
多౮共享缓存下的ᐫ程优化和正确性
Program Behavior in Shared Cache:
Performance and Correctness

丁ߚ Chen Ding
美国纽约州᪃立罗切斯特大学

计算机科学系教授

Professor
University of Rochester

2014 DragonStar Course at University of Science and Technology of China http://www.cs.rochester.edu/drupal/program-behavior-shared-cache-performance-and-correctness

7/7/2014 Program Behavior in Shared Cache: Performance and Correctness | University of Rochester Computer Science

http://www.cs.rochester.edu/drupal/program-behavior-shared-cache-performance-and-correctness 1/2

 Search Home About Help

Book page Program Behavior in Shared Cache: Performance and Correctness has been updated.

Tue, 06/24/2014 -­ 5:25am — cding

Program Behavior in Shared Cache: Performance and Correctness (多核共享缓存
下的编程优化和正确性)

中国科学技术⼤大学⻰龙星计划课程: http://acsa.ustc.edu.cn/DingChen/
​申请者需要到⻰龙星主⻚页 http://dragonstar.ict.ac.cn/dragonstar/index.asp 注册帐号再申请课程。

Syllabus 教学⼤大纲

Lecture 1: Why Cache 缓存的存在
Necessity of memory hierarchy. Sec. 1.1, Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for

Memory Hierarchies, Advanced Lectures, volume 2625 of Lecture Notes in Computer Science. Springer, 2003.

Memory bandwidth bottleneck. Sec. 1, Chen Ding and Kennedy, "Improving Effective Bandwidth through Compiler

Enhancement of Global Cache Reuse," Journal of Parallel and Distributed Computing, Volume 64, Issue 1, January

2004, Elsevier Press, pages 108-­-­134 .

Performance metrics

footprint, reuse distance, fill time, miss ratio. Xiaoya Xiang, Chen Ding, Bin Bao and Hao Luo, "A Higher Order

Theory of Cache Locality", in Proceedings of The Symposium on Architectural Support for Programming Languages

and Operating Systems, March 2013.

AMAT and APC. Xian-­He Sun and Dawei Wang. APC: a performance metric of memory systems. SIGMETRICS

Performance Evaluation Review, 40(2):125–130, 2012.

Sec. 1-­-­2, "Program Locality Analysis Using Reuse Distance ", Yutao Zhong, Xipeng Shen, and Chen Ding, ACM

Transactions on Programming Languages and Systems, Volume 31, Number 6, August 2009, pages 1-­-­39.

Cache hardware. Preface and Chap. 1, Rajeev Balasubramonian, Norman Jouppi, Naveen Muralimanohar, Multi-­

CoreCache Hierarchies, Synthesis Lecturess on Computer Architecture #17, Morgan Claypool Publishers, 2011.

Software defined cache -­-­ memcached. Atikoglu et al. Workload Analysis of a Large Key-­Value Store. SIGMETRICS

2012.

Lecture 2: Footprint Theory of Locality 程序局部性的⾜足迹理论
"多核程序交互理论及应⽤用", 丁晨, 袁良, 计算机⼯工程与科学, Volume 36, Number 1, January 2014, pages 1-­-­5.

"Performance Metrics and Models for Shared Cache (共享缓存性能的度量与分析)", Chen Ding (丁晨), Xiaoya Xiang (向晓娅),
Bin Bao (包斌), Hao Luo (罗昊), Ying-­Wei Luo (罗英伟), and Xiao-­Lin Wang (汪⼩小林), Journal of Computer Science and
Technology, 2014,V29(4): 692-­712.

Lecture 3: Locality Optimization 程序局部性优化的概述和举例
Five dimensiions of locality.

Sec. 6, "Program Locality Analysis Using Reuse Distance ", Yutao Zhong, Xipeng Shen, and Chen Ding, ACM

Transactions on Programming Languages and Systems, Volume 31, Number 6, August 2009, pages 1-­-­39.

"Performance Metrics and Models for Shared Cache (共享缓存性能的度量与分析)", Chen Ding (丁晨), Xiaoya Xiang (向晓娅),
Bin Bao (包斌), Hao Luo (罗昊), Ying-­Wei Luo (罗英伟), and Xiao-­Lin Wang (汪⼩小林), Journal of Computer Science and
Technology, 2014,V29(4): 692-­712.

Program Behavior in Shared Cache: Performance and Correctness

 View Edit Access control Clone

7/7/2014 Program Behavior in Shared Cache: Performance and Correctness | University of Rochester Computer Science

http://www.cs.rochester.edu/drupal/program-behavior-shared-cache-performance-and-correctness 1/2

 Search Home About Help

Book page Program Behavior in Shared Cache: Performance and Correctness has been updated.

Tue, 06/24/2014 -­ 5:25am — cding

Program Behavior in Shared Cache: Performance and Correctness (多核共享缓存
下的编程优化和正确性)

中国科学技术⼤大学⻰龙星计划课程: http://acsa.ustc.edu.cn/DingChen/
​申请者需要到⻰龙星主⻚页 http://dragonstar.ict.ac.cn/dragonstar/index.asp 注册帐号再申请课程。

Syllabus 教学⼤大纲

Lecture 1: Why Cache 缓存的存在
Necessity of memory hierarchy. Sec. 1.1, Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for

Memory Hierarchies, Advanced Lectures, volume 2625 of Lecture Notes in Computer Science. Springer, 2003.

Memory bandwidth bottleneck. Sec. 1, Chen Ding and Kennedy, "Improving Effective Bandwidth through Compiler

Enhancement of Global Cache Reuse," Journal of Parallel and Distributed Computing, Volume 64, Issue 1, January

2004, Elsevier Press, pages 108-­-­134 .

Performance metrics

footprint, reuse distance, fill time, miss ratio. Xiaoya Xiang, Chen Ding, Bin Bao and Hao Luo, "A Higher Order

Theory of Cache Locality", in Proceedings of The Symposium on Architectural Support for Programming Languages

and Operating Systems, March 2013.

AMAT and APC. Xian-­He Sun and Dawei Wang. APC: a performance metric of memory systems. SIGMETRICS

Performance Evaluation Review, 40(2):125–130, 2012.

Sec. 1-­-­2, "Program Locality Analysis Using Reuse Distance ", Yutao Zhong, Xipeng Shen, and Chen Ding, ACM

Transactions on Programming Languages and Systems, Volume 31, Number 6, August 2009, pages 1-­-­39.

Cache hardware. Preface and Chap. 1, Rajeev Balasubramonian, Norman Jouppi, Naveen Muralimanohar, Multi-­

CoreCache Hierarchies, Synthesis Lecturess on Computer Architecture #17, Morgan Claypool Publishers, 2011.

Software defined cache -­-­ memcached. Atikoglu et al. Workload Analysis of a Large Key-­Value Store. SIGMETRICS

2012.

Lecture 2: Footprint Theory of Locality 程序局部性的⾜足迹理论
"多核程序交互理论及应⽤用", 丁晨, 袁良, 计算机⼯工程与科学, Volume 36, Number 1, January 2014, pages 1-­-­5.

"Performance Metrics and Models for Shared Cache (共享缓存性能的度量与分析)", Chen Ding (丁晨), Xiaoya Xiang (向晓娅),
Bin Bao (包斌), Hao Luo (罗昊), Ying-­Wei Luo (罗英伟), and Xiao-­Lin Wang (汪⼩小林), Journal of Computer Science and
Technology, 2014,V29(4): 692-­712.

Lecture 3: Locality Optimization 程序局部性优化的概述和举例
Five dimensiions of locality.

Sec. 6, "Program Locality Analysis Using Reuse Distance ", Yutao Zhong, Xipeng Shen, and Chen Ding, ACM

Transactions on Programming Languages and Systems, Volume 31, Number 6, August 2009, pages 1-­-­39.

"Performance Metrics and Models for Shared Cache (共享缓存性能的度量与分析)", Chen Ding (丁晨), Xiaoya Xiang (向晓娅),
Bin Bao (包斌), Hao Luo (罗昊), Ying-­Wei Luo (罗英伟), and Xiao-­Lin Wang (汪⼩小林), Journal of Computer Science and
Technology, 2014,V29(4): 692-­712.

Program Behavior in Shared Cache: Performance and Correctness

 View Edit Access control Clone

7/7/2014 Program Behavior in Shared Cache: Performance and Correctness | University of Rochester Computer Science

http://www.cs.rochester.edu/drupal/program-behavior-shared-cache-performance-and-correctness 2/2

(added 7/4) "On-­the-­Fly Elimination of Dynamic Irregularities for GPU Computing", Eddy Z. Zhang, Yunlian Jiang, Ziyu

Guo, Kai Tian, Xipeng Shen, the Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, 2011.

(added 7/8) "Defensive Loop Tiling for Shared Cache", Bin Bao and Chen Ding, in Proceedings of on Code Generation

and Optimization, February 2013. (slides, video)

Lecture 4: Fundamentals of Shared-Memory Synchronization 共享内存同步的基本原理
First 3 chapters and 8.2 in Michael L. Scott, Shared-­Memory Synchronization, Synthesis Lecturess on Computer

Architecture, Morgan Claypool Publishers, 2013.

(added 7/8) Safe (Hint based) Parallel Programming: "Software Behavior Oriented Parallelization", Chen Ding, Xipeng

Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang, in Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation, San Diego CA, June 2007.

Lecture 5: Collaborative Cache Management and Optimization 软硬件协同管理和优化缓存
Xiaoming Gu (BS at USTC 2003, MS at ICT 2006, PhD at Rochester 2013), ⾕谷晓铭(中科⼤大计算机系本科2003，中科院计算所
硕⼠士2006，罗切斯特⼤大学博⼠士2013) Optimal Collaborative Caching: Theory and Applications. Ph.D. Dissertation, 2013.

(Guest lecture) Professor Song Jiang (⻙韦恩州⽴立⼤大学江松教授，前中科⼤大计算机系⽼老师)

LIRS algorithm. Jiang et al. IEEE Transactions on Computers, 2005 and 2007. SIGMETRICS 2002.

Introduction to ⼤大数据在互联⺴⽹网数据中⼼心的管理和计算 (中科院深圳先进技术研究院⻰龙星课程)

Groups: Compiler

Add new comment

Department of Computer Science · University of Rochester

734 Computer Studies Bldg. · P.O. Box 270226 · Rochester, NY 14627

tel: 585 275-­5671 · fax: 585 273-­4556 · info@cs.rochester.edu

Hajim School of Engineering and Applied Sciences

Subscriptions (0)

7/7/2014 Program Behavior in Shared Cache: Performance and Correctness | University of Rochester Computer Science

http://www.cs.rochester.edu/drupal/program-behavior-shared-cache-performance-and-correctness 2/2

(added 7/4) "On-­the-­Fly Elimination of Dynamic Irregularities for GPU Computing", Eddy Z. Zhang, Yunlian Jiang, Ziyu

Guo, Kai Tian, Xipeng Shen, the Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, 2011.

(added 7/8) "Defensive Loop Tiling for Shared Cache", Bin Bao and Chen Ding, in Proceedings of on Code Generation

and Optimization, February 2013. (slides, video)

Lecture 4: Fundamentals of Shared-Memory Synchronization 共享内存同步的基本原理
First 3 chapters and 8.2 in Michael L. Scott, Shared-­Memory Synchronization, Synthesis Lecturess on Computer

Architecture, Morgan Claypool Publishers, 2013.

(added 7/8) Safe (Hint based) Parallel Programming: "Software Behavior Oriented Parallelization", Chen Ding, Xipeng

Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang, in Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation, San Diego CA, June 2007.

Lecture 5: Collaborative Cache Management and Optimization 软硬件协同管理和优化缓存
Xiaoming Gu (BS at USTC 2003, MS at ICT 2006, PhD at Rochester 2013), ⾕谷晓铭(中科⼤大计算机系本科2003，中科院计算所
硕⼠士2006，罗切斯特⼤大学博⼠士2013) Optimal Collaborative Caching: Theory and Applications. Ph.D. Dissertation, 2013.

(Guest lecture) Professor Song Jiang (⻙韦恩州⽴立⼤大学江松教授，前中科⼤大计算机系⽼老师)

LIRS algorithm. Jiang et al. IEEE Transactions on Computers, 2005 and 2007. SIGMETRICS 2002.

