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Lecture 1: Why Cache 77 E
Necessity of memory hierarchy. Sec. 1.1, Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for
Memory Hierarchies, Advanced Lectures, volume 2625 of Lecture Notes in Computer Science. Springer, 2003.
Memory bandwidth bottleneck. Sec. 1, Chen Ding and Kennedy, "Improving Effective Bandwidth through Compiler
Enhancement of Global Cache Reuse," Journal of Parallel and Distributed Computing, Volume 64, Issue 1, January
2004, Elsevier Press, pages 108--134 .
Performance metrics
footprint, reuse distance, fill time, miss ratio. Xiaoya Xiang, Chen Ding, Bin Bao and Hao Luo, "A Higher Order
Theory of Cache Locality", in Proceedings of The Symposium on Architectural Support for Programming Languages
and Operating Systems, March 2013.
AMAT and APC. Xian-He Sun and Dawei Wang. APC: a performance metric of memory systems. SIGMETRICS
Performance Evaluation Review, 40(2):125-130, 2012.
Sec. 1--2, "Program Locality Analysis Using Reuse Distance ", Yutao Zhong, Xipeng Shen, and Chen Ding, ACM
Transactions on Programming Languages and Systems, Volume 31, Number 6, August 2009, pages 1--39.

Cache hardware. Preface and Chap. 1, Rajeev Balasubramonian, Norman Jouppi, Naveen Muralimanohar, Multi-
CoreCache Hierarchies, Synthesis Lecturess on Computer Architecture #17, Morgan Claypool Publishers, 2011.
Software defined cache -- memcached. Atikoglu et al. Workload Analysis of a Large Key-Value Store. SIGMETRICS
2012.

http://www.cs.rochester.edu/drupal/program-behavior-shared-cache-performance-and-correctness

Lecture 2: Footprint Theory of Locality 2 /& &P 14 #Y B iFIRIL
"SREFTERRENA", TR, B8, i HHITE5H, Volume 36, Number 1, January 2014, pages 1--5.
"Performance Metrics and Models for Shared Cache (2277 14E/IEE 5447)", Chen Ding (T/R), Xiaoya Xiang ([8:4E),
Bin Bao (i), Hao Luo (2£), Ying-Wei Luo ($%f$), and Xiao-Lin Wang (E/\#), Journal of Computer Science and
Technology, 2014,V29(4): 692-712.

Lecture 3: Locality Optimization 27 BBt (L IR Fn2s 51
Five dimensiions of locality.
Sec. 6, "Program Locality Analysis Using Reuse Distance ", Yutao Zhong, Xipeng Shen, and Chen Ding, ACM
Transactions on Programming Languages and Systems, Volume 31, Number 6, August 2009, pages 1--39.
"Performance Metrics and Models for Shared Cache (2t 477144k & 543 47)", Chen Ding (T/R), Xiaoya Xiang (B4E),
Bin Bao (&3it), Hao Luo (B£), Ying-Wei Luo ($%f$), and Xiao-Lin Wang (/I\#f), Journal of Computer Science and
Technology, 2014,V29(4): 692-712.
(added 7/4) "On-the-Fly Elimination of Dynamic Irregularities for GPU Computing", Eddy Z. Zhang, Yunlian Jiang, Ziyu
Guo, Kai Tian, Xipeng Shen, the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.
(added 7/8) "Defensive Loop Tiling for Shared Cache", Bin Bao and Chen Ding, in Proceedings of on Code Generation
and Optimization, February 2013. (slides, video)

Lecture 4: Fundamentals of Shared-Memory Synchronization 2= 7[5 FIE A FRIE
First 3 chapters and 8.2 in Michael L. Scott, Shared-Memory Synchronization, Synthesis Lecturess on Computer
Architecture, Morgan Claypool Publishers, 2013.
(added 7/8) Safe (Hint based) Parallel Programming: "Software Behavior Oriented Parallelization", Chen Ding, Xipeng
Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang, in Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, San Diego CA, June 2007.

Lecture 5: Collaborative Cache Management and Optimization XA {41/ & IR M (L E
Xiaoming Gu (BS at USTC 2003, MS at ICT 2006, PhD at Rochester 2013), AR (FRAITHEHMAAR 2003, hRERITER
Hi£2006, FZHHFAE12013) Optimal Collaborative Caching: Theory and Applications. Ph.D. Dissertation, 2013.
(Guest lecture) Professor Song Jiang (B A TIAEIE, BIRRAITHENRET)
LIRS algorithm. Jiang et al. IEEE Transactions on Computers, 2005 and 2007. SIGMETRICS 2002.
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Please Ask Questions

QUESTION
EVERYTHING!

* To assert you as you

+ To network
* To share
* To have a good time

+ So I can do better
than a lecture video

ZHEVENE?

* "Nothing travels faster than the
speed of light with the possible
exception of bad news, which obeys
its own special laws.” Douglas Adams
The Hitchhiker's Guide to the Galaxy

Chen Ding, University of Rochester




Three problems:
latency/bandwidth and Matthew Hertz's beer
capacity and Trishul Chilimbi's cliff
sharing Chen's Platform

Cache System

+ Cache
- which most transistors are used for
* where most memory accesses happen
* managed by priority/usage

+ Shared cache

+ available cache is variable
- throughput/stability/fairness/QoS
+ sequential/parallel code

Madison Itanium 2, 2002
slide 3, Anant Agrawal, MIT 6.975 Fall 2007

Chen Ding, University of Rochester Chen Ding, University of Rochester, INRIA 2014 8
sntralies-13iCh DBR3]
Hierarchical Cache HELST S
P Core 0. Core 1 " Core2 - Cor
arallel Access Transistors 681 million 1.4 billion 3.0 billion
CUDA Cores 128 240 512
Double Precision Floating None 30 FMA ops / clock = 256 FMA ops /clock
CO nstant Point Capability
. Shared L3 Cache Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock
Interaction IR Point Capability ops/clock clock
Special Function Units 2 2 4
s (SFUs) / SM
H Warp schedulers (per SM) 1 1 2
Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
. 16 KB
NVIDIA's Next Generation g L1 Cache (per SM) None None Conﬂgurfsblls E:IG KB or
. ]
CUDA" Compute Architecture: = L2 Cache None None 768 KB
ECC Memory Support No No Yes
No No Up to 16
Load/Store Address Width 32-bit 32-bit 64-bit

Chen Ding, University of Rochester

Chen Ding, University of Rochester
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The Design
of
Parallel Memory Systems
\\

Xian-He Sun
Illinois Institute of Technology
Chicago, Illinois
sun@iit.edu

Computing Become Data Intensive

= Simulation, visualization, data mining, information retrieval,
etc.

