
Workload Analysis of a Large-Scale Key-Value Store

Berk Atikoglu
Stanford, Facebook

atikoglu@stanford.edu

Yuehai Xu
Wayne State, Facebook
yhxu@wayne.edu

Eitan Frachtenberg∗

Facebook
etc@fb.com

Song Jiang
Wayne State

sjiang@wayne.edu

Mike Paleczny
Facebook

mpal@fb.com

ABSTRACT
Key-value stores are a vital component in many scale-out
enterprises, including social networks, online retail, and risk
analysis. Accordingly, they are receiving increased atten-
tion from the research community in an effort to improve
their performance, scalability, reliability, cost, and power
consumption. To be effective, such efforts require a detailed
understanding of realistic key-value workloads. And yet lit-
tle is known about these workloads outside of the companies
that operate them. This paper aims to address this gap.

To this end, we have collected detailed traces from Face-
book’s Memcached deployment, arguably the world’s largest.
The traces capture over 284 billion requests from five differ-
ent Memcached use cases over several days. We analyze the
workloads from multiple angles, including: request compo-
sition, size, and rate; cache efficacy; temporal patterns; and
application use cases. We also propose a simple model of the
most representative trace to enable the generation of more
realistic synthetic workloads by the community.

Our analysis details many characteristics of the caching
workload. It also reveals a number of surprises: a GET/SET
ratio of 30:1 that is higher than assumed in the literature;
some applications of Memcached behave more like persistent
storage than a cache; strong locality metrics, such as keys
accessed many millions of times a day, do not always suf-
fice for a high hit rate; and there is still room for efficiency
and hit rate improvements in Memcached’s implementation.
Toward the last point, we make several suggestions that ad-
dress the exposed deficiencies.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Databases; D.4.8
[Performance]: Modeling and Prediction; D.4.2 [Storage
Management]: Distributed Memories

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’12, June 11–15, 2012, London, England, UK.
Copyright 2012 ACM 978-1-4503-1097-0/12/06 ...$10.00.

Keywords
Workload Analysis, Workload modeling, Key-Value Store

1. INTRODUCTION
Key-value (KV) stores play an important role in many

large websites. Examples include: Dynamo at Amazon [15];
Redis at GitHub, Digg, and Blizzard Interactive [27]; Mem-
cached at Facebook, Zynga and Twitter [18, 26]; and Volde-
mort at Linkedin [1]. All these systems store ordered (key, value)
pairs and are, in essence, a distributed hash table.

A common use case for these systems is as a layer in the
data-retrieval hierarchy: a cache for expensive-to-obtain val-
ues, indexed by unique keys. These values can represent
any data that is cheaper or faster to cache than re-obtain,
such as commonly accessed results of database queries or
the results of complex computations that require temporary
storage and distribution.

Because of their key role in large website performance, KV
stores are carefully tuned for low response times and high
hit rates. But like all caching heuristics, a KV-store’s per-
formance is highly dependent on its workload. It is there-
fore imperative to understand the workload’s characteris-
tics. Additionally, analyzing and understanding large-scale
cache workloads can also: provide insights into topics such
as the role and effectiveness of memory-based caching in dis-
tributed website infrastructure; expose the underlying pat-
terns of user behavior; and provide difficult-to-obtain data
and statistical distributions for future studies.

In this paper, we analyze five workloads from Facebook’s
Memcached deployment. Aside from the sheer scale of the
site and data (over 284 billion requests over a period of 58
sample days), this case study also introduces to the commu-
nity several different usage scenarios for KV stores. This
variability serves to explore the relationship between the
cache and various data domains: where overall site patterns
are adequately handled by a generalized caching infrastruc-
ture, and where specialization would help. In addition, this
paper offers the following key contributions and findings:

1. A workload decomposition of the traces that shows
how different applications of Memcached can have ex-
treme variations in terms of read/write mix, request
sizes and rates, and usage patterns (Sec. 3).

2. An analysis of the caching characteristics of the traces
and the factors that determine hit rates. We found
that different Memcached pools can vary significantly
in their locality metrics, but surprisingly, the best pre-
dictor of hit rates is actually the pool’s size (Sec. 6).

3. An examination of various performance metrics over
time, showing diurnal and weekly patterns (Sec. 3.3,
4.2.2, 6).

4. An analytical model that can be used to generate more
realistic synthetic workloads. We found that the salient
size characteristics follow power-law distributions, sim-
ilar to other storage and Web-serving systems (Sec. 5).

5. An exposition of a Memcached deployment that can
shed light on real-world, large-scale production usage
of KV-stores (Sec. 2.2, 8).

The rest of this paper is organized as follows. We begin by
describing the architecture of Memcached, its deployment
at Facebook, and how we analyzed its workload. Sec. 3
presents the observed experimental properties of the trace
data (from the request point of view), while Sec. 4 describes
the observed cache metrics (from the server point of view).
Sec. 5 presents a simple analytical model of the most rep-
resentative workload. The next section brings the data to-
gether in a discussion of our results, followed by a section
surveying previous efforts on analyzing cache behavior and
workload analysis.

2. MEMCACHED DESCRIPTION

2.1 Architecture
Memcached1 is a simple, open-source software package

that exposes data in RAM to clients over the network. As
data size grows in the application, more RAM can be added
to a server, or more servers can be added to the network.
Additional servers generally only communicate with clients.
Clients use consistent hashing [9] to select a unique server
per key, requiring only the knowledge of the total number of
servers and their IP addresses. This technique presents the
entire aggregate data in the servers as a unified distributed
hash table, keeps servers completely independent, and facil-
itates scaling as data size grows.

