain them?
• Which one is more precise and why?

• In what sense do we say reuse distance is machine independent?
• How did Denning define the primary working set?
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Exercises (cont’d)

• What is the relation between reuse distance and program 
balance?
• how to compute program balance?

• What is the relation between reuse distance and dependence?
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Why Performance Modeling?

• Insight into applications
—barriers to scalability
—insight into optimizations
•Mapping applications to systems
—Grid resource selection & scheduling
—intelligent run-time adaptation

•Workload-based design of future systems

Mellor-Crummey 136

Modeling Challenges

•Performance depends on:
—architecture specific factors
—application characteristics
—input data parameters

•Difficult to model execution time directly

•Collecting data at scale is expensive
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Building Scalable Models

•Collect data from multiple runs
—n+1 runs to compute a model of degree n

•Approximation function:
  F(X) = cn*Bn(X)+cn-1*Bn-1(X)+…+c0*B0(X)

•A set of basis functions

• Include constraints

•Goal: determine coefficients

Use quadratic programming
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Execution Frequency Modeling Example
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Execution Frequency Modeling Example
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Execution Frequency Modeling Example
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Execution Frequency Modeling Example
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Memory Reuse Distance

•MRD: # unique data blocks referenced since 
target block last accessed

memory block

MRD

• I1: 1 cold miss

• I2: 2 cold misses, 1 @ distance 2

• I3: 1 @ distance 0, 2 @ distance 1
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Memory reuse distance
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Modeling Memory Reuse Distance

•More complex than execution frequency
—cold misses
—histogram of reuse distances

– number of bins not constant

•Average reuse distance is misleading
—1 access with distance 10,000
—3 accesses with distance 0
—cache has 1024 blocks

2500 average
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Modeling Memory Reuse Distance
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Modeling Memory Reuse Distance
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Predict Number of Cache Misses

• Instantiate model for problem size 100

74%

96%
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Fully Associative ! Set Associative Model

From reuse distance histogram, 
predict misses in a set associative cache

• Probability that access with reuse distance d misses in a 
cache with s sets and associativity k

• Number of misses for a reuse distance histogram                                      

Based on probabilistic model for set associativity by Hill & Smith (TOC 38:12, ‘89)
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Memory Behavior: NAS BT 3.0
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Execution Behavior: NAS BT 3.0
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Memory Behavior: NAS BT 3.0
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Execution Behavior: NAS BT 3.0
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Open Performance Modeling Issues

• Short term
—Better modeling of memory subsystem

– # outstanding loads to accurately predict memory latency

—Explore modeling of irregular applications

•  Long term
—Model parallel applications

– Present modeling applies between synchronization points
– Combine with manually constructed parallel models
– Semi-automatically recover parallel trends

—Understand dynamic parallelism

Mellor-Crummey 154

Modeling Related Work

• Reuse distance
—Cache utilization [Beyls & D’Hollander]
—Investigating optimizations [Ding et al.]

• Program instrumentation
—EEL, QPT [Ball, Larus, Schnarr]

• Scalable analytic models 
—[Vernon et al; Hoisie et al.]

• Cross-architecture models at scale
—[Snavely et al.; Cascaval et al.]

• Simulation (trace-based and execution-driven)

None yield semi-automatically derived scalable models
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Instruction Based Memory Distance Analysis 
and its Application to Optimization

 Changpeng Fang
 Steve Carr
 Soner Önder
 Zhenlin Wang

Carr, Fang, Onder, Wang 156

Motivation
 Memory distance 

 A dynamic quantifiable distance in terms of memory 
reference between tow access to the same memory location.

 reuse distance
 access distance
 value distance

 Is memory distance predictable across both integer 
and floating-point codes?
 predict miss rates
 predict critical instructions
 identify instructions for load speculation
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Instruction Based Memory Distance 
Analysis

 How can we represent the memory distance of an 
instruction?
 For each active interval, we record 4 words of data

• min, max, mean, frequency
 Some locality patterns cross interval boundaries

• merge adjacent intervals, i and i + 1, if

• merging process stops when a minimum frequency is found
• needed to make reuse distance predictable