Introduction to ⼤大数据在互联⺴⽹网数据中⼼心的管理和计算 (中科院深圳先进技术研究院⻰龙星课程)

Groups: Compiler

Add new comment

Department of Computer Science · University of Rochester

734 Computer Studies Bldg. · P.O. Box 270226 · Rochester, NY 14627

tel: 585 275-­5671 · fax: 585 273-­4556 · info@cs.rochester.edu

Hajim School of Engineering and Applied Sciences

Subscriptions (0)

Please Ask Questions

5http://www.xtrasite.co.nz/monsta/gallery/early/question.gif

• To assert you as you
• To network
• To share
• To have a good time

• So I can do better
than a lecture video

Chen Ding, University of Rochester

�����?

• “Nothing travels faster than the
speed of light with the possible
exception of bad news, which obeys
its own special laws.” Douglas Adams
The Hitchhiker's Guide to the Galaxy

Chen Ding, University of Rochester

Three problems:
latency/bandwidth and Matthew Hertz’s beer

capacity and Trishul Chilimbi’s cliff
sharing Chen’s Platform

Chen Ding, University of Rochester, INRIA 2014

Beyond Diminishing Returns

Cache System

Madison Itanium2

Released in 2002

L3 Cache

Photo courtesy Intel Corp.
Madison Itanium 2, 2002
slide 3, Anant Agrawal, MIT 6.975 Fall 2007

• Cache
• which most transistors are used for
• where most memory accesses happen
• managed by priority/usage

• Shared cache
• available cache is variable
• throughput/stability/fairness/QoS
• sequential/parallel code

8

Cache System

Chen Ding, University of Rochester

7

Hardware Execution

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes

one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks;

and CUDA cores and other execution units in the SM execute threads. The SM executes

threads in groups of 32 threads called a warp. While programmers can generally ignore warp

execution for functional correctness and think of programming one thread, they can greatly

improve performance by having threads in a warp execute the same code path and access

memory in nearby addresses.

An Overview of An Overview of An Overview of An Overview of the Fermi Architecturethe Fermi Architecturethe Fermi Architecturethe Fermi Architecture

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA

cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The

512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory

partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM

memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread

global scheduler distributes thread blocks to SM thread schedulers.

Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion

(execution units), and light blue portions (register file and L1 cache).

Hierarchical Cache
Parallel Access

Constant
Interaction

Whitepaper

NVIDIA’s Next Generation

CUDA
TM

 Compute Architecture:

Fermi
TM

V1.1

Chen Ding, University of Rochester

11

bandwidth constrained. For existing applications that use Shared memory as software

managed cache, code can be streamlined to take advantage of the hardware caching system,

while still having access to at least 16 KB of shared memory for explicit thread cooperation.

Best of all, applications that do not use Shared memory automatically benefit from the L1

cache, allowing high performance CUDA programs to be built with minimum time and effort.

Summary Table

GPU G80 GT200 Fermi
Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating
Point Capability

None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating
Point Capability

128 MAD
ops/clock

240 MAD ops /
clock

512 FMA ops /clock

Special Function Units
(SFUs) / SM

2 2 4

Warp schedulers (per SM) 1 1 2
Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or

16 KB
L1 Cache (per SM) None None Configurable 16 KB or

48 KB
L2 Cache None None 768 KB

ECC Memory Support No No Yes
Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Second Generation Parallel Thread Execution ISA

Fermi is the first architecture to support the new Parallel Thread eXecution (PTX) 2.0 instruction

set. PTX is a low level virtual machine and ISA designed to support the operations of a parallel

thread processor. At program install time, PTX instructions are translated to machine

instructions by the GPU driver.

The primary goals of PTX are:

 Provide a stable ISA that spans multiple GPU generations

 Achieve full GPU performance in compiled applications

 Provide a machine-independent ISA for C, C++, Fortran, and other compiler targets.

 Provide a code distribution ISA for application and middleware developers

 Provide a common ISA for optimizing code generators and translators, which map PTX
to specific target machines.

 Facilitate hand-coding of libraries and performance kernels

 Provide a scalable programming model that spans GPU sizes from a few cores to many
parallel cores

Chen Ding, University of Rochester

�����
�����
	��
“
���	����
��
���”

Henry James

ሹ的ٔ置

量化， 指标，比例

• ১到你定义一个度量
• 科学的૜步
• 工程的෼决条件

• “没有΅量༫没有提高”
• “You can’t improve what you can’t measure”

• 有了度量可以
• ᅰ找关系

• e.g. e = mc2

• 研究趋势
• e.g. 宇宙膨胀

• 比较优劣
• e.g. 程序优化 （明天易青老师的讲座ۤ

12

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 1

The Design
of

Parallel Memory Systems

Xian-He Sun
Illinois Institute of Technology

Chicago, Illinois
sun@iit.edu

RESEARCH DRIVE

Introduction

8

Computing Become Data Intensive
 Simulation, visualization, data mining, information retrieval,

etc.

PI Project On-Line Data Off-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and

Complex Hydride Nanoparticles

5TB 100TB

Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Data requirements for selected INCITE applications at ALCF

Source: R. Ross et. al., Argonne National Laboratory
11 4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 12

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

P
er

fo
rm

an
ce

Memory

Uni-rocessor

Multi-core/many-core processor

The Memory-wall Problem

 Processor performance
increases rapidly
 Uni-processor: ~52% until

2004, ~25% since then
 New trend: multi-core/many-

core architecture
 Intel TeraFlops chip, 2007

 Aggregate processor
performance much higher

 Memory: ~9% per year
 Processor-memory speed gap

keeps increasing

Source: Intel

Source: OCZ

25%

52%
20%

9%

60%

9%

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 13

Addressing the HPC Data Challenges

 Understanding the system, application, and algorithm
relevant to data access

 Optimizing current systems
 Developing new system architectures
 Developing integrated solutions

 Algorithm, programming model, system, architecture, co-design
 In situ application-aware data access optimization

Trends indicate that the “data tsunami” and “memory-
wall” will continue, waiting for miracle is not an answer

Need rethinking from the data-centric point-of-view in:

Big-Data problem is a HPC problem:
 Data access & Interface

MEMORY SYSTEM BEHAVIOR

Understanding

14

Memory System Performance

µProc
1.52/yr.
(2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

DRAM
7%/yr.
(2X/10
yrs)

“Moore’s Law”

Processor-DRAM Memory Gap
µProc
1.20/yr.

• 1980: no cache in micro-processor; 2010: 3-level cache on chip, 4-level cache off chip
• 1989 the first Intel processor with on-chip L1 cache was Intel 486, 8KB size
• 1995 the first Intel processor with on-chip L2 cache was Intel Pentium Pro, 256KB size
• 2003 the first Intel processor with on-chip L3 cache was Intel Itanium 2, 6MB size

 Source: Computer Architecture A Quantitative Approach

CPU Registers
<8KB
<0.2~0.5 ns, 500~800 GB/s/core
Cache
<50MB
1-10 ns, 50~150GB/s/core

Main Memory
Giga Bytes
50ns-100ns 5~10GB/s/channel

Disk
Tera Bytes, 5 ms
100~300MB/s

Capacity
Access Time, Bandwidth

Tape
Peta Bytes or
infinite
sec-min

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-128 bytes

OS
4K-4M bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Improve via Memory Hierarchy

Improve via Data Access Concurrence

 The complexity of CPU Design
o Out-of-order Execution
o Multithreading technology
o Speculation mechanisms

 The complexity of Memory Design
o Advanced Cache Technologies
o Allow tens or hundreds of cache accesses to overlap with each other
o Processor continue execution instructions under multiple cache misses

Multi-core
Multi-threading
Multi-issue

Multi-banked Cache
Multi-level Cache

Multi-channel
Multi-rank
Multi-bank

CPU

Cache

Memory

Out-of-order Execution
Speculative Execution
Runahead Execution

Pipelined Cache
Non-blocking Cache
Data Prefetching
Write buffer

Solution: Memory Hierarchy & Parallelism

Parallel File System
Input-Output (I/O)

Disks

Pipeline
Non-blocking
Prefetching
Write buffer

1 2 4 4 10 20

100

400

0

50

100

150

200

250

300

350

400

450

ALU
Inst

FP
Cmp

FP
Mul

L1
Access

FP Div L2
Access

L3
Access

MM
Access

Extremely Unbalanced
Operation Latency

C
yc

le
s

IO Access 5~15M cycles

Assumption of Current Solutions

 Memory Hierarchy: Locality
 Concurrence: Data access pattern

o Data stream

Performances vary
largely

Existing Memory Metrics
 Miss Rate(MR)

o {the number of miss memory accesses} over {the number of total memory accesses}

 Misses Per Kilo-Instructions(MPKI)
o {the number of miss memory accesses} over {the number of total committed Instructions ×

1000}

 Average Miss Penalty(AMP)
o {the summary of single miss latency} over {the number of miss memory accesses}

 Average Memory Access Time (AMAT)
o AMAT = Hit time + MR×AMP

 Flaw of Existing Metrics
o Focus on a single component or
o A single memory access

Missing memory parallelism/concurrency

The Introduction of APC
 Access Per Cycle (APC)

 APC = A/T
 APC is measured as the number of memory accesses per

memory active cycle or Access Per Memory Active Cycle
(APMAC)

 Benefits of APC (APMAC)
 Separate memory evaluation from CPU evaluation
 Each memory level has its own APC value
 A better understanding of memory system as a whole, and at each layer
 A better understanding of the match between computing capacity and

memory system performance

X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory Systems",
ACM SIGMETRICS Performance Evaluation Review, Volume 40 , Issue 2, 2012.

APC Measurement

 The difficulty is measuring the total cycle T
 Hundreds of memory accesses co-exist the memory system

 Measure T based on the overlapping mode

 When there are several memory accesses co-existing during the same
clock cycle, T only increases by one

 Measure the concurrence
 Measure the concurrence at each level

 Hardware cost: one bit
 Concurrence and Data-Centric view

Exhausted Testing

 With different benchmarks, and with different
configurations

 With advanced cache technologies
 Non-block cache
 Pipelined cache
 Multi-port cache
 Hardware prefetcher

 With single core or multicore

 APC always has the highest CC values
among all the memory metrics

D. Wang, X.-H. Sun "Memory Access Cycle and the Measurement of Memory Systems",
IEEE Transactions on Computers, (May-June) 2014

APC and C-AMAT Applications

 Provide a new way to measure and analyze the contribution
of memory concurrence

 Provide new approaches to reduce memory access delay

 Reveal the importance of memory parallelism and its
relation to data locality

 Provide a mean to study the matching between memory
organization and microprocessor architecture,

 Provide a mean to study the matching between memory
organization and a given application

 Design and Co-Design of Parallel Memory Systems

APPLICATION BEHAVIOR

Understanding

27

Data Access is Application Dependent

 Conventional algorithm analysis
 Floating point operation

 Data-centric algorithm analysis
 Floating point operation
 Memory requirement
 Data reuse rate
 Data access/movement pattern

29

The Memory-bounded Speedup
 Tacit assumption in Amdahl’s law

 The problem size is fixed
 The speedup emphasizes time reduction

 Gustafson’s Law, 1988
 Fixed-time speedup model

 Sun and Ni’s law, 1990
 Memory-bounded speedup model

(1)

fixed time
Sequential Time of Solving Scaled WorkloadSpeedup
Parallel Time of Solving Scaled Workload

f nf


    


    

  

(1) ()
(1) () /

memory bounded
Sequential Time of Solving Scaled WorkloadSpeedup
Parallel Time of Solving Scaled Workload

f fG n
f fG n n


    


    

 


 

1-f f

1-f f*n

Work: (1-f)+nf

Work: 1

X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,”
Proc. of IEEE Supercomputing'90, NY, NY, Nov.12--Nov.16, 1990.