Memcached’s interface provides the basic primitives that
hash tables provide—insertion, deletion, and retrieval—as
well as more complex operations built atop them.

Data are stored as individual items, each including a key, a
value, and metadata. Item size can vary from a few bytes to
over 100KB, heavily skewed toward smaller items (Sec. 3).
Consequently, a näıve memory allocation scheme could re-
sult in significant memory fragmentation. To address this is-
sue, Memcached adopts a slab allocation technique, in which
memory is divided into slabs of different sizes. The slabs in
a class store items whose sizes are within the slab’s specific
range. A newly inserted item obtains its memory space by
first searching the slab class corresponding to its size. If
this search fails, a new slab of the class is allocated from
the heap. Symmetrically, when an item is deleted from the
cache, its space is returned to the appropriate slab, rather
than the heap. Memory is allocated to slab classes based
on the initial workload and its item sizes, until the heap
is exhausted. Consequently, if the workload characteristics
change significantly after this initial phase, we may find that
the slab allocation is inappropriate for the workload, result-
ing in memory underutilization.

1http://memcached.org/

Table 1: Memcached pools sampled (in one cluster).
These pools do not match their UNIX namesakes,
but are used for illustrative purposes here instead
of their internal names.

Pool Size Description

USR few user-account status information
APP dozens object metadata of one application
ETC hundreds nonspecific, general-purpose
VAR dozens server-side browser information
SYS few system data on service location

A new item arriving after the heap is exhausted requires
the eviction of an older item in the appropriate slab. Mem-
cached uses the Least-Recently-Used (LRU) algorithm to
select the items for eviction. To this end, each slab class
has an LRU queue maintaining access history on its items.
Although LRU decrees that any accessed item be moved to
the top of the queue, this version of Memcached coalesces
repeated accesses of the same item within a short period
(one minute by default) and only moves this item to the top
the first time, to reduce overhead.

2.2 Deployment
Facebook relies on Memcached for fast access to frequently-

accessed values. Web servers typically try to read persistent
values from Memcached before trying the slower backend
databases. In many cases, the caches are demand-filled,
meaning that generally, data is added to the cache after
a client has requested it and failed.

Modifications to persistent data in the database often
propagate as deletions (invalidations) to the Memcached
tier. Some cached data, however, is transient and not backed
by persistent storage, requiring no invalidations.

Physically, Facebook deploys front-end servers in multiple
datacenters, each containing one or more clusters of varying
sizes. Front-end clusters consist of both Web servers, run-
ning primarily HipHop [31], and caching servers, running
primarily Memcached. These servers are further subdivided
based on the concept of pools. A pool is a partition of the
entire key space, defined by a prefix of the key, and typi-
cally represents a separate application or data domain. The
main reason for separate domains (as opposed to one all-
encompassing cache) is to ensure adequate quality of service
for each domain. For example, one application with high
turnover rate could evict keys of another application that
shares the same server, even if the latter has high temporal
locality but lower access rates. Another reason to separate
domains is to facilitate application-specific capacity plan-
ning and performance analysis.

In this paper, we describe traces from five separate pools—
one trace from each pool (traces from separate machines
in the same pool exhibit similar characteristics). These
pools represent a varied spectrum of application domains
and cache usage characteristics (Table 1). One pool in par-
ticular, ETC, represents general cache usage of multiple ap-
plications, and is also the largest of the pools; the data col-
lected from this trace may be the most applicable to general-
purpose KV-stores.

The focus of this paper is on workload characteristics,
patterns, and relationships to social networking, so the exact
details of server count and components have little relevance

here. It is important to note, however, that all Memcached
instances in this study ran on identical hardware.

2.3 Tracing Methodology
Our analysis called for complete traces of traffic passing

through Memcached servers for at least a week. This task
is particularly challenging because it requires nonintrusive
instrumentation of high-traffic volume production servers.
Standard packet sniffers such as tcpdump2 have too much
overhead to run under heavy load. We therefore imple-
mented an efficient packet sniffer called mcap. Implemented
as a Linux kernel module, mcap has several advantages over
standard packet sniffers: it accesses packet data in kernel
space directly and avoids additional memory copying; it in-
troduces only 3% performance overhead (as opposed to tcp-
dump’s 30%); and unlike standard sniffers, it handles out-
of-order packets correctly by capturing incoming traffic af-
ter all TCP processing is done. Consequently, mcap has a
complete view of what the Memcached server sees, which
eliminates the need for further processing of out-of-order
packets. On the other hand, its packet parsing is optimized
for Memcached packets, and would require adaptations for
other applications.

The captured traces vary in size from 3TB to 7TB each.
This data is too large to store locally on disk, adding another
challenge: how to offload this much data (at an average rate
of more than 80, 000 samples per second) without interfering
with production traffic. We addressed this challenge by com-
bining local disk buffering and dynamic offload throttling to
take advantage of low-activity periods in the servers.

Finally, another challenge is this: how to effectively pro-
cess these large data sets? We used Apache HIVE3 to ana-
lyze Memcached traces. HIVE is part of the Hadoop frame-
work that translates SQL-like queries into MapReduce jobs.
We also used the Memcached “stats” command, as well as
Facebook’s production logs, to verify that the statistics we
computed, such as hit rates, are consistent with the aggre-
gated operational metrics collected by these tools.

3. WORKLOAD CHARACTERISTICS
This section describes the observed properties of each trace

in terms of the requests that comprise it, their sizes, and
their frequencies.