Data requirements for selected INCITE applications at ALCF

PI Project On-Line Data Off-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB

lorley, Patrick H. Performance Evaluation and Analysis 1TB 1TB

Wolverton, Christopher Kinetics and Thermodynamics of Metal and STB 100TB

Complex Hydride Nanoparticles

Washington, Warren Climate Science 10TB 345TB
[Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
[Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB

iegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
oux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Introduction

RESEARCH DRIVE

The Memory-wall Problem

= Processor performance
increases rapidly
o Uni-processor: ~52% until

L]

Source: Intel

60%

2004, ~25% since then 100.000 Multhcore/many-core pmisgﬁ:;

o New trend: multi-core/many- ~ "**” S M‘; e
core architecture é 1000 L ’ =
= Intel TeraFlops chip, 2007 s m o~

o Aggregate processor ° 3 Vemory,
perfomlance muCh higher 1980 1985 1990 1995 2000 2005 2010 9%

= Memory: ~9% per year
= Processor-memory speed gap
keeps increasing

Source: 0CZ

Addressing the HPC Data Challenges

Trends indicate that the “data tsunami” and “memory-
wall” will continue, waiting for miracle is not an answer

Big-Data problem is a HPC problem:
U Data access & Interface

Need rethinking from the data-centric point-of-view in:

= Understanding the system, application, and algorithm
relevant to data access

= Optimizing current systems
Developing new system architectures

= Developing integrated solutions
o Algorithm, programming model, system, architecture, co-design
o Insitu application-aware data access optimization

Understanding

MEMORY SYSTEM BEHAVIOR




Memory System Performance

Processor-DRAM Memory Gap

100,000

| uProc
a ; . 1.20/yr.
- Moore’s Law J
uProc
2 1,000 4 1-2,
8 t.52/yr:
g GXITEY) e DRAM
H 7%lyr.
'Y 100 Pr MEI'ITOI'y 2XI10
/ Performance Gap: ( S)
0 (grows 50% /year) /| 7"
MW

1980 1985 1990 1995
Year

2000 2005 2010

» 1980: no cache in micro-processor; 2010: 3-level cache on chip, 4-level cache off chip
« 1989 the first Intel processor with on-chip L1 cache was Intel 486, 8KB size

» 1995 the first Intel processor with on-chip L2 cache was Intel Pentium Pro, 256KB size
» 2003 the first Intel processor with on-chip L3 cache was Intel Itanium 2, 6MB size

Improve via Data Access Concurrence

0 The complexity of CPU Design
o Out-of-order Execution
o Multithreading technology
o Speculation mechanisms

0 The complexity of Memory Design
o Advanced Cache Technologies
- Allow tens or hundreds of cache accesses to overlap with each other
- Processor continue execution instructions under multiple cache misses

Assumption of Current Solutions

U Memory Hierarchy: Locality

U Concurrence: Data access pattern
o Data stream

400
10 Access 5~15M cycles

Extremely Unbalanced
Operation Latency

Cycles

Performances vary
largely

ALU FP FP L1 FPDiv L2 L3 MM
Inst Cmp Mul Access Access Access Access

W . .
Improve via Memory Hierarchy
Capacity ) Staging Upper Level
Access Time, Bandwidth Xfer Unit faster
CPU Registers
<8KB prog./compiler|
<0.2~0.5 ns, 500~800 GB/s/core Instr. Operands 1-8 bytes
Cache
<50MB
1-10 ns, 50~150GB/s/core
cache cntl
32-128 bytes

Main Memory |
Giga Bytes Memory
50ns-100ns 5~10GB/s/channel I Pages oS
Disk 4K-4M byte
Tera Bytes, 5 ms | Disk
100~300MB/s y "

Files user/operator
Tape I Mbytes Larger
e, | Tape | Lower Level
sec-min

Solution: Memory Hierarchy & Parallelism

Multi-core CcPU Out-of-order Execution
Multi-threading Speculative Execution
Multi-issue t Runahead Execution

. Pipelined Cache
Muilti-banked Cache Cache Non-blocking Cache
Multi-level Cache Data Prefetching

Write buffer

. Pipeline
Multi-channel .
Multi-rank Memory sor}-lzlohgkmg

i refetching
Multi-bank Write buffer

Input-Output (I/O)

Parallel Fife S

Existing Memory Metrics
o Miss Rate(MR)

- {the number of miss memory accesses} over {the number of total memory accesses}
o Misses Per Kilo-Instructions(MPKI)

- {the number of miss memory accesses} over {the number of total committed Instructions X
1000}

0 Average Miss Penalty(AMP)

- {the summary of single miss latency} over {the number of miss memory accesses}

0 Average Memory Access Time (AMAT)
. AMAT = Hit time + MR X AMP

0 Flaw of Existing Metrics
o Focus on a single component or
o A single memory access

Missini memori iarallelism/concurrenci




vV MV
The Introduction of APC APC Measurement

= Access Per Cycle (APC)
o APC=A/T

= APC is measured as the number of memory accesses per
memory active cycle or Access Per Memory Active Cycle

The difficulty is measuring the total cycle T
o Hundreds of memory accesses co-exist the memory system

= Measure T based on the overlapping mode

(APMAC) o When there are several memory accesses co-existing during the same
= Benefits of APC (APMAC) clock cycle, T only increases by one
o Separate memory evaluation from CPU evaluation o Measure the concurrence
Each memory level has its own APC value o Measure the concurrence at each level

5}
0 A better understanding of memory system as a whole, and at each layer
Q

A better understanding of the match between computing capacity and
memory system performance

Hardware cost: one bit

= Concurrence and Data-Centric view

X.-H. Sun and D. Wani "APC: A Performance Metric of Memoi Sistems"|

hd oV - i
Exhausted Testing APC and C-AMAT Applications

= Provide a new way to measure and analyze the contribution
= With different benchmarks, and with different of memory concurrence
configurations

. . = Provide new approaches to reduce memory access delay
= With advanced cache technologies

o Non-block cache = Reveal the importance of memory parallelism and its

o Pipelined cache relation to data locality

o Multi-port cache . .

o Hardware prefetcher = Provide a mean to study the matching between memory

= With single core or multicore organization and microprocessor architecture,

s APC always has the high est CC values = Provide a mean to study the matching between memory

. organization and a given application
among all the memory metrics . .
= Design and Co-Design of Parallel Memory Systems

D. Wani| X.-H. Sun "Memoi Access Cicle and the Measurement of Memoi Sistems"|

v MV /

Data Access is Application Dependent

= Conventional algorithm analysis
o Floating point operation

= Data-centric algorithm analysis
o Floating point operation
o Memory requirement
o Data reuse rate
a

Understanding

Data access/movement pattern

APPLICATION BEHAVIOR
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The Memory-bounded Speedup

» Tacit assumption in Amdahl’s law If f
o The problem size is fixed I« Work: 1 |
o The speedup emphasizes time reduction

If fn
T ]
fe——— Work: (I-f)+nf ——!

= Gustafson’s Law, 1988
o Fixed-time speedup model

oo
P 'P fixed-iime

_ Sequential Time of Solving Scaled Workload
Parallel Time of Solving Scaled Workload

=(1=H)+nf

= Sun and Ni’s law, 1990
o Memory-bounded speedup model
Sequential Time of Solving Scaled Workload
Speedup, oy youmica = N -
: Parallel Time of Solving Scaled Workload
=~ U=N+fG)
A=)+ fGm)/n

X.-H. Sun, and L. Ni, “Another View of Parallel Sieedui ”

Data Access Signature: Patterns and Notation

= Comprehensive access pattern classification
= Implemented for I/O and memory access (MPI datatype)

“ N (

Spatial Patterns Request size
QContiguous
QONon-contiguous O Fixed
=Fixed strided QO  Variable
=2d-strided "
=Negative strided
=Random strided
kd-strided Temporal Intervals
I:IComblt;mtmn of tct(mlrlguous and OFixed
\non—cou iguous patterns / ORandom
A
e N\
Repetition 1/0 Operation
. QRead only
QOSingle occurrence QWrite only
\ URepeating )\ QRead/write

\d /

IOSIG: An I/0 Characterization Tool

Website: www.cs.iit.edu/~scs/iosig/

Goal: To provide a better understanding of parallel I/O accesses
and information to be used for optimization techniques.
oo
steps: ¢ Collects parallel I/O calls of an application

* Does not require any code modification

= Trace analysis —

* Analyzes the collected information to give a clear
understanding of I/O behavior of the application