Contribution of Memory-bounded Speedup
 Data-centric thinking
 Where the memory-bound function W = G(M) provide

 W, the work in floating point operation
 M, the memory requirement
 G, the data reuse rate
 Enough for memory hierarchy, but not concurrence

 Need to find the data access/movement patterns for data access
concurrency

 Dense Linear Algebra, M memory, M3/2 work
 FFT, M memory, O(M log(M)) work
 G(pM) > pW, can lead to large increase in execution time

 (ex) 10K x 10K matrix factorization: 800MB, 1 hr in uniprocessor
with 1024 processors, 320K x 320K matrix, 32 hrs

 Comprehensive access pattern classification
 Implemented for I/O and memory access (MPI datatype)

Spatial Patterns

Contiguous
Non-contiguous
Fixed strided
2d-strided
Negative strided
Random strided
kd-strided
Combination of contiguous and
non-contiguous patterns

Repetition

Single occurrence
Repeating

Request size

 Fixed
 Variable

 Small
 Medium
 Large

Temporal Intervals

Fixed
Random

I/O Operation
Read only
Write only
Read/write

 31

Data Access Signature: Patterns and Notation

S. Byna, X.-H. Sun, et. al, "Parallel I/O Prefetching Using MPI File Caching and
 I/O Signatures," SC'08

I/O Pattern Detection

32

 Developed a pattern detection
tool

 Five pattern detectors for
finding patterns among initial
positions, offsets, request
sizes, temporality, and
repetitions

 Outputs I/O Signature that can
be used for prefetching, data
layout, and data
reorganization

I/O Trace Signature

Pattern Signature

 Description of a sequence of
I/O accesses in a pattern

 Form: {I/O operation, init
position, dimension, ([{offset
pattern}, {request size
pattern}, {pattern of number
of repetitions}], […]), # of
repetitions}

 provides a simple description
that explains the nature of a
pattern

 Form: {I/O operation,
<Spatial pattern,
Dimension>, <Repetitive
behavior>, <Request size>,
<Temporal Intervals>}

• Collects parallel I/O calls of an application
• Does not require any code modification

Trace collection

• Analyzes the collected information to give a clear
understanding of I/O behavior of the application

• Handles trace files in any text-based format

Trace analysis

IOSIG: An I/O Characterization Tool

To provide a better understanding of parallel I/O accesses
and information to be used for optimization techniques.

Goal:

Two
steps:

Website: www.cs.iit.edu/~scs/iosig/

Y. Yin, et.al, "Boosting Application-Specific Parallel I/O Optimization Using IOSIG",
 in Proc. of IEEE/ACM CCGrid, 2012.

More about IOSIG
 Additional contributions

 Data access pattern categories
 Local and global I/O signatures

 Applications

Prefetching SC’08
S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp
Parallel I/O Prefetching Using MPI File Caching and I/O
Signatures

Data Layout

Data
Coordination

Data
Organization

HPDC11
H. Song, Y. Yin, Y. Chen, X.-H. Sun,
A Cost-intelligent Application-specific Data layout Scheme for
Parallel File Systems

SC11 H. Song, Y. Yin, X.-H. Sun, et. al,
Server-Side I/O Coordination for Parallel File Systems

PDSW11 J.He, H. Song, X.-H. Sun, Y. Yin, and R. Thakur
Pattern-aware File Reorganization in MPI-IO

Data
Replication IPDPS13 Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, Pattern-Direct and

Layout-Aware Replication Scheme for Parallel I/O Systems

• Website: www.cs.iit.edu/~scs/iosig/
Data Compression

OPTIMIZATION FROM DATA VIEW

I/O System

35

INTEGRATED SYSTEM DESIGN

Developing

46

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 47

In Situ Application-aware Optimization

L2

L1
DF

Memory Wall

 Data access is application dependent

 Dynamic, application-aware optimization for parallelism

 Data access pattern, feed back control

 Integrating language, memory system, and

hardware/software infrastructures

 Understanding design trade-off

Ours Method: Application-Aware I/O (1)

Core

Disk

Supercomputer or
many-core computing system
for execution of computing
intensive part of an application

Data cloud or storage cluster
for execution of data
intensive part of an application

High speed network

Network

48

Decoupled-Execution Paradigm:
 Handle computation- and data- intensive phases separately
 One interface-Two systems, transparent to users
 Integration, scheduling, optimization

Y. Chen, et.al. "A Decoupled Execution Paradigm for Data-Intensive High-End Computing,"
Cluster'12, September, 2012.

 Combine SSD
technology with Parallel
File Systems

 Plug-in as a Data-
Service with SSD cache

 Optimize via
application-aware

 Storage Class Memory

50

Application-Aware I/O Optimization (3)

S. He, X.-H. Sun, et.al. "S4D-Cache: Smart Selective SSD Cache for Parallel I/O
Systems”, accepted to appear in ICDCS2014

Smart Selective SSD
Cache (S4D-Cache)

File System

Network

SSD SSD

Compute Nodes

DServers

CSservers

HDD

…

…

SSDCache

High Level I/O Library

Parallel I/O Programming Environment

P P P P P P P P

HDD HDD HDD HDD HDD HDD HDD

Cache File System

51

 Dynamic, Application-aware
 System and algorithm re-design

forwarding MPI PFS Application

Data Access is a Complex Matter

Operation of Memory Hierarchy

Layers of parallel I/O

Big Data, Big Deal, Big Challenge

52

 Energy and Power
 Memory and Storage
 Concurrency and Locality (programming model)
 Resiliency

Challenges of Exascale Computing
(Cloud, data center)

Ours Solution:
Concurrent memory and storage systems
(with programming support)

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 53

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 54

Conclusion: HPC Data-centric Rethinking
 Power & fault-tolerant depending on data handling
 Data access is a major concern of big data, cloud, HPC
 Data intensive computing requires the rethinking of

program model, system, algorithm, and architecture
 C-AMAT and APC build the foundation of rethinking

computing systems
 Integrated parallel data-access system design is the first

step

46
http://www.pathoutofpain.com.au/infomation/images/too_much.gif

Chen Ding, DragonStar lecture, ICT 2008

My Interests

• Is research for knowledge or utility?
• Pythagorean or Baconian?
• The science of systems research

• what can we ultimately create
• New knowledge <-> more useful systems

• How to do research?
• “Don’t do what everybody else is doing” ---Jim Larus

• supercomputing, ILP, pointer analysis, multi-core,
• Look forward to the next limit

• Basic research question
• How much a program can understand other programs?

47
Chen Ding, DragonStar lecture, ICT 2008

This Course

• Three basic problems in (computer) systems
• locality, parallelism, synchrony

• The material
• key studies that illuminate the limits or overcome some of

the limits
• computational solutions and experimental verification
• what we have learned collectively in the last decade

• Class dynamics
• explanation of basic concepts and questions
• selection of specific material (from the reading list)

based on common interests

48

Chen Ding, DragonStar lecture, ICT 2008

1994: Instruction-level Parallelism

49

• Studying under Philip Sweany and Steven Carr at MTU
• Hiding the latency of operations and branches

• most operations have predictable latency
• except for

• Memory accesses
• papers assumed L1 miss and L2 hit

• What about L2 misses?
• the latency can be over a hundred cycles
• ILP may not matter
• no discussion in ILP papers
• no one really knows the general answer until this decade

Scalability and Data Placement on SGI Origin ⇤

Arun CHAUHAN Chen DING Barry SHERAW

Dept of Computer Science
6100 S Main, Rice University

Houston, TX 77005
{achauhan,cding,sheraw}@rice.edu

April 28, 1997

Abstract

Cache-coherent non-uniform memory access (ccNUMA) architectures have attracted lots
of academic and industry interests as a promising direction to large scale parallel computing.
Data placement has been used as a major optimization method on such machines. This study
examined the scalability and the e↵ect of data placement on a state-of-the-art ccNUMA
machine, SGI Origin, using 16 processors. Three applications from SPLASH-2 are used,
FFT, Radix and Barnes-Hut. The results showed that FFT and Radix cannot scale to 16
processors with 70% e�ciency even for the largest data sizes tested. Barnes-Hut doesn’t
scale for small data size but scales linearly for large input size. The results also showed that
data placement does not make any di↵erence on performance for all three applications. We
attribute these results to the e↵ect of the advanced uni-processor used on the Origin, R10K,
the optimizing compiler, and the aggressive communication architecture.

Some of our results are quite di↵erent from the predictions of two recent simulation studies
on directory-based ccNUMA machines ([HSH96] and [PRA97]), especially on FFT. These
di↵erences are partly due to the fact that the machine models used in previous simulation
studies are di↵erent from the Origin machine in some important aspects. Our results also
include data sizes that are larger than any of the previous simulation studies. To increase
our confidence on the latency numbers and data placement tools, we also measured memory
latencies using micro-benchmarks.

1 Introduction

In the last few years, there has been increasing interest in ccNUMA architectures, specifically in
its potential for large scale parallel computing. As a result, many commercial machines based
on the ccNUMA architecture have recently been introduced. These include machines such as
the SGI Origin and HP-Convex Exemplar. Such machines utilize the ccNUMA architecture as

⇤Available as TR98-305, Dept of Computer Science, Rice University

1

Scalability and Data Placement on SGI Origin ⇤

Arun CHAUHAN Chen DING Barry SHERAW

Dept of Computer Science
6100 S Main, Rice University

Houston, TX 77005
{achauhan,cding,sheraw}@rice.edu

April 28, 1997

Abstract

Cache-coherent non-uniform memory access (ccNUMA) architectures have attracted lots
of academic and industry interests as a promising direction to large scale parallel computing.
Data placement has been used as a major optimization method on such machines. This study
examined the scalability and the e↵ect of data placement on a state-of-the-art ccNUMA
machine, SGI Origin, using 16 processors. Three applications from SPLASH-2 are used,
FFT, Radix and Barnes-Hut. The results showed that FFT and Radix cannot scale to 16
processors with 70% e�ciency even for the largest data sizes tested. Barnes-Hut doesn’t
scale for small data size but scales linearly for large input size. The results also showed that
data placement does not make any di↵erence on performance for all three applications. We
attribute these results to the e↵ect of the advanced uni-processor used on the Origin, R10K,
the optimizing compiler, and the aggressive communication architecture.

Some of our results are quite di↵erent from the predictions of two recent simulation studies
on directory-based ccNUMA machines ([HSH96] and [PRA97]), especially on FFT. These
di↵erences are partly due to the fact that the machine models used in previous simulation
studies are di↵erent from the Origin machine in some important aspects. Our results also
include data sizes that are larger than any of the previous simulation studies. To increase
our confidence on the latency numbers and data placement tools, we also measured memory
latencies using micro-benchmarks.

1 Introduction

In the last few years, there has been increasing interest in ccNUMA architectures, specifically in
its potential for large scale parallel computing. As a result, many commercial machines based
on the ccNUMA architecture have recently been introduced. These include machines such as
the SGI Origin and HP-Convex Exemplar. Such machines utilize the ccNUMA architecture as

⇤Available as TR98-305, Dept of Computer Science, Rice University

1

Chen Ding, DragonStar lecture, ICT 2008

2002: Mark Wegman

• Compiler legend, co-invented many classic techniques
• compression, universal hashing, global value numbering,

constant propagation, congruence, and static single
assignement

• First ACM Workshop on Memory System Performance and
Correctness (MSPC) in 2002
• recurring comment during the PC meeting

• “The first load takes a long time, the next 10 do not
matter!”

• Performance depends on not instruction count and not
instruction type but when and how often there is a miss

51
Chen Ding, DragonStar lecture, ICT 2008

The Memory Problem

52

• The journey of an idea
1997 summer, I told Ken the problem of memory bandwidth
1998(?) John Hennessy “single-node bandwidth” is fundamental problem
1998 (?) John McCalpin “It is the bandwidth, stupid”
1999 summer, Burton Smith at LCPC at UCSD
2000, my dissertation done, talk w/ Crawford of Intel and Carter of Utah
2001, my visits at Intel Itanium compiler group and Lawrence Livermore
2002, Intel used RAMBUS in Pentium 4
2002, Earth Simulator became world’s fastest computer
2002, Utah work won ICS best student paper award
2003/4, US invested in high-end computing
2003 PACT, global loop fusion by Intel
2005 ICS, array regrouping by IBM
2005 ICS, data packing used by Lawrence Livermore
2003--2007, a new understanding of locality emerged
2007, DARPA MIT multi-core workshop listed off-chip bw as #1 problem

53

Program Behavior Research

Introduction

1. The “memory problem”
Large-Scale Program Behavior

Analysis and Adaptation

Chen Ding

Associate Professor

Computer Science Department

University of Rochester

Visiting Associate Professor

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

School of Informatics, University of Indiana, September 14 2007

1. The “memory problem”

TILE64™ Processor
Product Brief

Overview

The TILE64™ family of multicore processors delivers
immense compute performance to drive the latest
generation of embedded applications. This
revolutionary processor features 64 identical
processor cores (tiles) interconnected with Tilera's
iMesh™ on-chip network. Each tile is a complete full-
featured processor, including integrated L1 & L2
cache and a non-blocking switch that connects the
tile into the mesh. This means that each tile can
independently run a full operating system, or multiple
tiles taken together can run a multi-processing OS like
SMP Linux.