3.1 Request Composition
We begin by looking at the basic data that comprises the

workload: the total number of requests in each server, bro-
ken down by request types (Fig. 1). Several observations
delineate the different usage of each pool:

USR handles significantly more GET requests than any of
the other pools. GET operations comprise over 99.8%
of this pool’s workload. One reason for this is that the
pool is sized large enough to maximize hit rates, so
refreshing values is rarely necessary. These values are
also updated at a slower rate than some of the other
pools. The overall effect is that USR is used more like
RAM-based persistent storage than a cache.

APP has high GET rates too—owing to the popularity of
this application—but also a large number of DELETE

2http://www.tcpdump.org/
3http://hive.apache.org/

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

USR APP ETC VAR SYS

R
eq

ue
st

s
(m

ill
io

ns
)

Pool

DELETE
UPDATE

GET

Figure 1: Distribution of request types per pool,
over exactly 7 days. UPDATE commands aggregate
all non-DELETE writing operations, such as SET,
REPLACE, etc.

operations. DELETE operations occur when a cached
database entry is modified (but not required to be
set again in the cache). SET operations occur when
the Web servers add a value to the cache. The rela-
tively high number of DELETE operations show that
this pool represents database-backed values that are
affected by frequent user modifications.

ETC has similar characteristics to APP, but with an even
higher rate of DELETE requests (of which some may
not be currently cached). ETC is the largest and least
specific of the pools, so its workloads might be the most
representative to emulate. Because it is such a large
and heterogenous workload, we pay special attention
to this workload throughout the paper.

VAR is the only pool sampled that is write-dominated. It
stores short-term values such as browser-window size
for opportunistic latency reduction. As such, these
values are not backed by a database (hence, no invali-
dating DELETEs are required). But they change fre-
quently, accounting for the high number of UPDATEs.

SYS is used to locate servers and services, not user data. As
such, the number of requests scales with the number
of servers, not the number of user requests, which is
much larger. This explains why the total number of
SYS requests is much smaller than the other pools’.

It is interesting to note that the ratio of GETs to UPDATEs
in ETC (approximately 30 : 1) is significantly higher than
most synthetic workloads typically assume (Sec. 7). For
demand-filled caches like USR, where each miss is followed
by an UPDATE, the ratios of GET to UPDATE operations
mentioned above are related to hit rate in general and the
sizing of the cache to the data in particular. So in theory,
one could justify any synthetic GET to UPDATE mix by
controlling the cache size. But in practice, not all caches or
keys are demand-filled, and these caches are already sized to
fit a real-world workload in a way that successfully trades
off hit rates to cost.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
Key size (bytes)

Key size CDF by appearance

USR
APP
ETC
VAR
SYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06
Value size (bytes)

Value Size CDF by appearance

USR
APP
ETC
VAR
SYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06
Value size (bytes)

Value size CDF by total weight

USR
APP
ETC
VAR
SYS

Figure 2: Key and value size distributions for all traces. The leftmost CDF shows the sizes of keys, up to
Memcached’s limit of 250B (not shown). The center plot similarly shows how value sizes distribute. The
rightmost CDF aggregates value sizes by the total amount of data they use in the cache, so for example,
values under 320B or so in SYS use virtually no space in the cache; 320B values weigh around 8% of the data,
and values close to 500B take up nearly 80% of the entire cache’s allocation for values.

3.2 Request Sizes
Next, we look at the sizes of keys and values in each pool

(Fig. 2), based on SET requests. All distributions show
strong modalities. For example, over 90% of APP’s keys are
31 bytes long, and values sizes around 270B show up in more
than 30% of SET requests. USR is the most extreme: it only
has two key size values (16B and 21B) and virtually just
one value size (2B). Even in ETC, the most heterogeneous
of the pools, requests with 2-, 3-, or 11-byte values add up
to 40% of the total requests. On the other hand, it also has
a few very large values (around 1MB) that skew the weight
distribution (rightmost plot in Fig. 2), leaving less caching
space for smaller values.

Small values dominate all workloads, not just in count,
but especially in overall weight. Except for ETC, 90% of
all cache space is allocated to values of less than 500B. The
implications for caching and system optimizations are sig-
nificant. For example, network overhead in the processing
of multiple small packets can be substantial, which explains
why Facebook coalesces as many requests as possible in as
few packets as possible [9]. Another example is memory
fragmentation. The strong modality of each workload im-
plies that different Memcached pools can optimize memory
allocation by modifying the slab size constants to fit each
distribution. In practice, this is an unmanageable and un-
scalable solution, so instead Memcached uses many (44) slab
classes with exponentially growing sizes, in the hope of re-
ducing allocation waste, especially for small sizes.

3.3 Temporal Patterns
To understand how production Memcached load varies

over time, we look at each trace’s transient request rate over
its entire collection period (Fig. 3). All traces clearly show
the expected diurnal pattern, but with different values and
amplitudes. If we increase our zoom factor further (as in the
last plot), we notice that traffic in ETC bottoms out around
08:00 and has two peaks around 17:00 and 03:00. Not sur-
prisingly, the hours immediately preceding 08:00 UTC (mid-
night in Pacific Time) represent night time in the Western
Hemisphere.

The first peak, on the other hand, occurs as North Amer-
ica starts its day, while it is evening in Europe, and continues
until the later peak time for North America. Although dif-
ferent traces (and sometimes even different days in the same

trace) differ in which of the two peaks is higher, the entire
period between them, representing the Western Hemisphere
day, sees the highest traffic volume. In terms of weekly pat-
terns, we observe a small traffic drop on most Fridays and
Saturdays, with traffic picking up again on Sundays and
Mondays.