» Handles trace files in any text-based format

\d /

Contribution of Memory-bounded Speedup

= Data-centric thinking
» Where the memory-bound function W = G(M) provide

o W, the work in floating point operation
o M, the memory requirement
o G, the data reuse rate
o Enough for memory hierarchy, but not concurrence
= Need to find the data access/movement patterns for data access
concurrency

= Dense Linear Algebra, M memory, M3 work
= FFT, M memory, O(M log(M)) work
= G(pM) > pW, can lead to large increase in execution time

o (ex) 10K x 10K matrix factorization: 800MB, 1 hr in uniprocessor
with 1024 processors, 320K x 320K matrix, 32 hrs

I/0 Trace Signature

o Description of a sequence of
1/0 accesses in a pattern

o Form: {I/O operation, init
position, dimension, ([{offset
pattern}, {request size
pattern}, {pattern of number
of repetitions}], [...]), # of
repetitions;}

I/0 Pattern Detection

= Developed a pattern detection
tool

= Five pattern detectors for
finding patterns among initial
positions, offsets, request
sizes, temporality, and
repetitions

Outputs I/O Signature that can

Pattern Signature

o provides a simple description
that explains the nature ofa =

pattern be used for prefetching, data
o Form: {I/0 operation, layout, and data
<Spatial pattern,

5 . .. reorganization
Dimension>, <Repetitive g

behavior>, <Request size>,
<Temporal Intervals>}

W More about IOSIG

= Additional contributions
o Data access pattern categories
o Local and global I/O signatures
= Applications

S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp

Prefetching ~ SC’08 Parallel I/0 Prefetching Using MPI File Caching and I/0
Signatures
H. Song, Y. Yin, Y. Chen, X.-H. Sun,

Data Layout HPDCI11 A Cost-intelligent Application-specific Data layout Scheme for
Parallel File Systems

Data

H. Song, Y. Yin, X.-H. Sun, et. al,
Server-Side I/0 Coordination for Parallel File Systems

J.He, H. Song, X.-H. Sun, Y. Yin, and R. Thakur

Coordination SC11

Data

Organization PDSWIL Pattern-aware File Reorganization in MPI-IO
Data IPDPS13 Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, Pattern-Direct and
Replication Layout-Aware Replication Scheme for Parallel /O Systems

Data Comiression




I/O System

OPTIMIZATION FrOM DATA VIEW

\d /

In Situ Application-aware Optimization

= Data access is application dependent

= Dynamic, application-aware optimization for parallelism

= Data access pattern, feed back control

= Integrating language, memory system, and
hardware/software infrastructures *

= Understanding design trade-off

Developing

INTEGRATED SYSTEM DESIGN

\d /

Ours Method: Application-Aware I/0 (1)

Decoupled-Execution Paradigm:
O Handle computation- and data- intensive phases separately
U One interface-Two systems, transparent to users
U Integration, scheduling, optimization

Supercomputer or

many-core computing system
for execution of computing
intensive part of an application

Data cloud or storage cluster
for execution of data
intensive part of an application

B Core
EENEEEEN FEEREEEREEEREEE )
EEEEEEEE |uu@”uua uua|uua| 8 o
I T T | ~—— Network
oos| |oos| |(oos| |mas
EEENEEEREEEREEE

High speed network

Application-Aware I/O Optimization (3)

Compute Nodes

Smart Selective SSD
Cache (S4D-Cache)

technology with Parallel

|
I
|
= Combine SSD |
I
File Systems :

= Plug-in as a Data-
Service with SSD cache

= Optimize via
application-aware

= Storage Class Memory

S. He, X.-H. Sun, et.al. "S4D-Cache: Smart Selective SSD Cache for Parallel I/O

Data Access is a Complex Matter

= Dynamic, Application-aware
= System and algorithm re-design

Big Data, Big Deal, Big Challenge

Layers of parallel 1/O

Application MPI

Search page table

1
X, @ Page fault
Get page from
s sec memo
Update
main memory,
cache and
Update TLB | Page table entry
from cache ;
Data

Operation of Memory Hierarchy

Return value

forwarding prg
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. Where Does Energy Go? (2) [courtesy Kogge]
Cha"enges Of Exascale ComPUtlng * ~50% goes into accessing storage and moving data 3
(CIOUd, data Center) * ~50% goes into “architecture convenience” (caching,

virtual memory)

* ~2% goes into computation

Energy and Power 7 "

8 a

Memory and Storage g1, |8 |2

o "] -

. . = © = Q 3 I

Conpprrency and Locality (programming model) 5\ 8 K THEIH E 2
Resiliency s|<|2[2]e S g, %] 2

o el [EfE|8IEIS|EI5]5

L1 Hit | 39 /[ 30% | 0% | 28% [42% | 0% | 0% | 0% | 0% | 0%

L2/13 Hit, | 385/ 7% | 0% | 6% [34% [ 0% | 53% [ 0% [ 0% 0%

. Local 1380 [ 1% [ 0% | 2% | 2% | 68% | 26% | 1% | 0% | 0%
Ours Solution: Global _[13819] 0% | 24% | 0% | 0% | 1% [ 13% | 0% | 10% | 52%
AveRead | 706 | 2% [19% [ 2% [ 4% [ 8% [16% [ 0% [ 8% [ 41%

Concurrent memory and storage systems Write to L1] 30 | 30% | 0% | 29% [ 42% | 0% | 0% | 0% | 0% | 0%
a Flush L1 891 | 0% | 0% | 1% | 26% [ 32% | 39% | 1% | 0% 0%

(with programming support)

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 53

52

S
7 &

- Conclusion: HPC Data-centric Rethinking

Power & fault-tolerant depending on data handling
Data access is a major concern of big data, cloud, HPC
Data intensive computing requires the rethinking of
program model, system, algorithm, and architecture
C-AMAT and APC build the foundation of rethinking
computing systems

Integrated parallel data-access system design is the first
step

E
R
1
8

4/26/2014 Scalable Computing Software Lab, Illinois Institute of Technology 54
My Interests This Course
+ Is research for knowledge or utility? * Three basic problems in (computer) systems
* Pythagorean or Baconian? * locality, parallelism, synchrony
* The science of systems research * The material
* what can we ultimately create * key studies that illuminate the limits or overcome some of
* New knowledge <-> more useful systems the limits
* How to do research? * computational solutions and experimental verification
- "Don't do what everybody else is doing” ---Jim Larus - what we have learned collectively in the last decade
+ supercomputing, ILP, pointer analysis, multi-core, ... ... * Class dynamics
* Look forward to the next limit - explanation of basic concepts and questions
* Basic research question - selection of specific material (from the reading list)
* How much a program can understand other programs? based on common interests
Chen Ding, DragonStar lecture, ICT 2008 “ Chen Ding, DragonStar lecture, ICT 2008 “®




1994: Instruction-level Parallelism

+ Studying under Philip Sweany and Steven Carr at MTU
* Hiding the latency of operations and branches
* most operations have predictable latency
+ except for ... ...
* Memory accesses
* papers assumed L1 miss and L2 hit
* What about L2 misses?
* the latency can be over a hundred cycles
* ILP may not matter
* no discussion in ILP papers
* no one really knows the general answer until this decade

Chen Ding, DragonStar lecture, ICT 2008 “©

Scalability and Data Placement on SGI Origin *

Arun CHAUHAN Chen DING Barry SHERAW

Dept of Computer Science
6100 S Main, Rice University
Houston, TX 77005
{achauhan,cding,sheraw } @rice.edu

April 28, 1997

Some of our results are quite different from the predictions of two recent simulation studies
on directory-based ccNUMA machines ([HSH96] and [PRA97]), especially on FFT. These
differences are partly due to the fact that the machine models used in previous simulation
studies are different from the Origin machine in some important aspects. Our results also
include data sizes that are larger than any of the previous simulation studies. To increase
our confidence on the latency numbers and data placement tools, we also measured memory
latencies using micro-benchmarks.