The TILE64 processor family slashes board real estate and system cost by integrating a complete
set of memory and I/O controllers, therefore eliminating the need for an external North Bridge or
South Bridge. It delivers scalable performance, power efficiency and low processing latency in an
extremely compact footprint.

The TILE64 Processor is programmable in ANSI standard C, enabling developers to leverage their
existing software investment. Tiles can be grouped into clusters to apply the appropriate amount
of horsepower to each application. Since multiple operating system instances can be run on the
TILE64 simultaneously, it can replace multiple CPU subsystems for both the data plane and
control plane.

Combining multiple C-programmable processor tiles with the iMesh multicore technology
enables the TILE64 processor to achieve the performance of a fixed function ASIC or FPGA in a
powerful software-programmable solution.

For more information on Tilera products, visit www.tilera.com© 2007 Tilera Corporation All Rights Reserved

Product Differentiators

Features Enables

Massively
Scalable
Performance

Power Efficiency

Integrated Solution

Multicore
Development
Environment

• 8 X 8 grid of identical, general purpose processor cores (tiles)
• 3-way VLIW pipeline for instruction level parallelism
• 5 Mbytes of on-chip Cache
• 192 billion operations per second (32-bit)
• 27 Tbps of on-chip mesh interconnect enables linear application scaling
• Up to 50 Gbps of I/O bandwidth

• 600MHz - 1GHz operating frequency
• 170 - 300mW per core
• Idle Tiles can be put into low-power sleep mode
• Power efficient inter tile communications

• Four DDR2 memory controllers with optional ECC
• Two 10GbE XAUI configurable MAC or PHY interfaces
• Two 4-lane 10Gbps PCI-e MAC or PHY interfaces
• Two GbE MAC interfaces
• Flexible I/O interface

• ANSI standard C compiler
• Advanced profiling and debugging designed for multicore programming
• Supports SMP Linux with 2.6 kernel
• iLib API's for efficient inter-tile communication

• 10 Gbps Snort® processing
• 20+ Gbps iptables (firewall)
• 20+ Gbps nProbe
• 16 X 16 SAD at 540 MBlocks/s
• H.264 HD video encode for two streams of 720p @ 30 Fps

• Highest performance per watt
• Simple thermal management & power supply design
• Lower operating cost

• Reduces BOM cost - standard interfaces included on-chip
• Dramatically reduced board real estate
• Direct interface to leading L2-L3 switch vendors

• Run off-the-shelf C programs
• Reduce debug and optimization time
• Faster time to production code
• Standard multicore communication mechanisms

™

PCIe 1

MAC/
PHY

SerDes

GbE 0

GbE 1 Flexible
I/O

Flexible
I/O

UART,
HPI, I2C,
JTAG,SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1 DDR2 Controller 0

XAUI 1
MAC/
PHY

XAUI 0
Mac/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I

MDN TDN

UDN IDN

STN

L-1D

I-TLB D-TLB

Large-Scale Program Behavior

Analysis and Adaptation

Chen Ding

Associate Professor

Computer Science Department

University of Rochester

Visiting Associate Professor

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

School of Informatics, University of Indiana, September 14 2007

TILE64™ Processor
Product Brief

Overview

The TILE64™ family of multicore processors delivers
immense compute performance to drive the latest
generation of embedded applications. This
revolutionary processor features 64 identical
processor cores (tiles) interconnected with Tilera's
iMesh™ on-chip network. Each tile is a complete full-
featured processor, including integrated L1 & L2
cache and a non-blocking switch that connects the
tile into the mesh. This means that each tile can
independently run a full operating system, or multiple
tiles taken together can run a multi-processing OS like
SMP Linux.

The TILE64 processor family slashes board real estate and system cost by integrating a complete
set of memory and I/O controllers, therefore eliminating the need for an external North Bridge or
South Bridge. It delivers scalable performance, power efficiency and low processing latency in an
extremely compact footprint.

The TILE64 Processor is programmable in ANSI standard C, enabling developers to leverage their
existing software investment. Tiles can be grouped into clusters to apply the appropriate amount
of horsepower to each application. Since multiple operating system instances can be run on the
TILE64 simultaneously, it can replace multiple CPU subsystems for both the data plane and
control plane.

Combining multiple C-programmable processor tiles with the iMesh multicore technology
enables the TILE64 processor to achieve the performance of a fixed function ASIC or FPGA in a
powerful software-programmable solution.

For more information on Tilera products, visit www.tilera.com© 2007 Tilera Corporation All Rights Reserved

Product Differentiators

Features Enables

Massively
Scalable
Performance

Power Efficiency

Integrated Solution

Multicore
Development
Environment

• 8 X 8 grid of identical, general purpose processor cores (tiles)
• 3-way VLIW pipeline for instruction level parallelism
• 5 Mbytes of on-chip Cache
• 192 billion operations per second (32-bit)
• 27 Tbps of on-chip mesh interconnect enables linear application scaling
• Up to 50 Gbps of I/O bandwidth

• 600MHz - 1GHz operating frequency
• 170 - 300mW per core
• Idle Tiles can be put into low-power sleep mode
• Power efficient inter tile communications

• Four DDR2 memory controllers with optional ECC
• Two 10GbE XAUI configurable MAC or PHY interfaces
• Two 4-lane 10Gbps PCI-e MAC or PHY interfaces
• Two GbE MAC interfaces
• Flexible I/O interface

• ANSI standard C compiler
• Advanced profiling and debugging designed for multicore programming
• Supports SMP Linux with 2.6 kernel
• iLib API's for efficient inter-tile communication

• 10 Gbps Snort® processing
• 20+ Gbps iptables (firewall)
• 20+ Gbps nProbe
• 16 X 16 SAD at 540 MBlocks/s
• H.264 HD video encode for two streams of 720p @ 30 Fps

• Highest performance per watt
• Simple thermal management & power supply design
• Lower operating cost

• Reduces BOM cost - standard interfaces included on-chip
• Dramatically reduced board real estate
• Direct interface to leading L2-L3 switch vendors

• Run off-the-shelf C programs
• Reduce debug and optimization time
• Faster time to production code
• Standard multicore communication mechanisms

™

PCIe 1

MAC/
PHY

SerDes

GbE 0

GbE 1 Flexible
I/O

Flexible
I/O

UART,
HPI, I2C,
JTAG,SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1 DDR2 Controller 0

XAUI 1
MAC/
PHY

XAUI 0
Mac/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I

MDN TDN

UDN IDN

STN

L-1D

I-TLB D-TLB

2. What is locality? 3. Measuring locality

The Memory Problem

What was the problem??
http://www.birminghamfreepress.com/commercial/illustrations/Thinker.jpg Chen Ding, DragonStar lecture, ICT 2008

56

Memory Performance

Problem

high memory latencyCPU

memory

cache
Improvement 1

fast cache

Improvement 2 & 3

Data prefetching

Multi-threading

Is there enough bandwidth?

Chen Ding, DragonStar lecture, ICT 2008
57

Bandwidth Bottleneck

• Hardware trends
• CPU speed improved 6400 times in 20 years
• Memory bandwidth improved 139 times

• Software trends
• large data sets
• dynamic content and computation
• modularized programming

• “Moore’s gap”
• data supply cannot keep up with CPU speed

Chen Ding, DragonStar lecture, ICT 2008
58

Performance Model

• Balance
• Callahan, Cocke, and Kennedy. JPDC 1988.
• Ding and Kennedy. JPDC 2004.

• Machine balance
• max words per cycle divided by max flops per cycle

• Program balance
• # words accessed divided by # flops executed
• total loads/stores divided by total floating-point ops

• Consequences
• MB = PB  full utilization
• MB > PB  memory idle
• MB < PB  CPU idle

CSC573, Computer Science, U. of Rochester 59

Program and Machine Balance
[Callahan, Cocke, and Kennedy, JPDC 1988]

[Ding and Kennedy, IPDPS 2000 and JPDC 2004]

Program/machine balanceprogram/
machine L1-Reg L2-L1 Mem-L2

Convolution 6.4 5.1 5.2
Dmxpy 8.3 8.3 8.4

Mmjki (-O2) 24.0 8.2 5.9
Mmjki (-O3) 8.1 1.0 0.04

FFT 8.3 3.0 2.7
SP 10.8 6.4 4.9

Sweep3D 15.0 9.1 7.8
Origin2000 4.0 4.0 0.8

Chen Ding, DragonStar lecture, ICT 2008
60

Memory-Bandwidth Bottleneck

• Ratios of demand to supply

• Memory bandwidth is least sufficient
• Maximal CPU utilization: 10% to 33%
• The imbalance is getting worse
• Software solution: Better caching

19
71

19
75

19
80

19
85

19
90

19
95

19
98

0

1000

2000

3000

4000

5000

P
e
a
k

M
F

L
O

P
S

Alpha

Mips

Intel x86

T
I-

A
S

C
S

ta
r-

1
0

0

Cray-1

VP200
S810/20

SX-2

Cray-2

S820/80

VP2600

SX-3

Cray-C90

Cray-T90

SX-4

?

19
71

19
75

19
80

19
85

19
90

19
95

19
98

0

10

20

30

P
e
a
k

G
b
yt

e
s/

s

Alpha (L1)

Alpha (Mem)

T
I-

A
S

C
S

ta
r-

1
0

0

Cray-1

VP200
S810/20

SX-2

Cray-2

S820/80

VP2600

SX-3

Cray-C90

Cray-T90

SX-4

?

Chen Ding, DragonStar lecture, ICT 2008

http://qdn.qnx.com/images/articles/

Instead of
Steve Wallach’s Fall 1999 Seminar

CPU

MEMORY
CROSSBAR

How about

62

Memory Bandwidth Limitations of Future Microprocessors

Doug Burger, James R. Goodman, and Alain Kägi

Computer Sciences Department

University of Wisconsin-Madison

1210 West Dayton Street

Madison, Wisconsin 53706 USA

galileo@cs.wisc.edu - http://www.cs.wisc.edu/~galileo

This work is supported in part by NSF Grant CCR-9207971, an unre-

stricted grant from the Intel Research Council, an unrestricted grant from

the Apple Computer Advanced Technology Group, and equipment dona-

tions from Sun Microsystems.

A version of this paper appears in the 23rd International Symposium on Computer Architecture, May, 1996. Reprinted by permission of ACM

Copyright 1996 (c) by Association for Computing Machinery (ACM). Per-

mission to copy and distribute this document is hereby granted provided

that this notice is retained on all copies and that copies are not altered.

Abstract

This paper makes the case that pin bandwidth will be a critical
consideration for future microprocessors. We show that many of
the techniques used to tolerate growing memory latencies do so at
the expense of increased bandwidth requirements. Using a decom-
position of execution time, we show that for modern processors
that employ aggressive memory latency tolerance techniques,
wasted cycles due to insufficient bandwidth generally exceed those
due to raw memory latencies. Given the importance of maximizing
memory bandwidth, we calculate effective pin bandwidth, then
estimate optimal effective pin bandwidth. We measure these quan-
tities by determining the amount by which both caches and mini-
mal-traffic caches filter accesses to the lower levels of the memory
hierarchy. We see that there is a gap that can exceed two orders of
magnitude between the total memory traffic generated by caches
and the minimal-traffic caches—implying that the potential exists
to increase effective pin bandwidth substantially. We decompose
this traffic gap into four factors, and show they contribute quite
differently to traffic reduction for different benchmarks. We con-
clude that, in the short term, pin bandwidth limitations will make
more complex on-chip caches cost-effective. For example, flexible
caches may allow individual applications to choose from a range
of caching policies. In the long term, we predict that off-chip
accesses will be so expensive that all system memory will reside on
one or more processor chips.

1 Introduction

The growing inability of memory systems to keep up with pro-
cessor requests has significant ramifications for the design of
microprocessors in the next decade. Technological trends have
produced a large and growing gap between CPU speeds and
DRAM speeds. The number of instructions that the processor can
issue during an access to main memory is already large. Extrapo-
lating current trends suggests that soon a processor may be able to
issue hundreds or even thousands of instructions while it fetches a
single datum into on-chip memory.

Much research has focused on reducing or tolerating these
large memory access latencies. Researchers have proposed many

techniques for reducing the frequency and impact of cache misses.
These include lockup-free caches [28, 40], cache-conscious load
scheduling [1], hardware and software prefetching [6, 7, 13, 14,
26, 32], stream buffers [24, 33], speculative loads and execution
[11, 35], and multithreading [30, 38].