 The set of merged intervals make up memory distance 
patterns
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Merging Example
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Experimental Methodology
 Use 11 CFP2000 and 11 CINT2000 benchmarks

 others don’t compile correctly
 Use ATOM to collect reuse distance statistics
 Use test and train data sets for training runs
 Evaluation based on dynamic weighting
 Report reuse distance prediction accuracy

 value and access very similar

Carr, Fang, Onder, Wang 160

Reuse Distance Prediction

Suite PatternsPatterns Coverage
%

Accuracy
%

Suite

%constant %linear

Coverage
%

Accuracy
%

CFP2000 85.1 7.7 93.0 97.6

CINT2000 81.2 5.1 91.6 93.8
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Coverage issues
 Reasons for no coverage

1. instruction does not appear in at least one test run
2. reuse distance of test is larger than train
3. number of patterns does not remain constant in both training runs

Suite Reason 1 Reason 2 Reason 3

CFP2000 4.2% 0.3% 2.5%

CINT2000 2.2% 4.4% 1.8%
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Number of Patterns

Suite 1 2 3 4 ≥5

CFP2000 81.8% 10.5% 4.8% 1.4% 1.5%

CINT2000 72.3% 10.9% 7.6% 4.6% 5.3%
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Miss Rate Prediction Methodology
 Three miss-rate prediction schemes

 TCS – test cache simulation
• Use the actual miss rates from running the program on a the test 

data for the reference data miss rates
 RRD – reference reuse distance

• Use the actual reuse distance of the reference data set to predict 
the miss rate for the reference data set

• An upper bound on using reuse distance
 PRD –predicted reuse distance

• Use the predicted reuse distance for the reference data set to 
predict the miss rate.
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Cache Configurations

config no. L1 L2L2
1 32K, fully assoc. 1M fully assoc.

2
3
4

32K, 2-way 1M
8-way
4-way
2-way
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L1 Miss Rate Prediction Accuracy

Suite PRD RRD TCS

CFP2000 97.5 98.4 95.1

CINT2000 94.4 96.7 93.9
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L2 Miss Rate Accuracy

Suite 2-way2-way2-way Fully AssociativeFully AssociativeFully AssociativeSuite

PRD RRD TCS PRD RRD TCS

CFP2000 91% 93% 87% 97% 99.9% 91%

CINT2000 91% 95% 87% 94% 99.9% 89%
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Critical Instructions
 Given reuse distance for an instruction

 Can we determine which instructions are critical in terms of cache 
performance?

 An instruction is critical if it is in the set of instructions that 
generate the most L2 cache misses
 Those top miss-rate instructions whose cumulative total misses account 

for 95% of the misses in a program.

 Use the execution frequency of one training run to determine 
the relative contribution number of misses for each instruction

 Compare the actual critical instructions with predicted
 Use cache configuration 2
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Critical Instruction Prediction

Suite PRD RRD TCS %pred %act

CPF2000 92% 98% 51% 1.66% 1.67%

CINT2000 89% 98% 53% 0.94% 0.97%
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Critical Instruction Patterns

Suite 1 2 3 4 ≥5

CFP2000 22.1 38.4 20.0 12.8 6.7

CINT2000 18.7 14.5 25.5 22.5 18
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Miss Rate Discussion
 PRD performs better than TCS when data size is a 

factor
 TCS performs better when data size doesn’t change 

much and there are conflict misses
 PRD is much better at identifying the critical 

instructions than TCS
 these instructions should be targets of optimization
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Value-based Prediction
 Memory dependence only if addresses and values 

match
 store a1, v1

store a2, v2
store a3, v3
load   a4, v4

Can move ahead if a1=a2=a3=a4, v2=v3 and v1≠v2
 The access distance of a load to the first store in a 

sequence of stores storing the same value is called 
the value distance
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Summary
 Over 90% of memory operations can have reuse 

distance predicted with a 97% and 93% accuracy, 
for floating-point and integer programs, 
respectively

 We can accurately predict miss rates for floating-
point and integer codes

 We can identify 92% of the instructions that cause 
95% of the L2 misses 

 Access- and value-distance-based memory 
disambiguation are competitive with best hardware 
techniques without a hardware table

Chen Ding, DragonStar lecture, ICT 2008
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Other Distance-Based Studies

• Register and cache performance modeling 
• Li et al. from Purdue, Interact 1996
• Huang and Shen, CMU, Micro 1996
• Beyls and D’Hollander from Ghent, PDCS 2001
• Almasi et al. from Illinois, MSP 2002
• Zhong et al. from Rochester, LCR 2002

• File caching 
• Zhou et al., USENIX 2001
• Jiang and Zhang, SIGMetrics 2002