2002: Mark Wegman

+ Compiler legend, co-invented many classic techniques
* compression, universal hashing, global value numbering,
constant propagation, congruence, and static single
assignement
* First ACM Workshop on Memory System Performance and
Correctness (MSPC) in 2002
* recurring comment during the PC meeting
* "The first load takes a long time, the next 10 do not
matter!”
* Performance depends on not instruction count and not
instruction type but when and how often there is a miss

Chen Ding, DragonStar lecture, ICT 2008

The Memory Problem

* The journey of an idea
1997 summer, I told Ken the problem of memory bandwidth
1998(?) John Hennessy “single-node bandwidth" is fundamental problem
1998 (?) John McCalpin "It is the bandwidth, stupid”
1999 summer, Burton Smith at LCPC at UCSD
2000, my dissertation done, talk w/ Crawford of Intel and Carter of Utah
2001, my visits at Intel Itanium compiler group and Lawrence Livermore
2002, Intel used RAMBUS in Pentium 4
2002, Earth Simulator became world's fastest computer
2002, Utah work won ICS best student paper award
2003/4, US invested in high-end computing
2003 PACT, global loop fusion by Intel
2005 ICS, array regrouping by IBM
2005 ICS, data packing used by Lawrence Livermore
2003--2007, a new understanding of locality emerged
2007, DARPA MIT multi-core workshop listed of f-chip bw as #1 problem

Chen Ding, DragonStar lecture, ICT 2008 %

Program Behavior Research

Introduction

53

1. The "memory problem”

2. What is locality?




The Memory Problem

Memory Performance

Problem

high memory latency

Improvement 1

fast cache

Improvement 2 & 3
Data prefetching
Multi-threading

memory

Is there enough bandwidth?

Chen Ding, DragonStar lecture, ICT 2008 %

Bandwidth Bottleneck

* Hardware trends
* CPU speed improved 6400 times in 20 years

* Memory bandwidth improved 139 times
+ Software frends
+ large data sets
+ dynamic content and computation
* modularized programming
* "Moore's gap"
+ data supply cannot keep up with CPU speed

Chen Ding, DragonStar lecture, ICT 2008

Performance Model

+ Balance
+ Callahan, Cocke, and Kennedy. JPDC 1988.

+ Ding and Kennedy. JPDC 2004.

* Machine balance
* max words per cycle divided by max flops per cycle

* Program balance
+ # words accessed divided by # flops executed

* total loads/stores divided by total floating-point ops
+ Consequences

+ MB = PB > full utilization

* MB > PB > memory idle

+ MB<PB > CPU idle

Chen Ding, DragonStar lecture, ICT 2008

Program and Machine Balance
[Callahan, Cocke, and Kennedy, JPDC 1988]
[Ding and Kennedy, IPDPS 2000 and JPDC 2004]

program/ Program/machine balance
machine  L1-Reg L2-L1 Mem-L2
Convolution 6.4

Mmjki (-02)  24.0
Mmjki (-03)| 8.1

Sweep3D 15.0
Origin2000 4.0

CSC573, Computer Science, U. of Rochester 59

Memory-Bandwidth Bottleneck

* Ratios of demand to supply
Ratio: demand/supply
Reg BW Cache BW Mem BW
Convolution 1.6 1.3 6.5
Dmxpy 2.1 2.1 10.5

Applications

Mmjki (-02) | 6.0 2.1 7.4
FFT 2.1 0.8 3.4

SP 2.7 1.6 6.1
Sweep3D 3.8 2.3 9.8

* Memory bandwidth is least sufficient

* Maximal CPU utilization: 10% to 33%
 The imbalance is getting worse

o Software solution: Better caching

60

Chen Ding, DragonStar lecture, ICT 2008
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Memory Bandwidth Limitations of Future Microprocessors
Doug Burger, James R. Goodman, and Alain Kigi

Computer Sciences Department
University of Wisconsin-Madison
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Fastest Computer Over Time

7 Japanese
60 Earth Simulator
NEC 5104
50
@£
S 40
S
= 30
[
2 Intel ASCI A:;(:V
10 e B L e et At %Y
© i oo . 9152 5040)
Y-MP®) VP2600 (o m e
0

1990 1992 1994 1996 1998 2000 2002

Year
Jack DEM3280 a computation that took 1 full year to complete
Univergignf todasvede done in ~ 5.4 seconds!

IBM BlueGene/L 2005
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Traditional Processors

- NEC SX-4
* vector processor, June 1997, 2 Gflops, 7.46B/s
bandwidth, 3.7 bytes per flop
+ Alpha Server
* May 1999, 600MHz CPU, 2MB cache, 932 Mflops, 50MB/s
bandwidth, 0.48 byte per flop
* Pentium 4
+ Sept. 2003, 2.4GHz, 4.8 Gflops, 1.586B/s bandwidth,
0.33 byte per flop
* Opteron
- Dec. 2003, 2.2GHz, 4 Gflops, 1.16B/s bandwidth, 0.28
byte per flop

Chen Ding, DragonStar lecture, ICT 2008 e

Chip Multi-processors

* 4-way Power 4
* May 2003, 1.76Hz, 6MB partitioned L2, 27.2 Gflops, 6GB/
s, 0.22 byte per flop
« Intel Core2 Quad
+ April 2007, 2.4GHz, 154 Gflops, 5.3 GB/s bandwidth, 0.07
byte per flop
+ 64-core Tilera
+ Dec. 2007, 750MHz, 25GB/s peak memory bandwidth, 3.8
TB on-chip bandwidth
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Current Expert Opinion

Ramesh

Principal Engineer & Engineering
Performance and Threading Tools LLa
Intel® Corporation, Austin, TX 7873

Multi-Core Processors — Are they
Here Yet ?

e My shopping basket at Fry’s electronics on BlackFriday

Motherboard+In uad core 2.4Ghz 200

osmom  [m
Total {380

Languages and Compilers
for Multicore
Computing Systems

FRAN ALLEN
allen@watson.ibm.com

Workshop Keynote
IIT Kanpur, India
December 13, 2007




Parallelism Solves the Performance Problem!
(or does it?)

OPPORTUNITIES

= New very high level languages

= New compiler techniques to manage data locality,
integrity, ownership, ... in the presence of parallelism.

= Influence the architects before it is too late
= Rebuild the software stack

= Establish overall system goals:
+ User Productivity

The Parallel
Hammer We have defined the tool -
it is up to you to figure out

+ Application Performance

how to use it!

fht

] What is Locality

An empirically observed phenomenon that has substantial
intuitive appeal and numerous practical implications

Temporal and Spatial Locality:
A Time and a Place for Everything

O Parachor Curve

Q “during any interval of execution, a
program favors a subset of its pages,
and this set of favored pages

Rick Bunt

University of Saskatchewan Faults

Carey Wllllamson changes slowly” [Denning 1970]

University of Calgary

eALIT

I i Temporal and Spatial Locality:
~—~| A Time and a Place for Everything December 6, 2003
“—_ | Slide 4 of 29

Impact of Locality Known Aliases

O Acceptable page fault rates can be achieved even §
when the memory allocated to a program is much less QThe law of scattering

than that required to store all of its pages Q The principle of least effort

O Internet routers can make high speed routing decisions
with very modest forwarding caches QThe 80-20 rule

O Mobile users can work with remotely stored files even O Concentration of productivity
though they are located far from the file server

QThe law of diminishing returns

Terr_lpara/ and Spatial Locality: . i Temporal and Spatial Locality:
\ ~—~| A Time and a Place for Everything December 6, 2003 ‘\ ~=~| A Time and a Place for Everything December 6, 2003

| Slide 5of 29 —— -+____ | Slide 6 of 29




Locality Through the Ages

O Bradford’s Law of Scattering [1934]
Q Zipf’s Principle of Least Effort [1949]

0 Many applications before we discovered it

> population distribution, distribution of wealth, distribution of biological
species, article distribution in journals, and word usage in natural
language.