It is our hypothesis that the increasing use and success of
latency-tolerance techniques will expose memory bandwidth, not
raw access latencies, as a more fundamental impediment to higher
performance. Increased latency due to bandwidth constraints will
emerge for four reasons:

1. Continuing progress in processor design will increase the
issue rate of instructions. These advances include both archi-
tectural innovation (wider issue, speculative execution, etc.)
and circuit advances (faster, denser logic).

2. To the extent that latency-tolerance techniques are successful,
they will speed up the retirement rate of instructions, thus
requiring more memory operands per unit of time.

3. Many of the latency-tolerance techniques increase the abso-
lute amount of memory traffic by fetching more data than are
needed. They also create contention in the memory system.

4. Packaging and testing costs, along with power and cooling
considerations, will increasingly affect costs—resulting in
slower, or more costly, increases in off-chip bandwidth than
in on-chip processing and memory.

The factors enumerated above will render memory band-
width—particularly pin bandwidth—a more critical and expensive
resource than it is today. Given the complex interactions between
memory latency and bandwidth, however, it is difficult to deter-
mine whether memory-related processor stalls are due to raw
memory latency or increased latency from insufficient bandwidth.
Current metrics (such as average memory access time) do not
address this issue. This paper therefore separates execution time
into three categories: processing time (which includes idle time
caused by lack of instruction-level parallelism [ILP]), memory
latency stall time, and memory bandwidth stall time.

Assuming that a growing percentage of lost cycles are due to
insufficient pin bandwidth, the performance of future systems will
increasingly be determined by (i) the rate at which the external
memory system can supply operands, and (ii) how effectively on-
chip memory can retain operands for reuse. By retaining operands,
on-chip memory (caches, registers, and other structures) can
increase effective pin bandwidth. By measuring the extent to
which on-chip memory shields the pins from processor requests,
we can determine how much computational power a given package
can support.

The miss rate provides a good estimate of traffic reduction for
simple caches. Since many techniques can trade increased traffic

32

64

125

250

500

1000

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

N
u

m
b

e
r

o
f

p
in

s

(a) Pin count increases

8086

80286

68000

80386

68020

68030

80486

R3000

68040

UltraSparc

Pentium

Harp1

SSparc2

P6

68060

R10000

PA8000

21164

0.002

0.005

0.01

0.03

0.08

0.2

0.5

1.3

3.2

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

M
IP

S
/p

in

(b) Performance increases per pin

8086
80286

6800080386

68020

68030
80486

R3000

SSparc2

68040

68060

UltraSparc
R10000

21164

P6

Pentium

Harp1

PA8000

Figure 1. Physical microprocessor trends

0.006

0.010

0.016

0.025

0.040

0.064

0.100

0.16

0.25

0.40

0.64

1.0

1.6

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

(M
IP

S
)/

(P
in

 M
B

/S
)

(c) Performance over pin bandwidth

8086
80286

68000

80386

68020
68030

80486

R3000

SSparc2

68040

Harp1

Pentium

68060

P6

PA8000

UltraSparc

R10000

21164

method of hiding memory latencies. Although this technique does
not increase the amount of traffic to main memory, lockup-free
caches worsen bandwidth stalls by allowing multiple memory
requests to issue—making queueing delays possible in the mem-
ory system. Furthermore, the presence of lockup-free caches will
likely encourage more speculative execution.

Both software [6, 8, 26, 32] and hardware [13, 14] prefetching
techniques can increase traffic to main memory. They may
prefetch data too early, causing other references to evict the
prefetched data from the cache before their use. They may also
evict needed data from the cache before their use, causing an extra
cache miss. Stream buffers [24, 33] prefetch unnecessary data at
the end of a stream. They also falsely identify streams, fetching
unnecessary data. Speculative prefetching techniques—such as
lifting loads above conditional branches [35]—increase memory
traffic whenever the speculation is incorrect.

Multithreading increases processor throughput by switching to
a different thread when a long-latency operation occurs [30, 38].
Frequent switching of threads will increase interference in the
caches and TLB, however, causing an increase in cache misses and
total traffic. Poorer cache performance—resulting from the
increased size of the threads’ combined working set—may offset
some or all of the gains of the latency tolerance.

Finally, larger block sizes may decrease cache miss rates. Miss
rate improvement occurs until the coarser granularity of address
space coverage (i.e., the reduced number of blocks in the cache)
overshadows the reduction in misses obtained by fetching larger
blocks. Even when larger blocks reduce the miss rate, however, the
increased traffic may cause bandwidth stalls that outweigh the
miss rate improvements.

2.2 Advanced processors

Several factors other than latency-reduction techniques will
increase the needed bandwidth across the processor module
boundary. These factors include advanced processor design tech-
niques and shifts in characteristic uniprocessor workloads.

As processors get faster, they consume operands at a higher
rate. Faster processor clocks run programs in a shorter time,
increasing off-chip bandwidth requirements. Other processor
enhancements (such as wider-issue processors) also reduce execu-
tion time and increase needed bandwidth.

Processors that rely heavily on coarse-grained speculative exe-
cution to increase ILP—such as the Wisconsin Multiscalar [39]—
increase memory traffic whenever they must squash a task after an
incorrect speculation. Multiple distinct execution units in such pro-
cessors can execute different parts of the instruction stream simul-
taneously. This execution may reduce locality in shared, lower-

level caches, thus increasing the miss rate, and therefore the total
traffic.

The emergence of single-chip multiprocessors would substan-
tially increase the number of data loaded per cycle. The increased
bandwidth results primarily from multiple concurrently-running
contexts, but also because of shared-cache interference. The pri-
mary barrier to the implementation of single-chip multiprocessors
will not be transistor availability but off-chip memory bandwidth.
If one processor loses performance due to limited pin bandwidth,
then multiple processors on a chip will lose far more performance
for the same reason.

Finally, throughout the computer industry, there is an increas-
ing software emphasis on visualization, graphics, and multimedia.
These codes tend to have large data sets, with much floating-point
computation. Traditional caches are remarkably ineffective at
reducing the bandwidth requirements of these types of codes [5].
The increased use of this type of software may therefore exacer-
bate bandwidth limitations.

2.3 Physical limits

The rate of increase of processor pins has traditionally been
much slower than that of transistor density. Although large
increases in pin counts have recently occurred—and significant
breakthroughs in packaging technology undoubtedly lie on the
horizon—the issues of reliability, power, and especially cost will
prevent pins from sustaining growth in numbers commensurate
with the growth rate of processor performance.

Figure 1 shows trends in pin, performance, and off-chip band-
width from 1978 to 1997. We compiled this data by hand, from
both the processors’ original manuals and back issues of Micro-

processor Report. All three y-axes use log scales. The x-axes use a
linear scale.

Figure 1a plots the number of pins per processor from 1978 to
1997. We see from the dotted line that pin counts are increasing by
about 16% per year. More striking is the result in Figure 1b, which
plots processor performance1 per pin versus time. The raw perfor-
mance per pin is also increasing explosively, despite the rapid
increase in pin count shown in Figure 1a.

Packages and buses are designed to provide sufficient off-chip
bandwidth to each generation of processors. Figure 1c—which
plots the raw performance-to-package bandwidth ratio over time—
shows that performance increases are quickly outstripping the

1. Performance here is measured in VAX MIPS for the 680x0 and early

80x86 processors, and issue width times clock rate for the others. These

two measures cannot be compared directly, but are sufficient to view 20-

year trends.

Chen Ding, DragonStar lecture, ICT 2008

http://w
w

w.es.jam
stec.go.jp/esc/eng/H

ardw
are/im

ages/IN
_02_b.gif

Earth Simulator 2002

64

8

Jack Dongarra

University of Tennessee

Fastest Computer Over Time

Hitachi

CP-PACS

(2040)

Intel

Paragon

(6788)

Fujitsu

VPP-500

(140)

TMC

CM-5

(1024)

NEC

SX-3

(4)

TMC

CM-2

(2048)

Fujitsu

VP-2600

Cray

Y-MP (8)

0

1000

2000

3000

4000

5000

6000

7000

1990 1992 1994 1996 1998 2000

Year

G
F

lo
p
/s

X Y (S c a tte r) 1

ASCI White

Pacific

(7424)

Intel ASCI

Red Xeon

(9632)

SGI ASCI

Blue

Mountain

(5040)

Intel

ASCI Red

(9152)

ASCI

Blue

Pacific

SST

(5808)

!"#$%&'#(#)*+,-.(./*"#.0(.#.**1#$#2-33#45(6#.*#)*+,35.5
)("#.*7(4#85#7*"5#/"#9#:;#<5)*"7<=

Jack Dongarra

University of Tennessee

!"#$%&'#(#)*+,-.(./*"#.0(.#.**1#$#2-33#45(6#.*#)*+,35.5
)("#.*7(4#85#7*"5#/"#9#>?@#<5)*"7<=

Fastest Computer Over Time

Hitachi

CP-PACS

(2040)

Intel

Paragon

(6788)

Fujitsu

VPP-500

(140)

TMC

CM-5

(1024)

NEC

SX-3

(4)

TMC

CM-2

(2048)

Fujitsu

VP-2600
Cray

Y-MP (8)

0

10

20

30

40

50

60

70

1990 1992 1994 1996 1998 2000

Year

T
F

lo
p

/s

XY (Scatter) 1

2002

Intel ASCI

Red

(9152)

ASCI White

Pacific

(7424)

Intel ASCI

Red Xeon

(9632)

ASCI Blue

Mountain

(5040)

Japanese

Earth Simulator

NEC 5104

Chen Ding, DragonStar lecture, ICT 2008

IBM BlueGene/L 2005

66

Chen Ding, DragonStar lecture, ICT 2008

Traditional Processors

• NEC SX-4
• vector processor, June 1997, 2 Gflops, 7.4GB/s

bandwidth, 3.7 bytes per flop
• Alpha Server

• May 1999, 600MHz CPU, 2MB cache, 932 Mflops, 50MB/s
bandwidth, 0.48 byte per flop

• Pentium 4
• Sept. 2003, 2.4GHz, 4.8 Gflops, 1.58GB/s bandwidth,

0.33 byte per flop
• Opteron

• Dec. 2003, 2.2GHz, 4 Gflops, 1.1GB/s bandwidth, 0.28
byte per flop

67
Chen Ding, DragonStar lecture, ICT 2008

Chip Multi-processors

• 4-way Power 4
• May 2003, 1.7GHz, 6MB partitioned L2, 27.2 Gflops, 6GB/

s, 0.22 byte per flop
• Intel Core2 Quad

• April 2007, 2.4GHz, 154 Gflops, 5.3 GB/s bandwidth, 0.07
byte per flop

• 64-core Tilera
• Dec. 2007, 750MHz, 25GB/s peak memory bandwidth, 3.8

TB on-chip bandwidth

68

Current Expert Opinion

http://www.westminstervillage.co.uk/images/crystal_ball2.jpg

Ramesh PeriRamesh Peri
Principal Engineer & Engineering Manager, Principal Engineer & Engineering Manager,

Performance and Threading Tools LabPerformance and Threading Tools Lab

IntelIntel®® Corporation, Austin, TX 78738Corporation, Austin, TX 78738

MultiMulti--Core Processors Core Processors –– Are they Are they
Here Yet ?Here Yet ?

!! My shopping basket at FryMy shopping basket at Fry’’s electronics on s electronics on BlackFridayBlackFriday

ItemItem CostCost

Motherboard+IntelMotherboard+Intel®® Quad core 2.4GhzQuad core 2.4Ghz 200200

4GB Memory4GB Memory 7070

0.5TB Disk0.5TB Disk 8080

Case Case 1010

GraphicsGraphics 1010

CD/DVDCD/DVD 1010

TotalTotal 380380

Languages and Compilers
for Multicore

Computing Systems

FRAN ALLEN
allen@watson.ibm.com

Workshop Keynote
IIT Kanpur, India

December 13, 2007

7

Parallelism Solves the Performance Problem!
(or does it?)

14

OPPORTUNITIES

! New very high level languages

! New compiler techniques to manage data locality,

integrity, ownership, … in the presence of parallelism.