The diurnal cycle represents load variation on the order of
2×. We also observe the presence of traffic spikes. Typically,
these can represent a swift surge in user interest on one topic,
such as occur with major news or media events. Less fre-
quently, these spikes stem from programmatic or operational
causes. Either way, the implication for Memcached devel-
opment and deployment is that one must budget individual
node capacity to allow for these spikes, which can easily dou-
ble or even triple the normal peak request rate. Although
such budgeting underutilizes resources during normal traf-
fic, it is nevertheless imperative; otherwise, the many Web
servers that would take to this sudden traffic and fail to get
a prompt response from Memcached, would all query the
same database nodes. This scenario could be debilitating,
so it must remain hypothetical.

4. CACHE BEHAVIOR
The main metric used in evaluating cache efficacy is hit

rate: the percentage of GET requests that return a value.
The overall hit rate of each server, as derived from the traces
and verified with Memcached’s own statistics, are shown in
Table 2. This section takes a deeper look at the factors
that influence these hit rates and how they relate to cache
locality, user behavior, temporal patterns, and Memcached’s
design.

Table 2: Mean cache hit rate over entire trace.
Pool APP VAR SYS USR ETC

Hit rate 92.9% 93.7% 98.7% 98.2% 81.4%

4.1 Hit Rates over Time
When looking at how hit rates vary over time (Fig. 4),

almost all traces show diurnal variance, within a small band
of a few percentage points. USR’s plot is curious: it appears
to be monotonically increasing (with diurnal undulation).
This behavior stems from the usage model for USR. Recall

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

S
at

 0
0:

00
S

at
 0

8:
00

S
at

 1
6:

00
S

un
 0

0:
00

S
un

 0
8:

00
S

un
 1

6:
00

M
on

 0
0:

00
M

on
 0

8:
00

M
on

 1
6:

00
Tu

e
00

:0
0

Tu
e

08
:0

0
Tu

e
16

:0
0

W
ed

 0
0:

00
W

ed
 0

8:
00

W
ed

 1
6:

00
Th

u
00

:0
0

Th
u

08
:0

0
Th

u
16

:0
0

Fr
i 0

0:
00

Fr
i 0

8:
00

Fr
i 1

6:
00

S
at

 0
0:

00
S

at
 0

8:
00

S
at

 1
6:

00
S

un
 0

0:
00

S
un

 0
8:

00
S

un
 1

6:
00

M
on

 0
0:

00
M

on
 0

8:
00

M
on

 1
6:

00
Tu

e
00

:0
0

Tu
e

08
:0

0
Tu

e
16

:0
0

W
ed

 0
0:

00
W

ed
 0

8:
00

W
ed

 1
6:

00

R
eq

ue
st

s/
se

c

APP

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

W
ed

 0
0:

00
W

ed
 0

8:
00

W
ed

 1
6:

00
Th

u
00

:0
0

Th
u

08
:0

0
Th

u
16

:0
0

Fr
i 0

0:
00

Fr
i 0

8:
00

Fr
i 1

6:
00

S
at

 0
0:

00
S

at
 0

8:
00

S
at

 1
6:

00
S

un
 0

0:
00

S
un

 0
8:

00
S

un
 1

6:
00

M
on

 0
0:

00
M

on
 0

8:
00

M
on

 1
6:

00
Tu

e
00

:0
0

Tu
e

08
:0

0
Tu

e
16

:0
0

W
ed

 0
0:

00
W

ed
 0

8:
00

W
ed

 1
6:

00
Th

u
00

:0
0

R
eq

ue
st

s/
se

c

VAR

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

S
at

 0
8:

00
S

at
 1

6:
00

S
un

 0
0:

00
S

un
 0

8:
00

S
un

 1
6:

00
M

on
 0

0:
00

M
on

 0
8:

00
M

on
 1

6:
00

Tu
e

00
:0

0
Tu

e
08

:0
0

Tu
e

16
:0

0
W

ed
 0

0:
00

W
ed

 0
8:

00
W

ed
 1

6:
00

Th
u

00
:0

0
Th

u
08

:0
0

Th
u

16
:0

0
Fr

i 0
0:

00
Fr

i 0
8:

00
Fr

i 1
6:

00
S

at
 0

0:
00

S
at

 0
8:

00
S

at
 1

6:
00

S
un

 0
0:

00
S

un
 0

8:
00

S
un

 1
6:

00
M

on
 0

0:
00

M
on

 0
8:

00
M

on
 1

6:
00

Tu
e

00
:0

0
Tu

e
08

:0
0

Tu
e

16
:0

0
W

ed
 0

0:
00

W
ed

 0
8:

00
W

ed
 1

6:
00

Th
u

00
:0

0
Th

u
08

:0
0

Th
u

16
:0

0
Fr

i 0
0:

00
Fr

i 0
8:

00
Fr

i 1
6:

00
S

at
 0

0:
00

R
eq

ue
st

s/
se

c

SYS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

Th
u

00
:0

0
Th

u
08

:0
0

Th
u

16
:0

0
Fr

i 0
0:

00
Fr

i 0
8:

00
Fr

i 1
6:

00
S

at
 0

0:
00

S
at

 0
8:

00
S

at
 1

6:
00

S
un

 0
0:

00
S

un
 0

8:
00

S
un

 1
6:

00
M

on
 0

0:
00

M
on

 0
8:

00
M

on
 1

6:
00

Tu
e

00
:0

0
Tu

e
08

:0
0

Tu
e

16
:0

0
W

ed
 0

0:
00

W
ed

 0
8:

00
W

ed
 1

6:
00

Th
u

00
:0

0
Th

u
08

:0
0

Th
u

16
:0

0
Fr

i 0
0:

00
Fr

i 0
8:

00
Fr

i 1
6:

00
S

at
 0

0:
00

S
at

 0
8:

00
S

at
 1

6:
00

S
un

 0
0:

00
S

un
 0

8:
00

S
un

 1
6:

00
M

on
 0

0:
00

M
on

 0
8:

00
M

on
 1

6:
00

Tu
e

00
:0

0
Tu

e
08

:0
0

Tu
e

16
:0

0

R
eq

ue
st

s/
se

c

USR

 30000

 40000

 50000

 60000

 70000

 80000

 90000

S
at

 0
8:

00
S

at
 1

6:
00

S
un

 0
0:

00
S

un
 0

8:
00

S
un

 1
6:

00
M

on
 0

0:
00

M
on

 0
8:

00
M

on
 1

6:
00

Tu
e

00
:0

0
Tu

e
08

:0
0

Tu
e

16
:0

0
W

ed
 0

0:
00

W
ed

 0
8:

00
W

ed
 1

6:
00

Th
u

00
:0

0
Th

u
08

:0
0

Th
u

16
:0

0
Fr

i 0
0:

00
Fr

i 0
8:

00
Fr

i 1
6:

00
S

at
 0

0:
00

S
at

 0
8:

00
S

at
 1

6:
00

S
un

 0
0:

00
S

un
 0

8:
00

S
un

 1
6:

00
M

on
 0

0:
00

M
on

 0
8:

00
M

on
 1

6:
00

Tu
e

00
:0

0
Tu

e
08

:0
0

Tu
e

16
:0

0
W

ed
 0

0:
00

W
ed

 0
8:

00
W

ed
 1

6:
00

R
eq

ue
st

s/
se

c

ETC

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

00
:0

0

R
eq

ue
st

s/
se

c

ETC 24 hours

Figure 3: Request rates at different dates and times of day, Coordinated Universal Time (UTC). Each data
point counts the total number of requests in the preceding second. Except for USR and VAR, different traces
were collected in different times. The last plot zooms in on a 24-hour period from the ETC trace for greater
detail.

 97

 98

 99

Th
u Fr
i

S
at

S
un

M
on Tu
e

W
ed Th
u Fr
i

S
at

S
un

M
on Tu
e

W
ed

USR

 92

 93

 94

 95

S
at

S
un

M
on Tu
e

W
ed Th
u Fr
i

S
at

S
un

M
on Tu
e

W
ed Th
u

APP

 75

 80

 85

 90

 95

S
at

S
un

M
on Tu
e

W
ed Th
u Fr
i

S
at

S
un

M
on Tu
e

W
ed Th
u

ETC

 92

 93

 94

 95

 96

W
ed Th
u Fr
i

S
at

S
un

M
on Tu
e

W
ed Th
u

VAR

 95
 96
 97
 98
 99

 100

S
at

S
un

M
on Tu
e

W
ed Th
u Fr
i

S
at

S
un

M
on Tu
e

W
ed Th
u Fr
i

S
at

SYS

Figure 4: GET hit rates over time for all pools (days start at midnight UTC).

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 fr

om
 to

ta
l r

eq
ue

st
s

Cumulative ratio of keys from total

Key appearance CDF

USR
APP
ETC
VAR
SYS

Figure 5: CDFs of key appearances, depicting how
many keys account for how many requests, in rela-
tive terms. Keys are ranked from least popular to
most popular.

from Sec. 2.2 that USR is sized large enough to minimize
the number of misses—in other words, to contain almost
all possible keys. When a USR Memcached server starts,
it contains no data and misses on all requests. But over
time, as clients add values to it while the pressure to evict is
nonexistent, hit rates climb upwards. Thus, USR’s transient
hit rate is correlated not only with time of day, but primarily
with the server’s uptime, reaching 99.8% after several weeks.

Like USR, SYS has a relatively bounded data domain, so
it can easily be sized to keep hit rates high and stable. But
unlike the other four workloads, SYS does not react directly
to user load, so its performance is less cyclical and regular.

4.2 Locality Metrics
This section looks at three ways to measure locality in

GET requests: (1) how often and how much some keys re-
peat in requests; (2) the amount of unique keys and how
it varies over time; and (3) reuse period, as a measure of
temporal locality.

These metrics, unlike hit rates, are an inherent property of
the request stream of each pool; changing the server’s hard-
ware or server count will not affect them. Consequently, this
data could provide insights toward the workload, in isolation
of implementation choices.

4.2.1 Repeating Keys
We start by looking at the distribution of key repeats

(Fig. 5). All workloads exhibit the expected long-tail distri-
butions, with a small percentage of keys appearing in most

of the requests, and most keys repeating only a handful of
times. So, for example, 50% of ETC’s keys occur in only
1% of all requests, meaning they do not repeat many times,
while a few popular keys repeat in millions of requests per
day. This high concentration of repeating keys provides the
justification for caching them in the first place.

All curves are remarkably similar, except for SYS’s, which
has two distinct sections. The first, up to about 65% of
the keys, represents keys that are repeated infrequently—
conceivably those that are retrieved when one or more clients
start up and fill their local cache. The second part, repre-
senting the last 25% of keys and more than 90% of the re-
quests, may account for the normal SYS scenario, when a
value is added or updated in the cache and all the clients
retrieve it.

4.2.2 Locality over Time
It is also interesting to examine how key uniqueness varies

over time by counting how many keys do not repeat in close
time proximity (Fig. 6). To interpret this data, note that a
lower percentage indicates that fewer keys are unique, and
therefore suggests a higher hit rate. Indeed, note that the
diurnal dips correspond to increases in hit rates in Fig. 4.