> has been used to plan the location of libraries and other facilities, to
model the popularity of television programs, and to order search keys in
hashing tables

Temporal and Spatial Locality:
~——| A Time and a Place for Everything

December 6, 2003
Slide 8 of 29

The Underlying Concept

QThere is a very large population of items, many
more than we can manage

QO There is a small core of relevant items on
which we can productively focus our attention

O This core will continue to be relevant long
enough to justify our attention

Temporal and Spatial Locality:
A Time and a Place for Everything
Slide 7 of 29

Locality: Innate or Emergent?

Bell’s theorem without inequalities®
Daniel M. Greenberger
Department of Physics, City College of the City University of New York, New York, New York 10031
Michael A. Horne
Department of Physics, Stonehill College, North Easton, Massachusetts 02357
Abner Shimony
Departments of Philosophy and Physics, Boston University, Boston, Massachusetts 02215
Anton Zeilinger
A, institut der O: ichischen Uni

115, A-1020 Vienna, Austria
(Received 10 June 1990; accepted for publication 30 July 1990)

It is demonstrated that the premisses of the Einstein-Podolsky—Rosen paper are inconsistent
when applied to quantum systems consisting of at least three particles. The demonstration reveals

(1) Perfect correlation: If the spins of particles 1 and 2 are
measured along the same direction, then with certainty the
outcomes will be found to be opposite.

(ii) Locality: “Since at the time of measurement the two
systems no longer interact, no real change can take place in
the second system in consequence of anything that may be
done to the first system.”

(iii) Reality: “If, without in any way disturbing a sys-
tem, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this
physical quantity.”

(iv) Completéness:“Every element of the physical rea-
lity must have a counterpart in the [complete] physical
theory.”

Leonard Mandel

Phys. Rev. Lett. 65, 321 - 324 (1990)

Observation of nonlocal interference in
separated photon channels

Z.Y.Ou, X. Y. Zou, L.J. Wang, and L. Mandel
Department of Physics and Astronomy, University of Rochester, Rochester, New York

How to Analyze Locality?

December 6, 2003
N



Programming and Program Analysis

+ Language design & implementation [Scott
Programming Language Pragmatics]
* naming, types, control and data
abstractions, imperative, functional,
logical, parallel, ...

COMPILER

* Program analysis and optimization
[Cooper&Torczon Engineering a Compiler]
+ invariance in (cyclic) graphs

* Dependence and parallelization
T [Allen&Kennedy Optimizing Compilers for Modern
Architectures]

* (re)ordering constraints

* reorganization of loop and data spaces
Chen Ding, DragonStar lecture, ICT 2008

= ENGINEERING
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Program Analysis Methods

+ Compilers
- effective for scalars
+ for loop nests with linear index expressions
- not for branches, recursion, indirect data access
+ Profiling
+ accurate for one input
* not for other inputs
* Run-time analysis
* needed for input-dependent patterns
+ costly for detailed analysis and large-scale transformation

Chen Ding, DragonStar lecture, ICT 2008 86

Programs and Program Behavior

+ Software frends
+ data intensive
+ dynamic and input dependent
* parameterized code
* templates, polymorphism
+ outside code
« library, VM, VMM, OS, network, hardware
* Program behavior
* a long sequence of operations
* large-scale, compound effects
+ Behavior-based analysis
+ identify composite patterns through off-line training or

online monitoring
Chen Ding, DragonStar lecture, ICT 2008
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Reuse Distance

- Reuse distance of an access to data d
* the volume of data between this and the
previous access to d
* Reuse signature of an execution
- the distribution of all finite reuse distances
- gives the miss rate of fully associative
cache of all sizes

J :'I

Mattson, Gecseli,
Slutz, Traiger

100

§ 75 IBM Systems
S Journal, vol. 9(2),
2 & 50 1970, pp. 78-117
abcaach £
. N
0
0 1 2 3
reuse distance/cache size 88
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Working Set

© miss-rate curve
2 37 |
© | |
® < Peter J. Denning
2 3]
o
o T IEEE Transactions on
S Software
° ! ! ' ' Engineering, vol. 6(1),

reuse distance

89

Cache Miss Rate

IEEE Transactions
on Computers,

. vol. 38(12), 1989,

\ pp. 1626

0040

Allan J. Smith

0030

T

A ® Predicted miss rate
[Smith 19786,
Hill&Smith 1989]

® direct-mapped
o - - ® set-associative
® all sizes

Cache Size (bytes)
(b)
Fig. 11. Predicted (dashed) and actual (solid) miss ratios for trace “‘mul2”
with caches of associativity 1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches. %0
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Measuring Reuse Distance

92

Predicting whole-program locality through reuse distance analysis
Full text TP (298 kB)

Source Confi onP ing L Design and Implementation archive
Proceedings of the ACM SIGPLAN 2003 f onF i

San Diego, California, USA

SESSION: Code optimization || table of contents

Pages: 245 - 257

Year of Publication: 2003

ISBN:1-58113-862-5

Also published in

Chen Ding  University of Rochester, Rochester, New York

Yutao Zhong University of Rochester, Rochester, New York

ACM: Association for Computing Machinery
SIGPLAN: ACM Special Interest Group on Programming Languages

design and implementation

Authors
Sponsors

Publisher
Bibliometrics Downloads (6 Weeks): 7, Downloads (12 Months): 101, Citation Count: 20

ACM New York, NY, USA

Measuring Reuse Distance

time: 1234506789 10 11 12
accesss dacbccgef a £ b
distance: | €— 5 distinct accesses —>|

(a) an example access sequence
the reuse distance between two b's is 5

* Naive counting, O(N) fime per access, O(N) space
*+ Nis the number of memory accesses
+ M is the number of distinct data elements
+ Too costly
+ N is up to 120 billion, M 25 million
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Precise Methods

time: 123456 78910 11 12
access: dE@b@c g eE a £ b
distance: | €— 5 last accesses —>

(b) Store and count only the last access of each data.

* stack algorithm [Mattson+ IBM 70]
* O(M) Time per access, O(M) space

* vector tree [Bennett&Kruskal IBM 75]
* O(log N) time per access, O(N) space

+ search tree [Olken LBL 81, Sugumar&Abraham UM 93]
* O(log M) time per access, O(M) space

* space cost remains a major problem

Chen Ding, DragonStar lecture, ICT 2008 95

Approximation

- Basic idea

- measure only the first few digits of a long distance
- use non-unit size tree nodes
* tree size = M / average node size
- bound the error by tree node size
* Guaranteed relative accuracy
- a <= measured/actual_distance <= 1
‘eg.a=99%
- logarithmic space cost
* Hashtable cost
- space problem solved by Bennett-Kruskal in 1975
- not considered in the discussion




time: 123456789 10 11 12

access: d.. TAC ge. a £ b

distance: 5 last accesses ~ —p|
(b) Store and count only the last access of each data.

Tree node

(time range, weight, capacity, size) |

8-10,7,2,2)

[d-7,4,6,9] [d1-11,1,1,1]

time: 12345678910 11 12

access: d..erc ge. a £ b

distance: 5 last accesses —)|

(b) Store and count only the last access of each data.