! Influence the architects before it is too late

! Rebuild the software stack

! Establish overall system goals:

" User Productivity

" Application Performance

Temporal and Spatial Locality:
A Time and a Place for Everything

Rick Bunt
University of Saskatchewan

Carey Williamson
University of Calgary

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 4 of 29

December 6, 2003

What is Locality

 Parachor Curve
 “during any interval of execution, a

program favors a subset of its pages,
and this set of favored pages

changes slowly” [Denning 1970]

An empirically observed phenomenon that has substantial
intuitive appeal and numerous practical implications

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 5 of 29

December 6, 2003

Impact of Locality

 Acceptable page fault rates can be achieved even
when the memory allocated to a program is much less
than that required to store all of its pages

 Internet routers can make high speed routing decisions
with very modest forwarding caches

 Mobile users can work with remotely stored files even
though they are located far from the file server

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 6 of 29

December 6, 2003

Known Aliases

The law of scattering
The principle of least effort
The 80-20 rule
Concentration of productivity
The law of diminishing returns

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 8 of 29

December 6, 2003

Locality Through the Ages

 Bradford’s Law of Scattering [1934]
 Zipf’s Principle of Least Effort [1949]
 Many applications before we discovered it

 population distribution, distribution of wealth, distribution of biological
species, article distribution in journals, and word usage in natural
language.

 has been used to plan the location of libraries and other facilities, to
model the popularity of television programs, and to order search keys in
hashing tables

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 7 of 29

December 6, 2003

The Underlying Concept

There is a very large population of items, many
more than we can manage

There is a small core of relevant items on
which we can productively focus our attention

This core will continue to be relevant long
enough to justify our attention

Locality: Innate or Emergent?

Leonard Mandel

How to Analyze Locality?

Chen Ding, DragonStar lecture, ICT 2008

Programming and Program Analysis

• Language design & implementation [Scott
Programming Language Pragmatics]
• naming, types, control and data

abstractions, imperative, functional,
logical, parallel, ...

• Program analysis and optimization
[Cooper&Torczon Engineering a Compiler]
• invariance in (cyclic) graphs

• Dependence and parallelization
[Allen&Kennedy Optimizing Compilers for Modern
Architectures]
• (re)ordering constraints
• reorganization of loop and data spaces

long

ogram analysis & optimization
Engineering a Compiler]

Dependence & parallelization

long

long

85
Chen Ding, DragonStar lecture, ICT 2008

Program Analysis Methods

• Compilers
• effective for scalars
• for loop nests with linear index expressions
• not for branches, recursion, indirect data access

• Profiling
• accurate for one input
• not for other inputs

• Run-time analysis
• needed for input-dependent patterns
• costly for detailed analysis and large-scale transformation

86

Chen Ding, DragonStar lecture, ICT 2008

Programs and Program Behavior

• Software trends
• data intensive

• dynamic and input dependent
• parameterized code

• templates, polymorphism
• outside code

• library, VM, VMM, OS, network, hardware
• Program behavior

• a long sequence of operations
• large-scale, compound effects

• Behavior-based analysis
• identify composite patterns through off-line training or

online monitoring
87

Chen Ding, DragonStar lecture, ICT 2008

Reuse Distance

• Reuse distance of an access to data d
• the volume of data between this and the

previous access to d
• Reuse signature of an execution

• the distribution of all finite reuse distances
• gives the miss rate of fully associative

cache of all sizes

a b c a a c b
2 0 1 28 8 8

0

25

50

75

100

0 1 2 3

%
 re

fe
re

nc
es

reuse distance/cache size

long

Mattson, Gecsei,
Slutz, Traiger
IBM Systems

Journal, vol. 9(2),

1970, pp. 78-117

88

Working SetIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

r(t) is not in the resident set established at time t - 1, a seg-
ment (or page) fault occurs at time t. This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
"loaded on demand" (others are "preloaded").
The memory policies of interest here determine the content

of the resident set by loading segments on demand and then
deciding when to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a "cold start," and an
initially nonempty resident set as a "warm start" [60].)
The memory policy's control parameter, denoted 0, is used

to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of 0
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 0 could
be generalized to a set of parameters, e.g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.
The performance of a memory policy can be expressed

through its swapping curpe, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 0 as the size of the
resident set; in this case the swapping curve f(0) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter 0 to determine a bound
on the residence times of segments. Thus a value of 0 implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f(x), is determined
parametrically from the set of (x, y) points generated for the
various 0. (See [53].)
One of the parameters needed in a queuing network model

of a multiprogramming system is the paging rate [47] - [49],
[521. This parameter is easily determined from the lifetime
curve, which is the function g(x) = 1 /f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum ofg(x)/x.
(See Fig. 2.)
A memory policy's resident set at virtual time t for control

parameter 0 is denoted R (t1 0).
A memory policy satisfies the inclusion property ifR (t, 0) C

R (t, 0 + a) for a > 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases. In Fig. 2, this means that the lifetime
curve increases uniformly as 0 increases. (See [52], [53],
[66].)
Several empirical models of the lifetime curve have been

proposed. One is the Belady model [15]

g(x) = a . xk

where x is the mean resident set size, a is a constant, and k is
normally between 1.5 and 3 (a and k depend on the program).
This model is often a reasonable approximation of the portion

time/fault

g(o)

E
._

a,
E

'Vb/
PRwR g(x)

primary knee

/ /, tincreasing 0

// [secondary knee

ma

mean size of resident set
x

Fig. 2. A lifetime curve.

of the lifetime curve below the primary knee, but it is other-
wise poor ([49], [117]).1 A second model is the Chamberlin
model [28]

T/2
g(x) =1 + (d/X)2

where T is the program execution time and d is the resident
set size at which lifetime is T/2. Though this function has a
knee, it is a poor match for real programs. The recent empiri-
cal studies by Burgevin, Lenfant, and Leroudier contain many
interesting observations about and refinements of these models
([81], [83]). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], [74],
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram's behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults-an event that might not be predicted if the mean life-
time is long.

Space-Time Product
A program's space-time product is the integral of its resi-

dent set size over the time it is running or waiting for a missing

'Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident set
initially empty) to "warm start" [60]; however, the "warm start"
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also [73], [78], [1171.)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady model to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [971; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)

66

~/DingFiles/Trips/IndianaSept07

reuse distance

m
is

s
 r

a
te

0
.0

0
0

.0
4

0
.0

8

32 1K 32K 1M

knee

miss"rate curve

Peter J. Denning

IEEE Transactions on

Software

Engineering, vol. 6(1),

1980, pp. 66

1626

0.060 -

0.050

0.040 -

0.030

0 . m

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0.010 -

U.M

0.20
M

1

S

S

R

a

1

I

0 0.10

0.00

M

I

S

s

M

I

S

S

IK

Cache Size (bytes)

(a)

10K

\, \

o.Oo0 J4,
IOK IOOK 1M

Cache Size (bytes)

(b)

Fig. 1 1 . Predicted (dashed) and actual (solid) m i s s ratios for trace “mu12”
with caches of associativity 1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches.

ing the same capacity, the same block size, and m i s s ratios

m(A = n) and m(A = 2n). Let the miss ratio spread be the

ratio of the miss ratios, less one:

m(A = n)

m(A =2n) m(A = 2n)

m(A = n) - m(A = 2n)
- I =

M

1

S

S

0.50

0.40

0.30

0.20

0.10

0.00

0.40

0.30

0.20

0.10

0.00

1c
I ’\
I \
I \

I \
I \

~ ; /-to-l I \

I

-4e-J:

-x’

x

IK 10K LOOK IM

Cache Size (bytes)

(a)

____)j;_-LIII
\

I
I

\ \ I \ \ I

- d

IK 10K IOOK IM

Cache Size (bytes)

(b)

Fig. 12. Unified cache miss ratio spreads (solid lines are smoothed data).
A line labeled “2n-to-n” displays [m(A = n) - m(A = 2n)]/m(A = 2n)
where m(A = n) is the miss ratio of an n-way set-associative cache. (a)
Five-trace group. (b) 23-trace group.

Figs. 12 and 13 and Table IV present data from trace-driven

simulation. As discussed in Section 111, data for larger caches

are subject to more error than data for smaller caches, and

measurements for caches larger than 64K should be treated

with considerable caution. Fig. 12 shows some miss ratio

89

Cache Miss RateIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

r(t) is not in the resident set established at time t - 1, a seg-
ment (or page) fault occurs at time t. This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
"loaded on demand" (others are "preloaded").
The memory policies of interest here determine the content

of the resident set by loading segments on demand and then
deciding when to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a "cold start," and an
initially nonempty resident set as a "warm start" [60].)
The memory policy's control parameter, denoted 0, is used

to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of 0
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 0 could
be generalized to a set of parameters, e.g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.
The performance of a memory policy can be expressed

through its swapping curpe, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 0 as the size of the
resident set; in this case the swapping curve f(0) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter 0 to determine a bound
on the residence times of segments. Thus a value of 0 implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f(x), is determined
parametrically from the set of (x, y) points generated for the
various 0. (See [53].)
One of the parameters needed in a queuing network model

of a multiprogramming system is the paging rate [47] - [49],
[521. This parameter is easily determined from the lifetime
curve, which is the function g(x) = 1 /f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum ofg(x)/x.
(See Fig. 2.)
A memory policy's resident set at virtual time t for control

parameter 0 is denoted R (t1 0).
A memory policy satisfies the inclusion property ifR (t, 0) C

R (t, 0 + a) for a > 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases. In Fig. 2, this means that the lifetime
curve increases uniformly as 0 increases. (See [52], [53],
[66].)
Several empirical models of the lifetime curve have been

proposed. One is the Belady model [15]

g(x) = a . xk

where x is the mean resident set size, a is a constant, and k is
normally between 1.5 and 3 (a and k depend on the program).
This model is often a reasonable approximation of the portion

time/fault

g(o)

E
._

a,
E

'Vb/
PRwR g(x)

primary knee

/ /, tincreasing 0

// [secondary knee

ma

mean size of resident set
x

Fig. 2. A lifetime curve.

of the lifetime curve below the primary knee, but it is other-
wise poor ([49], [117]).1 A second model is the Chamberlin
model [28]

T/2
g(x) =1 + (d/X)2

where T is the program execution time and d is the resident
set size at which lifetime is T/2. Though this function has a
knee, it is a poor match for real programs. The recent empiri-
cal studies by Burgevin, Lenfant, and Leroudier contain many
interesting observations about and refinements of these models
([81], [83]). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], [74],
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram's behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults-an event that might not be predicted if the mean life-
time is long.

Space-Time Product
A program's space-time product is the integral of its resi-

dent set size over the time it is running or waiting for a missing

'Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident set
initially empty) to "warm start" [60]; however, the "warm start"
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also [73], [78], [1171.)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady model to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [971; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)

66

~/DingFiles/Trips/IndianaSept07

reuse distance

m
is

s
 r

a
te

0
.0

0
0

.0
4

0
.0

8

32 1K 32K 1M

• Predicted miss rate
[Smith 1976,
Hill&Smith 1989]

• direct-mapped

• set-associative

• all sizes

1626

0.060 -

0.050

0.040 -

0.030

0 . m

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0.010 -

U.M

0.20
M

1

S

S

R

a

1

I

0 0.10

0.00

M

I

S

s

M

I

S

S

IK

Cache Size (bytes)

(a)

10K

\, \

o.Oo0 J4,
IOK IOOK 1M

Cache Size (bytes)

(b)

Fig. 1 1 . Predicted (dashed) and actual (solid) m i s s ratios for trace “mu12”
with caches of associativity 1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches.

ing the same capacity, the same block size, and m i s s ratios

m(A = n) and m(A = 2n). Let the miss ratio spread be the

ratio of the miss ratios, less one:

m(A = n)

m(A =2n) m(A = 2n)

m(A = n) - m(A = 2n)
- I =

M

1

S

S

0.50

0.40

0.30

0.20

0.10

0.00

0.40

0.30

0.20

0.10

0.00

1c
I ’\
I \
I \

I \
I \

~ ; /-to-l I \

I

-4e-J:

-x’

x

IK 10K LOOK IM

Cache Size (bytes)

(a)

____)j;_-LIII
\

I
I

\ \ I \ \ I

- d

IK 10K IOOK IM

Cache Size (bytes)

(b)

Fig. 12. Unified cache miss ratio spreads (solid lines are smoothed data).
A line labeled “2n-to-n” displays [m(A = n) - m(A = 2n)]/m(A = 2n)
where m(A = n) is the miss ratio of an n-way set-associative cache. (a)
Five-trace group. (b) 23-trace group.