An immediately apparent property is that in any given
pool, this percentage remains relatively constant over time—
especially with hour-long bins, with only small diurnal vari-
ations and few spikes. Data for 5-minute bins are natu-
rally noisier, but even here most samples remain confined
to a narrow range. This suggests that different pools have
not only different traffic patterns, but also different caching
properties that can benefit from different tuning, justifying
the choice to segregate workloads to pools.

Each pool exhibits its characteristic locality band and av-
erage. SYS’s low average rate of 3.3% unique keys per hour,
for example, suggests that different clients request roughly
the same service information. In contrast, USR’s much
higher average rate of 34.6% unique keys per hour, suggests
that the per-user data it represents spans a much more dis-
parate range . Generally, we would assume that lower bands
translate to higher overall hit rates, all other things being
equal. This turns out not to be the case. In fact, the Pear-
son correlation coefficient between average unique key ratios
with 60-minute bins (taken from Fig. 6) and the average hit
rates (Table 2) is negative as expected, but small: −0.097.
Indeed not all other things are equal, as discussed in Sec. 4.1.

Comparing 5-minute bins to hour-long bins reveals that
unique keys in the former appear in significantly higher con-
centrations than in the latter. This implies a rapid rate of
decay in interest in most keys. But does this rate continue to
drop very fast over a longer time window? The next section
sets out to answer this question.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

U
ni

qu
e

ke
ys

 (%
)

Time (days)

Percentage of unique keys out of total in 5-minute bins

APP=43.0%ETC=44.5%

VAR=33.4%

USR=74.7%

SYS=18.4%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

U
ni

qu
e

ke
ys

 (%
)

Time (days)

Percentage of unique keys out of total in 60-minute bins

APP=22.4%ETC=20.7% VAR=15.3%

USR=34.6%

SYS=3.3%

Figure 6: Ratio of unique keys over time. Each data point on the top (bottom) plot shows how many unique
keys were requested in the preceding 5 (60) minutes, as percentage of all keys. The label for each pool, at
the top right corner of the data, also includes the average ratio throughout the entire pool’s trace.

4.2.3 Temporal Locality: Reuse Period
Temporal locality refers to how often a key is re-accessed.

One metric to quantify temporal locality of any given key is
the reuse period—the time between consecutive accesses to
the key. Fig. 7 counts all key accesses in the five traces, and
bins them according to the time duration from the previous
key’s access. Unique keys (those that do not repeat at all
within the trace period) are excluded from this count.

The answer to the question from the previous section is
therefore positive: count of accesses in each reuse period
continues to decay quickly after the first hour. For the ETC
trace, for example, 88.5% of the keys are reused within an
hour, but only 4% more within two, and within six hours,
96.4% of all nonunique keys have already repeated. It con-
tinues to decay at a slower rate. This access behavior sug-
gests a pattern for Facebook’s users as well, with some users
visiting the site more frequently than others and reusing
the keys associated with their accounts. Another interest-
ing sub-pattern occurs every day. Note the periodic peaks
on even 24 hours in four of the five traces, especially in
the VAR pool that is associated with browser usage. These
peaks suggest that a noteworthy number of users log in to
the site at approximately the same time of day each time.
Once more, these increased-locality indications also corre-
spond to increased hit rates in Fig. 4.

As in the previous section, the SYS pool stands out. It
does not show the same 24-hour periodicity, because its keys

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

 0 2
4

 4
8

 7
2

 9
6

 1
20

 1
44

 1
68

 1
92

 2
16

 2
40

 2
64

 2
88

 3
12

K
ey

s
re

qu
es

te
d

Time (hours)

USR
APP
ETC
VAR
SYS

1e+05
1e+06
1e+07
1e+08
1e+09
1e+10
1e+11

 1 2 3 4 5 6

Figure 7: Reuse period histogram per pool. Each
hour-long bin n counts keys that were first requested
n hours after their latest appearance. The inset
zooms in on the five hours after the first.

relate to servers and services, not users. It also decays pre-
cipitously compared to the others. As in Sec. 4.2.1, we find
that since its data are cached locally by clients, it is likely
that most of SYS’s GET requests represent data that are
newly available, updated or expired from the client cache;
these are then requested by many clients concurrently. This
would explain why 99.9% of GET requests are repeated
within an hour of the first key access. Later, such keys
would be cached locally and accessed rarely, perhaps when
a newly added client needs to fill its own cache.

Nevertheless, there is still value in reuse period to predict
hit rates. Since all pools have sufficient memory for over an
hour of fresh data, the percentage of keys reused within an
hour correlates positively with the overall hit rates in Ta-
ble 2 (with a Pearson coefficient of 0.17). The correlation
is stronger—with a coefficient of 0.44—if we omit USR and
SYS, which have atypical cache behavior (minimum evic-
tions in the former and local caching in the latter).

4.3 Case Study: ETC Hit Rates
We turn our attention to ETC’s hit/miss rates, because

frequent misses can noticeably hurt user experience. At this
point, one might expect ETC’s hit rate to exceed the 96%
6-hour key-reuse rate, since it is provisioned with more than
enough RAM to store the fresh data of the preceding 6 hours.
Unfortunately, this is not the case, and the observed hit rate
is significantly lower at 81%. To understand why, we an-
alyzed all the misses in the last 24 hours of the trace (Ta-
ble. 3). The largest number of misses in ETC comes from
keys that are accessed for the first time (at least in a 10-day
period). This is the long tail of the locality metrics we an-
alyzed before. Sec. 4.2.1 showed that ≈ 50% of ETC’s keys
are accessed in only 1% of requests, and therefore benefit
little or not at all from a demand-filled cache. The many
deletions in the cache also hinder the cache’s efficacy. ETC
is a very diverse pool with many applications, some with
limited reusability. But the other half of the keys that show
up in 99% of the requests are so popular (some repeating
millions of times) that Memcached can satisfy over 4 in 5
requests to the ETC pool.