Tree node

(time, weight, capacity, size) |

(8-10,7,2,2)

The three tree nodes
have capacities

1,2, and 6. 1-7,4,6,9| | @1,1,1,1|
It guarantees 33%

accuracy.

time: 12345678910 11 12

access: d..erc ge. a £ b

distance: 5 last accesses —)|

(b) Store and count only the last access of each data.

Tree node

(time, weight, capacity, size) |

8-10,7,2,2)

Search for last access
of b, whose access
time is 4.

[d-7,4,6,49] [d1-11,1,1,1)]

time: 12345678910 11 12

access: d..erc ge. a £ b

distance: 5 last accesses —)|

(b) Store and count only the last access of each data.

Tree node

| (time, weight, capacity, size) |

.

[d-7,4,649] [dI-11,1,1,1)]

8-10,7,2,2)

time: 12345678910 11 12

access: d..erc ge. a £ b

distance: 5 last accesses —)|

(b) Store and count only the last access of each data.

Tree node

(time, weight, capacity, size) |

(8-10,7,2,2)

Set d to be O first.
The error in distance

is at most 4. | (1-7,4,6,4) | | M-1L L L1 |

time: 12345678910 11 12

access: d..erc ge. a £ b

distance: 5 last accesses —)|

(b) Store and count only the last access of each data.

Tree node

(time, weight, capacity, size) |

(8-10,7,2, 2)

Add node size:
d+=2

[a7,464] [@a,i1, |




time: 12345678910 11 12

access: d..erc ge. a £ b

distance: 5 last accesses —)l

(b) Store and count only the last access of each data.

Tree node

(time, weight, capacity, size) |

(8-10,7,2,2)

Add node weight:
d+=1

Measured distance is 3,
60% of the actual

(1-7, 4, 6,4) ai1-11,1,1,1)

distance.

Complexity

 Tree size at full occupancy (a is the accuracy, 1>a>0)

i-1

- node i (i > 1) capacity and size = [1 _aJ
a

- number of tree nodes = 2 log, M
- Dynamic tree compression “

- compresses when below 25% occupancy

- always increases occupancy to 50% or more

- O(log M) space, O(log log M) time per access
- Observations

- can use any balanced tree

- accuracy can be arbitrarily close to 1

- log log M is almost constant

Reuse Distance Measurement

Measurement algorithms since 1970 Time Space
Naive counting O(Nz) O(N)
Trace as a stack [IBM’70] O(NM) OM)

Trace as a vector [IBM’75, Illinois’02]

O(NlogN) O(N)
Trace as a tree [LBNL’81], splay tree
[Michigan’93], interval tree

O(NlogM) o)
[Ilinois’02]

Fixed cache sizes [Winsconsin’91] O(N (0](®)}
Approximation tree [Rochester’03]
Approx. using time [Rochester’07] O(N) O(1)

N is the length of the trace. M is the size of data. C is the size of cache.

105

A Lower Bound Result

+ Accurate methods need at least Omega(M log M) bits space
* Proof sketch
* a trace accessing M elements
*af time t
+ Ml possible orders of the last accesses
- an accurate method must distinguish all possible orders
+ otherwise let T & R be two permutations where x is last
accessed at different points in the permutation
* reuse distance for Tx and Rx will be the same and
contradiction
+ it needs Omega(M log M) bits
* Approximation seems necessary o improve upon Olken
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Analysis Accuracy for FFT

M accurate, 65783 tree nodes
Il 99.9%, 5869 tree nodes
1 H99%, 823 tree nodes

N

% references

o A
oOm = 0N O

55K 57K 59K 61K 63K 66K
reuse distance
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Analysis Speed on 1.76Hz Pentium 4

— Bennett-Kruskal
<~ Kim-Hill-Wood
10.0 & approximation 99%

8.75
7.50 .

6.25 C\
5.00

3.75 99%
2.50 3 I approximation

— Sugumar-Abraham
<4 approximation 2K

Out of 32-bit
integer range




James R. Fienup

Robert E. Hopkins Professor of Optics
also, Professor, Center for Visual Science

Senior Scientist, Laboratory for Laser Energetics
Professor of Electrical and C Engineering

University of Rochester
Institute of Optics, Wilmot 410
275 Hutchison Rd

Rochester, NY 14627-0186
(585) 275-8009
fienup@ontics.rochester.cdu

The James Webb Space Telescope, a segmented aperture system.

Full-scale model of the James Webb Space Telescope. Courtesy of ITT Industries-Space Systems Division
and the Rochester Museum and Science Center. Photo by Steven D. Adams.

Jarmmes-Wehh Space Telescope.

e T of ITFindustries Spacg Systems Divigigms
and the Rochester Museum and Science Center. PHote=isy|Steven D. Adams.

Whole-Program Locality

112

The Basic Tool Box

* Reuse distance
* independent of coding styles, memory allocation, or
hardware
- possible to correlate between different runs
eReuse signature is a

50
spectrogram 5
e behavior decomposition
. 0
e pattern analysis o 1 2 3

eReuse distance trace is a signal

L © 0 0 2 0 1 2

ezOOming in or out abcaach
e period analysis

Chen Ding, DragonStar lecture, ICT 2008 "

Pattern Recognition and Prediction

* Behavior decomposition
+ variable size: distance histogram
* bins in distance histograms: logarithmic, log-linear
- fixed size: reference histogram
« divide the references into k, e.g. 1000, groups
+ Pattern analysis
+ correlation among training inputs
- constant, linear, sub-linear
* single model or multi-model regression
- input size defined computationally
+ memory footprint or distance-based sampling

Chen Ding, DragonStar lecture, ICT 2008 14




Groupings fordataset1 S RS0 By N\ 0 (TopuiSizess 1
§ g = ‘= Linear Pattern
g § 10 @ Constant Pattern|
8 A A 2o
2 f . ® 1234567 809101112131415 (a)
= Xipeng Shen, Ph.D. 2006
0.1% euse Distance Range No.(lo
5 o o M.S. CAS 2001 Fouse Distance fange Nodlog)
8 ' b Assist. Prof.,William&Mary x
VYutao Zhong I i —— fﬁ_ 1
Assist. Prof., George Mason U. Il g 'g{‘ g " I i I I
Reuse distance Fairfax, VA 50?‘2"]’]["]3:910“12131415 B © | e s e o e e
Ph.D. Rochester 2005 Reuse Distance Range No. (log) Reuse Distance Range No. (log)
B.S./M.S. Nanjing U. 2000
L [[rnput Sise Change  orrrmrsmmTsmm Input Size Change 1
Groupings for data set 2 L] Y
P f'; O Constant Pattern — [ aLincar Patiem
% e fo H
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: o b histogram: § 1> Constan Pater
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: : ‘ | log or log- H
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Reuse distance } |inea|ﬂ scale Reuse Distance Range No.(log) }
Divide and Unite Correlation
Whole-program pattern is an aggregate of all behavior
groups. In multi-model prediction, each behavior group % 40% accesses have the
contains multiple pattern components. 3 60% same distance
< 00
o 40%
(2]
®
40% of accesses a
3 .
® have distance 8,
3 60% 5 ,
3 the rest have 3 the rest have twice the
8 40% distance 800 3 60°% distance in the second
o
8 g input.
o 8 40%
&
8 800 a
reuse distance
8 1600
Pattern Recognition Pattern Prediction
40% accesses have the
§ . same distance, i.e. a § Need to find one
3 60% constant pattern. 3 607 distance in the
o
5 40% 5 ] second group
3 g 40%
[V} w0 o
@ « Use sampling at
the beginning.
3 8
3
3 60% accesses change . Observations
2 o distance with data
; 40% . : . - code and data independent
o inputs, i.e. a moving
a - does not predict execution time
pattern. .
- not all programs have a consistent pattern
8 1600