Figs. 12 and 13 and Table IV present data from trace-driven

simulation. As discussed in Section 111, data for larger caches

are subject to more error than data for smaller caches, and

measurements for caches larger than 64K should be treated

with considerable caution. Fig. 12 shows some miss ratio

IEEE Transactions

on Computers,

vol. 38(12), 1989,

pp. 1626

Cache Miss Rate

Allan J. Smith

90

Program
behavior

Computation

Input
Data

Code

Time

Environment

Measuring Reuse Distance

http://www.skynightly.com/images/telescopes-ancient-chinese-bg.jpg 92

Chen Ding, DragonStar lecture, ICT 2008

Measuring Reuse Distance

• Naive counting, O(N) time per access, O(N) space
• N is the number of memory accesses
• M is the number of distinct data elements

• Too costly
• N is up to 120 billion, M 25 million

94

Chen Ding, DragonStar lecture, ICT 2008

Precise Methods

• stack algorithm [Mattson+ IBM 70]
• O(M) time per access, O(M) space

• vector tree [Bennett&Kruskal IBM 75]
• O(log N) time per access, O(N) space

• search tree [Olken LBL 81, Sugumar&Abraham UM 93]
• O(log M) time per access, O(M) space

• space cost remains a major problem
95

Approximation

• Basic idea
– measure only the first few digits of a long distance
– use non-unit size tree nodes

• tree size = M / average node size
– bound the error by tree node size

• Guaranteed relative accuracy
– a <= measured/actual_distance <= 1

• e.g. a = 99%
– logarithmic space cost

• Hashtable cost
– space problem solved by Bennett-Kruskal in 1975
– not considered in the discussion

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

(time range, weight, capacity, size)

Tree node

The three tree nodes
have capacities

1, 2, and 6.
It guarantees 33%

accuracy.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Search for last access
of b, whose access

time is 4.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

4 ∈ (1-7)

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Set d to be 0 first.
The error in distance

is at most 4.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Add node size:
d += 2

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Add node weight:
d += 1.

Measured distance is 3,
60% of the actual

distance.

(time, weight, capacity, size)

Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Complexity

• Tree size at full occupancy (a is the accuracy, 1>a>0)

– node i (i > 1) capacity and size =

– number of tree nodes ≤ 2

• Dynamic tree compression
– compresses when below 25% occupancy
– always increases occupancy to 50% or more
– O(log M) space, O(log log M) time per access

• Observations
– can use any balanced tree
– accuracy can be arbitrarily close to 1
– log log M is almost constant

105

Reuse Distance Measurement
Measurement algorithms since 1970 Time Space
Naive counting O(N2) O(N)
Trace as a stack [IBM’70] O(NM) O(M)

Trace as a vector [IBM’75, Illinois’02] O(NlogN) O(N)

Trace as a tree [LBNL’81], splay tree
[Michigan’93], interval tree
[Illinois’02]

O(NlogM) O(M)

Fixed cache sizes [Winsconsin’91] O(N) O(C)
Approximation tree [Rochester’03] O(NloglogM) O(logM)
Approx. using time [Rochester’07] O(N) O(1)

N is the length of the trace. M is the size of data. C is the size of cache.

Chen Ding, DragonStar lecture, ICT 2008

A Lower Bound Result

• Accurate methods need at least Omega(M log M) bits space
• Proof sketch

• a trace accessing M elements
• at time t

• M! possible orders of the last accesses
• an accurate method must distinguish all possible orders

• otherwise let T & R be two permutations where x is last
accessed at different points in the permutation

• reuse distance for Tx and Rx will be the same and
contradiction

• it needs Omega(M log M) bits
• Approximation seems necessary to improve upon Olken

106

Chen Ding, DragonStar lecture, ICT 2008

Analysis Accuracy for FFT

0

0.5

1

1.5

2

2.5

55K 57K 59K 61K 63K 66K
reuse distance

%
ref

ere
nc

es

accurate, 65783 tree nodes
99.9%, 5869 tree nodes
99%, 823 tree nodes

107

Analysis Speed on 1.7GHz Pentium 4

0
1.25
2.50
3.75
5.00
6.25
7.50
8.75
10.00

1E
+0
5

1E
+0
6

1E
+0
7

1E
+0
8

1E
+0
9

1E
+1
0
1E
+1
1

1E
+1
2

Bennett-Kruskal Sugumar-Abraham
Kim-Hill-Wood approximation 2K
approximation 99%

Out of physical
memory

Out of 32-bit
integer range

99%
approximation

108

Full-scale model of the James Webb Space Telescope. Courtesy of ITT Industries Space Systems Division
and the Rochester Museum and Science Center. Photo by Steven D. Adams.

Full-scale model of the James Webb Space Telescope. Courtesy of ITT Industries Space Systems Division
and the Rochester Museum and Science Center. Photo by Steven D. Adams.

Whole-Program Locality

112

Chen Ding, DragonStar lecture, ICT 2008

The Basic Tool Box

• Reuse distance
• independent of coding styles, memory allocation, or

hardware
• possible to correlate between different runs

•Reuse signature is a
spectrogram

•behavior decomposition
•pattern analysis

•Reuse distance trace is a signal
•zooming in or out
•period analysis

0

25

50

0 1 2 3

a b c a a c b
2 0 1 28 8 8

113
Chen Ding, DragonStar lecture, ICT 2008

Pattern Recognition and Prediction

• Behavior decomposition
• variable size: distance histogram

• bins in distance histograms: logarithmic, log-linear
• fixed size: reference histogram

• divide the references into k, e.g. 1000, groups
• Pattern analysis

• correlation among training inputs
• constant, linear, sub-linear

• single model or multi-model regression
• input size defined computationally

• memory footprint or distance-based sampling

114

g1
jg1

i g1
k

Reuse distance

Groupings for data set 1

Pe
rc

en
t r

ef
er

en
ce

s

0.1%
g2

i g2
kg1

j g2
j g1

k

1/2

Groupings for data set 2

0.1%

Pe
rc

en
t r

ef
er

en
ce

s

constant O(s) O(s)

Reuse distance

g1
jg1

i g1
k

Reuse distance

Groupings for data set 1

Pe
rc

en
t r

ef
er

en
ce

s

0.1%
g2

i g2
kg1

j g2
j g1

k

1/2

Groupings for data set 2

0.1%

Pe
rc

en
t r

ef
er

en
ce

s

constant O(s) O(s)

Reuse distance

Yutao Zhong
Assist. Prof., George Mason U.

Fairfax, VA
Ph.D. Rochester 2005

B.S./M.S. Nanjing U. 2000

Reference
histogram:
each bin has
0.1% accesses

Input Size 8*S0

Combine

Input Size S0

Decompose

Input Size Change Input Size Change

(a)

(b) (c)

(d) (e)

(f)

Training

Process

Prediction

Process

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

e
fe

re
n

c
e
s Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

e
fe

re
n

c
e

s Constant Pattern

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

e
fe

re
n

c
e
s Linear Pattern

Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

e
fe

re
n

c
e

Linear Pattern

Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

e
fe

re
n

c
e
s

Linear Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

e
fe

re
n

c
e
s Linear Pattern

Xipeng Shen, Ph.D. 2006
M.S. CAS 2001

Assist. Prof.,William&Mary

Distance
histogram:
log or log-
linear scale

Divide and Unite

Whole-program pattern is an aggregate of all behavior
groups. In multi-model prediction, each behavior group
contains multiple pattern components.

40% of accesses
have distance 8,
the rest have
distance 800

reuse distance

40%

60%

8 800

m
em

ory access

Correlation

40%

60%

8 800

40% accesses have the
same distance

60%

40%

8 1600

the rest have twice the
distance in the second

input.

m
em

ory access
m

em
ory access

40%

60%

Pattern Recognition

8 800

40% accesses have the
same distance, i.e. a

constant pattern.

60% accesses change
distance with data

inputs, i.e. a moving
pattern.

40%

8 1600

m
em

ory access
m

em
ory access

Pattern Prediction

m
em

ory access

Need to find one
distance in the
second group

Use sampling at
the beginning.

40%

60%

8 2400

• Observations
– code and data independent
– does not predict execution time
– not all programs have a consistent pattern

121

Lucas: Large Prime Number Testing

0

10

20

30

40
0 4 16 64 25
6 1K 4K 16

K

64
K

25
6K 1M 4M 16
M

small (6K data, 5M access) medium (41K data, 40M access)
large (21M data, 644B access) predicted large (after first 0.4%)

%
 r

ef
er

en
ce

s

reuse distance

SP reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
data size in cache blocks

m
is

s
ra

te

SA_1 SA_2 SA_4 SA_8 FA estimation

SP reuse miss rate for 1M cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11
data size in cache blocks

m
is

s
ra

te

estimation profile 1 profile 2 max simulated
124

0

5

10

15

20
0 4 16 64 25
6 1K 4K 16

K

64
K

25
6K

%
 re

fe
re

nc
es

reuse distnace

train (934K data, 103M access)
cccp (912K data, 106M access)
expr (1422K data, 98M access)
explow (641K data, 22M access)
cp-decl (1409K data, 134M access)

GNU C Compiler Compiling Itself

Chen Ding, DragonStar lecture, ICT 2008

Regularity in Gcc

• Complex program
• 222K lines of code in 120 files

• Two possible explanations
• maybe aggregate effect “law of large numbers”

• average coding style by programmers
• overall distribution is regular
• but num. of functions not important

• input files may be similar
• for extreme inputs, 70% similarity

• Part of the regularity seems inherent
• Gcc in Spec95 and Spec2K 89% similar

125

Temporal Behavior of Gcc

0.0E0 2.0E7 4.0E7 6.0E7 8.0E7 1.0E8

logical time of data access

0.0E0

2.0E4

4.0E4

6.0E4

8.0E4

1.0E5

s
a
m

p
le

d
 r

e
u
s
e
 d

is
ta

n
c
e

Spec95/Gcc, compiling cccp.i, sampled 331 times

126

127

Latex by Knuth & Lamport

0

7.5

15.0

22.5

30.0

0 4 16 64 512 1K 4K 16K 64K 256K

03lcpc (1M data, 110M access)
prediction (1M data, 186M access)
dingthesis (1M data, 342M acces)
gzippaper (1M data, 58M access)

0

5

10

15

20

0 4 16 64 25
6 1K 4K 16

K

64
K

25
6K

A compiler pattern?

• Reuse signature
• differ by programs
• consistent within the same

program
• Emergent behavior

• an observation
• a computational discovery
• implementation independent

• Limitations
• not complete
• no structure yet

Whole-Program Locality

0

10

20

30

40

0 64 4K

25
6K 16
M

Lucas

0

5

10

15

20

0 64 4K

25
6K

GCC

128

Chen Ding, DragonStar lecture, ICT 2008

Summary So Far

• Program behavior analysis
• the composite effect of complex code
• modeling and prediction based on past observations
• very much like physical and biological sciences

• Strengths
• behavior-based decomposition
• discovery of major behavior components
• cross-execution modeling and statistical analysis

• Later lectures
• behavioral dimensions
• relation with program analysis

129

John Mellor-Crummey

Department of Computer Science
Center for High Performance Software

Research

Taming High Performance
Computing with

Compiler Technology

Carr, Fang, Onder, Wang 131

Instruction Based Memory Distance Analysis
and its Application to Optimization

 Changpeng Fang
 Steve Carr
 Soner Önder
 Zhenlin Wang

Exercises

• Give the definition of machine and program balance
• on modern systems, which balance is greater?
• why is balance important for performance?

• specifically, if machine M has a balance of 1 byte per flop and
program P has a balance of 4 bytes per flop, what is the
maximal performance of running program P on machine M?

• Give the definition of reuse distance
• Give the definition of temporal/spatial reuse

• How does reuse distance explain them?
• Which one is more precise and why?

• In what sense do we say reuse distance is machine independent?
• How did Denning define the primary working set?

132

Exercises (cont’d)

• What is the relation between reuse distance and program
balance?
• how to compute program balance?

• What is the relation between reuse distance and dependence?

133

John Mellor-Crummey

Department of Computer Science
Center for High Performance Software

Research

Taming High Performance
Computing with

Compiler Technology

Mellor-Crummey 135

Why Performance Modeling?