Table 3: Miss categories in last 24 hours of the
ETC trace. Compulsory misses count GETs with
no matching SET in the preceding 10 days (mean-
ing, for all practical purposes, new keys to the
cache). Invalidation misses count GETs preceded
by a matching DELETE request. Eviction misses
count all other missing GETs.
Miss category Compulsory Invalidation Eviction
Ratio of misses 70% 8% 22%

5. STATISTICAL MODELING
This section describes the salient workload characteristics

of the ETC trace using simple distribution models. The
ETC trace was selected because it is both the most repre-
sentative of large-scale, general-purpose KV stores, and the
easiest to model, since it is not distorted by the idiosyncratic
aberrations of application-specific pools. We also think that
its mixed workload is easier to generalize to other general-
purpose caches with a heterogeneous mix of requests and
sizes. The more Facebook-specific workloads, such as USR

or SYS, may be interesting as edge cases, but probably not
so much as models for synthetic workloads.

The functional models presented here prioritize parsimo-
nious characterization over fidelity. As such, they obviously
do not capture all the nuances of the trace, such as its bursty
nature or the inclusion of one-off events. But barring access
to the actual trace, they can serve the community as a bet-
ter basis for synthetic workload generation than assumptions
based on guesswork or small-scale logs.

Methodology
Wemodeled independently the three main performance prop-
erties that would enable simple emulation of this trace: key
sizes, value sizes, and inter-arrival rates. The rate and ratio
between GET/SET/DELETE requests can be derived from
Sec. 3.1. For cache analysis, additional properties can be
gleaned from Sec. 4.

To justify the assumption that the three properties are
independent, we picked a sample of 1, 000, 000 consecutive
requests and measured the Pearson coefficient between each
pair of variables. The pairwise correlations, as shown in
Table 4, are indeed very low.

Table 4: Pearson correlation coefficient between
each two pair of modeled variables.

Variable pair Correlation

Inter-arrival gap ↔ Key size −0.0111
Inter-arrival gap ↔ Value size 0.0065

Key size ↔ Value size −0.0286

We created functional models by fitting various distribu-
tions (such as Weibull, Gamma, Extreme Value, Normal,
etc.) to each data set and choosing the distribution that
minimizes the Kolmogorov-Smirnov distance. All our data
resemble power-law distributions, and fit the selected mod-
els quite well, with the exception of a handful of points (see
Fig. 8). To deal with these outliers and improve the fit, we
removed these points as necessary and modeled the remain-
ing samples. The few removed points are tabulated sepa-
rately as a histogram, so a more accurate synthetic workload
of the entire trace should combine the functional model with
the short list of value-frequency outliers.

Key-Size Distribution
We found the model that best fits key sizes in bytes (with a
Kolmogorov-Smirnov distance of 10.5) to be Generalized Ex-
treme Value distribution with parameters μ = 30.7984, σ =
8.20449, k = 0.078688. We have verified that these param-
eters remain fairly constant, regardless of time of day.

Value-Size Distribution
We found the model that best fits value sizes in bytes (with
a Kolmogorov-Smirnov distance of 10.5), starting from 15
bytes, to be Generalized Pareto with parameters θ = 0, σ =
214.476, k = 0.348238 (this distribution is also independent
of the time of day). The first 15 values of length and prob-
abilities can be modeled separately as a discrete probability
distribution whose values are given in Table 5.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0 50 100 150 200 250

P
ro

ba
bi

lit
y

Key size (bytes)

ETC Key Size PDF

Sample
Model

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
er

ce
nt

ile

Key size (bytes)

ETC Key Size CDF

Sample
Model

-20
-15
-10
-5
 0
 5

 10
 15
 20

 0 50 100 150 200 250

R
es

id
ua

l e
rr

or

Value size (bytes)

ETC Key Size Residuals

 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

 1 10 100 1000 10000

P
ro

ba
bi

lit
y

Value size (bytes)

ETC Value Size PDF

Sample
Model

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

P
er

ce
nt

ile

Value size (bytes)

ETC Value Size CDF

Sample
Model

-20
-15
-10
-5
 0
 5

 10
 15
 20

 1 10 100 1000 10000 100000 1e+06

R
es

id
ua

l e
rr

or

Value size (bytes)

ETC Value Size Residuals

 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1 10 100 1000

P
ro

ba
bi

lit
y

Inter-arrival gap (us)

ETC Request Inter-arrival Gap PDF

Sample
Model

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

P
er

ce
nt

ile

Inter-arrival gap (us)

ETC Request Inter-arrival Gap CDF

Sample
Model

-20
-15
-10
-5
 0
 5

 10
 15
 20

 1 10 100 1000 10000 100000 1e+06
R

es
id

ua
l e

rr
or

Request inter-arrival gap (us)

ETC Request Inter-arrival Gap Residuals

Figure 8: PDF (left), CDF (middle), and CDF residuals (right) plots for the distribution of ETC’s key size
(top), value size (center). and inter-arrival gap (bottom). Note that some axes are logarithmic, and that
PDF plots limit the X-axis to area of interest for greater detail.

Table 5: Probability distribution for first few value
lengths, in bytes.