Lucas: Large Prime Number Testing

SP reuse miss rate for 1M cache

40
M small (6K data, sM access) M medium (41K data, 40M access) 16%
W large (21M data, 644B access) W predicted large (after first 0.4%) 4
14%
30
] 12%
g
8 10%
Q
L 20 £
bt o 8%
S E
s 6% 1
10
- /
I I | I o
| . n _m /
S T+ e Ry 2 Y
1 ° 2 % %’_ E %’_ % % % E 0% T T T
= Q@ ~ 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
reuse distance data size in cache blocks
. [+ SA1 + SA 2 -~ SA 4 + SA_8 + FA — estimation
SP reuse miss rate for 1M cache
GNU C Compiler Compiling Itself
16%
20 M train (934K data, 103M access)
14% W ccep (912K data, 106M access)
B expr (1422K data, 98M access)
12% W explow (641K data, 22M access)
10% = B cp-decl (1409K data, 134M access)
] ° ‘8
s 2
g 8% 8§ 10
£ L — T
6% — 8
4% / 5
2% /
0% ‘ ‘ ‘ ‘ ‘ ; ‘ o - © - © \ \ \ v ¥
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 =~ o @ ~ <+ ° S &
data size in cache blocks h
— - - - reuse distnace
— estimation —— profile 1 —— profile 2 —— max simulated
124
Regularity in Gee Temporal Behavior of Gcc
Spec95/Gcece, compiling ccep.i, sampled 331 times
+ Complex program
- 222K lines of code in 120 files 1.0E57 ]
* Two possible explanations I
* maybe aggregate effect “law of large numbers"” =
- average coding style by programmers B 6.0E4 |
. . . . Q
- overall distribution is regular 2
« but num. of functions not important 5 404 |
« input files may be similar £
. o 2.0E4 1
- for extreme inputs, 70% similarity @ L
* Part of the regularity seems inherent 0.080

* Gee in Spec95 and Spec2K 89% similar
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0.0E0 2.0E7 4.0E7 6.0E7

8.0E7

1.0E8

logical time of data access

126




A compiler pattern?

Latéox

30.0 15

256K

0 4 16 64 siz 1K 4K 16K 64K 256K

Whole-Program Locality

40

% Lucas - Reuse signature

+ differ by programs
+ consistent within the same
program
* Emergent behavior

-
o

1
3
- * an observation

+ a computational discovery

+ implementation independent
* Limitations

0 oihi 1‘ H [

I

256K

20
15

GCC
10
 lll
0 I "Ilm—--u.,. -
<] 3 4

* not complete
* no structure yet

256K

Summary So Far

* Program behavior analysis
* the composite effect of complex code
* modeling and prediction based on past observations
- very much like physical and biological sciences

+ Strengths

* behavior-based decomposition
- discovery of major behavior components

* cross-execution modeling and statistical analysis
* Later lectures

* behavioral dimensions
* relation with program analysis
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Taming High Performance

Computing with
Compiler Technology

John Mellor-Crummey

Department of Computer Science
Center for High Performance Software
Research

Instruction Based Memory Distance Analysis
and its Application to Optimization

> Changpeng Fang
> Steve Carr

> Soner Onder

> Zhenlin Wang

m’eﬂh Carr, Fang, Onder, Wang 131

Exercises

* Give the definition of machine and program balance

+ on modern systems, which balance is greater?
+ why is balance important for performance?
- specifically, if machine M has a balance of 1 byte per flop and
program P has a balance of 4 bytes per flop, what is the
maximal performance of running program P on machine M?

+ Give the definition of reuse distance
- Give the definition of temporal/spatial reuse

+ How does reuse distance explain them?
+ Which one is more precise and why?

* In what sense do we say reuse distance is machine independent?
* How did Denning define the primary working set?

132




Exercises (cont'd)

* What is the relation between reuse distance and program
balance?

* how to compute program balance?
* What is the relation between reuse distance and dependence?

133

Taming High Performance

Computing with
Compiler Technology

John Mellor-Crummey

Department of Computer Science
Center for High Performance Software
Research

Why Performance Modeling?

Modeling Challenges

¢ Insight into applications
—barriers to scalability
—insight into optimizations

* Mapping applications to systems
—Grid resource selection & scheduling
—intelligent run-time adaptation

¢ Workload-based design of future systems

Mellor-Crummey 135

¢ Performance depends on:
—architecture specific factors
—application characteristics
—input data parameters

¢ Difficult to model execution time directly
¢ Collecting data at scale is expensive

Mellor-Crummey 136

Building Scalable Models

Execution Frequency Modeling Example

¢ Collect data from multiple runs
—n+1 runs to compute a model of degree n

¢ Approximation function:
F(X) = ¢,"Bn(X)*C.1*Bn.a(X)+...+¢o*Bo(X)
¢ A set of basis functions
¢ Include constraints
¢ Goal: determine coefficients

\ Use quadratic programming
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Frequency

X

2

5

9

15

18

23

Count

5784

20244

53020

131104

183160

289200

Execution Frequency Model

1000000

Coll

ted data

750000

500000

250000

0

125

25

Problem Size

Mellor-Crummey

375

50

138




Execution Frequency Modeling Example

Execution Frequency Modeling Example

Frequency

X 2 5 9 15 18 23
Count 5784 | 20244 | 53020 | 131104| 183160 | 289200
Execution Frequency Model
1000000 ﬂ 4 Collected data |
® Model degree 0 ‘ o
.
750000
.
.
500000
.
250000 =
.
o Y=41416, Err=131%
0 [ -} & o o o o 2 o )
0 12.5 25 375 50

Problem Size
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Frequency

1000000.0 ——

18
183160

23
289200

15
131104

X 2 5 9
5784 | 20244 | 53020

Count

Execution Frequency Model

4 Collected data
@ Model degree 0 .
Model degree 1

747796.5

495593.0

Y=16776%X-42366,
Err=60.4%

243389.5
_ Y=41416, Err=131%

0 12.5 25
Problem Size

-8814.0
37.5 50
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Execution Frequency Modeling Example

Memory Reuse Distance

Frequency

23
289200

18
183160

15
131104

X 2 5 9
5784 | 20244 | 53020

Count

Execution Frequency Model
Y=482+X241446*X+964,
Collected data —N0,

Model degree 0 Err=0% ° .

Model degree 1
Model degree 2 /
/ Y=16776*X-42366,

1000000.0

747796.5

495593.0

Err=60.4%

?é Y=41416, Err=131%

0 12.5 25 37.5 50
Problem Size

243389.5

-8814.0
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memory block

¢ MRD: # unique data blocks referenced since
target block last accessed

b L s L s
A B A C

o 1

reference

MRD | oo

«1;: 1 cold miss
«1,: 2 cold misses, 1 @ distance 2

«I3: 1 @ distance 0, 2 @ distance 1

Mellor-Crummey
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Memory reuse distance

Modeling Memory Reuse Distance

Llsize
Il

L1 Hits L2 Hits

Number of
References

Reuse Distance
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¢ More complex than execution frequency

—cold misses
—histogram of reuse distances
— number of bins not constant

¢ Average reuse distance is misleading
—1 access with distance 10,000
—3 accesses with distance 0

} 2500 average
—cache has 1024 blocks
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Modeling Memory Reuse Distance

Modeling Memory Reuse Distance

Normalized
frequency

2 13 40 |
Reuse distance

@
8

Memory reuse distance
3> 3

Normalized frequency Problem size
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Memory reuse distance

Problem size

Normalized frequency
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Predict Number of Cache Misses