• Insight into applications
—barriers to scalability
—insight into optimizations
•Mapping applications to systems
—Grid resource selection & scheduling
—intelligent run-time adaptation

•Workload-based design of future systems

Mellor-Crummey 136

Modeling Challenges

•Performance depends on:
—architecture specific factors
—application characteristics
—input data parameters

•Difficult to model execution time directly

•Collecting data at scale is expensive

Mellor-Crummey 137

Building Scalable Models

•Collect data from multiple runs
—n+1 runs to compute a model of degree n

•Approximation function:
 F(X) = cn*Bn(X)+cn-1*Bn-1(X)+…+c0*B0(X)

•A set of basis functions

• Include constraints

•Goal: determine coefficients

Use quadratic programming

Mellor-Crummey 138

Execution Frequency Modeling Example

0

250000

500000

750000

1000000

0 12.5 25 37.5 50

Execution Frequency Model

Fr
eq

ue
nc

y

Problem Size

Collected data

X 2 5 9 15 18 23 …

Count 5784 20244 53020 131104 183160 289200

…

Mellor-Crummey 139

Execution Frequency Modeling Example

0

250000

500000

750000

1000000

0 12.5 25 37.5 50

Execution Frequency Model

Fr
eq

ue
nc

y

Problem Size

Collected data
Model degree 0

Y=41416, Err=131%

X 2 5 9 15 18 23 …

Count 5784 20244 53020 131104 183160 289200

…

Mellor-Crummey 140

Execution Frequency Modeling Example

-8814.0

243389.5

495593.0

747796.5

1000000.0

0 12.5 25 37.5 50

Execution Frequency Model

Fr
eq

ue
nc

y

Problem Size

Collected data
Model degree 0
Model degree 1

Y=41416, Err=131%

Y=16776*X-42366,
Err=60.4%

X 2 5 9 15 18 23 …

Count 5784 20244 53020 131104 183160 289200

…

Mellor-Crummey 141

Execution Frequency Modeling Example

-8814.0

243389.5

495593.0

747796.5

1000000.0

0 12.5 25 37.5 50

Execution Frequency Model

Fr
eq

ue
nc

y

Problem Size

Collected data
Model degree 0
Model degree 1
Model degree 2

Y=41416, Err=131%

Y=16776*X-42366,
Err=60.4%

Y=482*X2+1446*X+964,
Err=0%

X 2 5 9 15 18 23 …

Count 5784 20244 53020 131104 183160 289200

…

Mellor-Crummey 142

Memory Reuse Distance

•MRD: # unique data blocks referenced since
target block last accessed

memory block

MRD

• I1: 1 cold miss

• I2: 2 cold misses, 1 @ distance 2

• I3: 1 @ distance 0, 2 @ distance 1

reference

0

B
I3

2

B
I2

1

A
I3

∞
C
I2

1

A
I3

∞
B
I2

∞
A
I1

Mellor-Crummey 143

Memory reuse distance

Mellor-Crummey 144

Modeling Memory Reuse Distance

•More complex than execution frequency
—cold misses
—histogram of reuse distances

– number of bins not constant

•Average reuse distance is misleading
—1 access with distance 10,000
—3 accesses with distance 0
—cache has 1024 blocks

2500 average

Mellor-Crummey 145

Modeling Memory Reuse Distance

 2 13 40

50%

30%
20%

Reuse distance

N
or

m
al

iz
ed

fr

eq
ue

nc
y

Mellor-Crummey 146

Modeling Memory Reuse Distance

Mellor-Crummey 147

Predict Number of Cache Misses

• Instantiate model for problem size 100

74%

96%

Mellor-Crummey 148

Fully Associative ! Set Associative Model

From reuse distance histogram,
predict misses in a set associative cache

• Probability that access with reuse distance d misses in a
cache with s sets and associativity k

• Number of misses for a reuse distance histogram

Based on probabilistic model for set associativity by Hill & Smith (TOC 38:12, ‘89)

€

Pmiss(d,s,k) =1− 1
s()i s−1

s()d− i d
i()

i= 0

k−1

∑

€

Nummisses(Hist,s,k) = (Pmiss(Dbini
,s,k)

bini ∈Hist
∑ Fbini)

€

Dbini = average MRD for

€

bini

€

Fbini = count for

€

bini

Mellor-Crummey 149

Memory Behavior: NAS BT 3.0

0

12.5

25.0

37.5

50.0

10 57.5 105 152.5 200

Itanium2 (256KB L2, 1.5MB L3)

M
is

s
co

u
n

t
/

 C
e
ll
 /

 T
im

e
 s

te
p

Mesh size

L2 measured L2 predicted MRD L2 predicted prob L3 measured
L3 predicted MRD L3 predicted prob TLB measured TLB predicted

probabilistic model smooths abrupt transitions

Mellor-Crummey 150

Execution Behavior: NAS BT 3.0

0

1250

2500

3750

5000

10 57.5 105 152.5 200

Itanium2 (256KB L2, 1.5MB L3)

C
yc

le
s

/
 C

e
ll
 /

 T
im

e
 s

te
p

Mesh size

Measured time Scheduler latency L2 miss penalty
L3 miss penalty TLB miss penalty Predicted time

Mellor-Crummey 151

Memory Behavior: NAS BT 3.0

0

75

150

225

300

10 57.5 105 152.5 200

MIPS R12000 (32KB L1, 8MB L2)

M
is

s
co

u
n

t
/

 C
e
ll
 /

 T
im

e
 s

te
p

Mesh size

L1 measured L1 predicted MRD
L1 predicted prob L2 measured(x10)
L2 predicted MRD(x10) L2 predicted prob(x10)
TLB measured(x10) TLB predicted(x10)

Mellor-Crummey 152

Execution Behavior: NAS BT 3.0

0

1750

3500

5250

7000

10 57.5 105 152.5 200

MIPS R12000 (32KB L1, 8MB L2)

C
yc

le
s

/
 C

e
ll
 /

 T
im

e
 s

te
p

Mesh size

Measured time Scheduler latency L1 miss penalty
L2 miss penalty TLB miss penalty Predicted time

Mellor-Crummey 153

Open Performance Modeling Issues

• Short term
—Better modeling of memory subsystem

– # outstanding loads to accurately predict memory latency

—Explore modeling of irregular applications

• Long term
—Model parallel applications

– Present modeling applies between synchronization points
– Combine with manually constructed parallel models
– Semi-automatically recover parallel trends

—Understand dynamic parallelism

Mellor-Crummey 154

Modeling Related Work

• Reuse distance
—Cache utilization [Beyls & D’Hollander]
—Investigating optimizations [Ding et al.]

• Program instrumentation
—EEL, QPT [Ball, Larus, Schnarr]

• Scalable analytic models
—[Vernon et al; Hoisie et al.]

• Cross-architecture models at scale
—[Snavely et al.; Cascaval et al.]

• Simulation (trace-based and execution-driven)

None yield semi-automatically derived scalable models

Carr, Fang, Onder, Wang 155

Instruction Based Memory Distance Analysis
and its Application to Optimization

 Changpeng Fang
 Steve Carr
 Soner Önder
 Zhenlin Wang

Carr, Fang, Onder, Wang 156

Motivation
 Memory distance

 A dynamic quantifiable distance in terms of memory
reference between tow access to the same memory location.

 reuse distance
 access distance
 value distance

 Is memory distance predictable across both integer
and floating-point codes?
 predict miss rates
 predict critical instructions
 identify instructions for load speculation

Carr, Fang, Onder, Wang 157

Instruction Based Memory Distance
Analysis

 How can we represent the memory distance of an
instruction?
 For each active interval, we record 4 words of data

• min, max, mean, frequency
 Some locality patterns cross interval boundaries

• merge adjacent intervals, i and i + 1, if

• merging process stops when a minimum frequency is found
• needed to make reuse distance predictable

 The set of merged intervals make up memory distance
patterns

Carr, Fang, Onder, Wang 158

Merging Example

Carr, Fang, Onder, Wang 159

Experimental Methodology
 Use 11 CFP2000 and 11 CINT2000 benchmarks

 others don’t compile correctly
 Use ATOM to collect reuse distance statistics
 Use test and train data sets for training runs
 Evaluation based on dynamic weighting
 Report reuse distance prediction accuracy

 value and access very similar

Carr, Fang, Onder, Wang 160

Reuse Distance Prediction

Suite PatternsPatterns Coverage
%

Accuracy
%

Suite

%constant %linear

Coverage
%

Accuracy
%

CFP2000 85.1 7.7 93.0 97.6

CINT2000 81.2 5.1 91.6 93.8

Carr, Fang, Onder, Wang 161

Coverage issues
 Reasons for no coverage

1. instruction does not appear in at least one test run
2. reuse distance of test is larger than train
3. number of patterns does not remain constant in both training runs

Suite Reason 1 Reason 2 Reason 3

CFP2000 4.2% 0.3% 2.5%

CINT2000 2.2% 4.4% 1.8%

Carr, Fang, Onder, Wang 162

Number of Patterns

Suite 1 2 3 4 ≥5

CFP2000 81.8% 10.5% 4.8% 1.4% 1.5%

CINT2000 72.3% 10.9% 7.6% 4.6% 5.3%

Carr, Fang, Onder, Wang 163

Miss Rate Prediction Methodology
 Three miss-rate prediction schemes

 TCS – test cache simulation
• Use the actual miss rates from running the program on a the test

data for the reference data miss rates
 RRD – reference reuse distance

• Use the actual reuse distance of the reference data set to predict
the miss rate for the reference data set

• An upper bound on using reuse distance
 PRD –predicted reuse distance

• Use the predicted reuse distance for the reference data set to
predict the miss rate.

Carr, Fang, Onder, Wang 164

Cache Configurations

config no. L1 L2L2
1 32K, fully assoc. 1M fully assoc.

2
3
4

32K, 2-way 1M
8-way
4-way
2-way

Carr, Fang, Onder, Wang 165

L1 Miss Rate Prediction Accuracy

Suite PRD RRD TCS

CFP2000 97.5 98.4 95.1

CINT2000 94.4 96.7 93.9

Carr, Fang, Onder, Wang 166

L2 Miss Rate Accuracy

Suite 2-way2-way2-way Fully AssociativeFully AssociativeFully AssociativeSuite

PRD RRD TCS PRD RRD TCS

CFP2000 91% 93% 87% 97% 99.9% 91%

CINT2000 91% 95% 87% 94% 99.9% 89%

Carr, Fang, Onder, Wang 167

Critical Instructions
 Given reuse distance for an instruction

 Can we determine which instructions are critical in terms of cache
performance?

 An instruction is critical if it is in the set of instructions that
generate the most L2 cache misses
 Those top miss-rate instructions whose cumulative total misses account

for 95% of the misses in a program.

 Use the execution frequency of one training run to determine
the relative contribution number of misses for each instruction

 Compare the actual critical instructions with predicted
 Use cache configuration 2

Carr, Fang, Onder, Wang 168

Critical Instruction Prediction

Suite PRD RRD TCS %pred %act

CPF2000 92% 98% 51% 1.66% 1.67%

CINT2000 89% 98% 53% 0.94% 0.97%

Carr, Fang, Onder, Wang 169

Critical Instruction Patterns

Suite 1 2 3 4 ≥5

CFP2000 22.1 38.4 20.0 12.8 6.7

CINT2000 18.7 14.5 25.5 22.5 18

Carr, Fang, Onder, Wang 170

Miss Rate Discussion
 PRD performs better than TCS when data size is a

factor
 TCS performs better when data size doesn’t change

much and there are conflict misses
 PRD is much better at identifying the critical

instructions than TCS
 these instructions should be targets of optimization

Carr, Fang, Onder, Wang 171

Value-based Prediction
 Memory dependence only if addresses and values

match
 store a1, v1

store a2, v2
store a3, v3
load a4, v4

Can move ahead if a1=a2=a3=a4, v2=v3 and v1≠v2
 The access distance of a load to the first store in a

sequence of stores storing the same value is called
the value distance

Carr, Fang, Onder, Wang 172

Summary
 Over 90% of memory operations can have reuse

distance predicted with a 97% and 93% accuracy,
for floating-point and integer programs,
respectively

 We can accurately predict miss rates for floating-
point and integer codes

 We can identify 92% of the instructions that cause
95% of the L2 misses

 Access- and value-distance-based memory
disambiguation are competitive with best hardware
techniques without a hardware table

Chen Ding, DragonStar lecture, ICT 2008
173

Other Distance-Based Studies

• Register and cache performance modeling
• Li et al. from Purdue, Interact 1996
• Huang and Shen, CMU, Micro 1996
• Beyls and D’Hollander from Ghent, PDCS 2001
• Almasi et al. from Illinois, MSP 2002
• Zhong et al. from Rochester, LCR 2002

• File caching
• Zhou et al., USENIX 2001
• Jiang and Zhang, SIGMetrics 2002