Fully Associative {¥] Set Associative Model

x10

* Instantiate model for problem size 100

10 T T T T

IL2size

From reuse distance histogram,
predict misses in a set associative cache

* Probability that access with reuse distance d misses in ¢
cache with s sets and associativity k

X3
. $ o
o 1 =1
Puu(dsk) =1= 5 (1) (=) (1)
o = - -
L 74%) ¢ Number of misses for a réuse distance histogram
e B L1.hits <L1size
3 3 !
Ty § D,
s _ .
8y . bin, = average MRD for bin,
) ¢ Nummisses (HISt’S’k) = E(Pmiss(Dbin, ’S’k)Fbin, )
bin; € Hist F, = count for bin,
0
o
R T A B | Based on probabilistic model for set associativity by Hill & Smith (TOC 38:12, ‘89)|
Normalized frequency Normalized frequency
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Memory Behavior: NAS BT 3.0

Execution Behavior: NAS BT 3.0

MIPS R12000 (32KB L1, 8MB L2)
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MIPS R12000 (32KB L1, SMB L2)
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Open Performance Modeling Issues

Modeling Related Work

¢ Short term
—Better modeling of memory subsystem
— # outstanding loads to accurately predict memory latency
—Explore modeling of irregular applications

¢ Long term

—Model parallel applications
— Present modeling applies between synchronization points
— Combine with manually constructed parallel models
— Semi-automatically recover parallel trends

—Understand dynamic parallelism

Mellor-Crummey 183

* Reuse distance
—Cache utilization [Beyls & D’Hollander]
—Investigating optimizations [Ding et al.]

® Program instrumentation
—EEL, QPT [Ball, Larus, Schnarr]

¢ Scalable analytic models
—[Vernon et al; Hoisie et al.]

¢ Cross-architecture models at scale
—[Snavely et al.; Cascaval et al.]

¢ Simulation (trace-based and execution-driven)

| None yield semi-automatically derived scalable models|

Mellor-Crummey
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Instruction Based Memory Distance Analysis
and its Application to Optimization

> Changpeng Fang
> Steve Carr

> Soner Onder

> Zhenlin Wang
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Motivation

> Memory distance

* A dynamic quantifiable distance in terms of memory
reference between tow access to the same memory location.

* reuse distance
* access distance
* value distance
> Is memory distance predictable across both integer
and floating-point codes?
- predict miss rates
* predict critical instructions
* identify instructions for load speculation

Mﬂ@lﬂrech Carr, Fang, Onder, Wang 156




Instruction Based Memory Distance
Analysis

> How can we represent the memory distance of an
instruction?
- For each active interval, we record 4 words of data
* min, max, mean, frequency
* Some locality patterns cross interval boundaries
- merge adjacent intervals, i and i + 1, if

min,,; - max; < max;— min;

- merging process stops when a minimum frequency is found
- needed to make reuse distance predictable

- The set of merged intervals make up memory distance
patterns

mrech Carr, Fang, Onder, Wang 157

Merging Example

Frequency

\

meanl

maxl mean2

min2

max2

mrech Carr, Fang, Onder, Wang
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Experimental Methodology

> Use 11 CFP2000 and 11 CINT2000 benchmarks

- others don't compile correctly

Reuse Distance Prediction

. Lo Suite Patterns Coverage | Accuracy
> Use ATOM to collect reuse distance statistics 9, o
. . % Poli
> Use test and train data sets for training runs constant tnear
> Evaluation based on dynamic weighting CFP2000 851 77 93.0 976
> Report reuse distance prediction accuracy
* value and access very similar CINT2000 812 51 916 938
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Coverage issues Number of Patterns
> Reasons for no coverage
1. instruction does not appear in at least one test run
2. reuse distance of fest is larger than train Suite 1 2 3 4 =5
3. number of patterns does not remain constant in both training runs
CFP2000 81.8% | 10.5% 4.8% 1.4% 15%
Suit: R 1 R 2 R 3
ue eason eason eason CINT2000 | 72.3% | 109% | 7.6% | 46% | 53%
CFP2000 4.2% 0.3% 25%
CINT2000 2.2% 4.4% 1.8%
mrech Carr, Fang, Onder, Wang 161 mrech Carr, Fang, Onder, Wang 162




Miss Rate Prediction Methodology

Cache Configurations

> Three miss-rate prediction schemes

* TCS - test cache simulation
- Use the actual miss rates from running the program on a the test
data for the reference data miss rates
* RRD - reference reuse distance

- Use the actual reuse distance of the reference data set to predict
the miss rate for the reference data set

- An upper bound on using reuse distance
* PRD -predicted reuse distance

- Use the predicted reuse distance for the reference data set to
predict the miss rate.

mrech Carr, Fang, Onder, Wang 163

config no. L1 L2
1 32K, fully assoc. M fully assoc.
2 8-way
3 32K, 2-way M 4-way
4 2-way

mrech Carr, Fang, Onder, Wang
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L1 Miss Rate Prediction Accuracy

L2 Miss Rate Accuracy

Suite PRD RRD TCS
CFP2000 975 98.4 95.1
CINT2000 944 96.7 939

mrech Carr, Fang, Onder, Wang 165

Suite 2-way Fully Associative
PRD | RRD TCS | PRD RRD TCS

CFP2000 91% 93% 87% 97% | 99.9% 91%

CINT2000 91% 95% 87% 94% | 99.9% 89%

mrech Carr, Fang, Onder, Wang
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Critical Instructions

Critical Instruction Prediction

> Given reuse distance for an instruction

+ Can we determine which instructions are critical in terms of cache
performance?

> Aninstruction is critical if it is in the set of instructions that
generate the most L2 cache misses

* Those top miss-rate instructions whose cumulative total misses account
for 95% of the misses in a program.

» Use the execution frequency of one training run to determine
the relative contribution number of misses for each instruction

> Compare the actual critical instructions with predicted

* Use cache configuration 2
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Suite PRD RRD TCS %pred %act
CPF2000 92% 98% 51% 1.66% 1.67%
CINT2000 89% 98% 53% 0.94% 0.97%

mrech Carr, Fang, Onder, Wang
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Critical Instruction Patterns

Miss Rate Discussion

> PRD performs better than TCS when data size is a

CFP2000 22.1 38.4 20.0 12.8 6.7 > TCS performs better when data size doesn't change
CINT2000 | 18.7 145 255 225 18 much and there are conflict misses
> PRD is much better at identifying the critical
instructions than TCS
* these instructions should be targets of optimization
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Value-based Prediction Summary

> Memory dependence only if addresses and values
match
store ay, v;
store a,, v,
store as, v3
load a4, v4

Can move ahead if a;=a,=a3=ay, V,=v3 and v;zv,
> The access distance of a load to the first store ina

sequence of stores storing the same value is called
the value distance
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> Over 90% of memory operations can have reuse
distance predicted with a 97% and 93% accuracy,
for floating-point and integer programs,
respectively

> We can accurately predict miss rates for floating-
point and integer codes

> We can identify 92% of the instructions that cause
95% of the L2 misses

> Access- and value-distance-based memory
disambiguation are competitive with best hardware
techniques without a hardware table
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Other Distance-Based Studies

* Register and cache performance modeling
- Li et al. from Purdue, Interact 1996
* Huang and Shen, CMU, Micro 1996
* Beyls and D'Hollander from Ghent, PDCS 2001
* Almasi et al. from Illinois, MSP 2002
* Zhong et al. from Rochester, LCR 2002
* File caching
« Zhou et al., USENIX 2001
+ Jiang and Zhang, SIGMetrics 2002

Chen Ding, DragonStar lecture, ICT 2008 s