Value size Probability

0 0.00536
1 0.00047
2 0.17820
3 0.09239
4 0.00018
5 0.02740
6 0.00065
7 0.00606
8 0.00023
9 0.00837
10 0.00837
11 0.08989
12 0.00092
13 0.00326
14 0.01980

Inter-arrival Rate Distribution
We found the model that best describes the time gap in
microseconds between consecutive received requests (with
a Kolmogorov-Smirnov distance of 2.0) to be Generalized
Pareto with parameters θ = 0, σ = 16.0292, k = 0.154971,
starting from the second value.

One excluded point from this model is the first value, rep-
resenting a gap of 0μsec (in other words, multiple requests
at the same microsecond time slot), with a probability of
0.1159. This is likely an artifact of our measurement gran-
ularity and aggregation by the network stack, and not of
concurrent requests, since they are all serialized by the sin-
gle networking interface.

In addition, the model is most accurate up to about a
gap of 1000 μsec. But the total number of sampled points
not covered by this model (i.e., those requests that arrive
more than 1msec after the previous request) represents less
than 0.002% of the total samples and their residual error is
negligible.

Unlike the previous two distributions, inter-arrival rate—
the reciprocal function of offered load—is highly dependent
on time of day, as evident in Fig. 3. For those wishing to cap-
ture this diurnal variation, this complete-trace model may
be too coarse. To refine this distribution, we divided the

Table 6: Hourly distributions for inter-arrival gap.
The columns represent (in order): start time of each
hourly bin (in UTC), the two Generalized Pareto pa-
rameters (with θ = 0), the fraction of samples under
1μs gap , and the Kolmogorov-Smirnov distance of
the fit.

Time σ k < 1μs KS

0:00 16.2868 0.155280 0.1158 2.18
1:00 15.8937 0.141368 0.1170 2.14
2:00 15.6345 0.137579 0.1174 2.09
3:00 15.7003 0.142382 0.1174 2.16
4:00 16.3231 0.160706 0.1176 2.32
5:00 17.5157 0.181278 0.1162 2.52
6:00 18.6748 0.196885 0.1146 2.64
7:00 19.5114 0.202396 0.1144 2.64
8:00 20.2050 0.201637 0.1123 2.58
9:00 20.2915 0.193764 0.1116 2.46
10:00 19.5577 0.178386 0.1122 2.35
11:00 18.2294 0.161636 0.1130 2.17
12:00 17.1879 0.140461 0.1138 2.00
13:00 16.2159 0.119242 0.1146 1.88
14:00 15.6716 0.104535 0.1152 1.76
15:00 15.2904 0.094286 0.1144 1.72
16:00 15.2033 0.096963 0.1136 1.72
17:00 14.9533 0.098510 0.1140 1.74
18:00 15.1381 0.096155 0.1128 1.67
19:00 15.3210 0.094156 0.1129 1.65
20:00 15.3848 0.100365 0.1128 1.68
21:00 15.7502 0.111921 0.1127 1.80
22:00 16.0205 0.131946 0.1129 1.96
23:00 16.3238 0.147258 0.1148 2.14

raw data into 24 hourly bins and modeled each separately.
Fortunately, they all fit a Generalized Pareto distribution
with θ = 0 rather well. The remaining two parameters are
distributed over time in Table. 6.

6. DISCUSSION
One pertinent question is, what are the factors that affect

and predict hit rates? Since all hosts have the same amount
of RAM, we should be able to easily explain the relative dif-
ferences between different traces using the data we gathered
so far on locality. But as Sec. 4 discusses, hit rates do not
actually correlate very well with most locality metrics, but
rather, correlates inversely with the size of the pool (com-
pare Tables 1 and2). Does correlation imply causation in
this case?

Probably not. A more likely explanation invokes a third,
related parameter: the size of the application domain. Both
in USR’s and SYS’s cases, these sizes are more or less capped,
and the bound is small enough that a limited number of
servers can cover virtually the entire domain, so locality no
longer plays a factor. On the other extreme, ETC has a vary-
ing and growing number of applications using it, some with
unbounded data. If any single application grows enough
in importance to require a certain quality of service, and
has the size limitations to enable this quality, given enough
servers, then it is separated out of ETC to its own pool. So
the applications that end up using ETC are precisely those
that cannot or need not benefit from hit-rate guarantees.

Nevertheless, improving hit rates is important for these
applications, or we would not need a cache in the first place.
One way to improve ETC’s hit rates, at least in theory, is to
increase the total amount of RAM (or servers) in the pool so
that we can keep a longer history. But in practice, beyond
a couple of days’ worth of history, the number of keys that
would benefit from the longer memory is vanishingly small,
as Fig. 7 shows. And of course, adding hardware adds cost.

A more fruitful direction may be to focus on the cache
replacement policy. Several past studies demonstrated re-
placement policies with reduced eviction misses, compared
to LRU, such as LIRS [19]. Table 3 puts an upper limit
on the number of eviction misses that can be eliminated,
at around 22%, meaning that eviction policy changes could
improve hit rates by another 0.22 × (1 − 0.814) = 4.1%.
This may sound modest, but it represents over 120 million
GET requests per day per server, with noticeable impact
on service latency. Moreover, the current cache replace-
ment scheme and its implementation are suboptimal when it
comes to multithreaded performance [9], with its global lock
protecting both hash table and slab LRUs. We therefore
perceive great potential in alternative replacement policies,
not only for better hit rates but also for better performance.

Another interesting question is whether we should opti-
mize Memcached for hit rates or byte hit rates. To answer
it, we estimated the penalty of each miss in the ETC work-
load, by measuring the duration between the missing GET
and the subsequent SET that reinstates the value (presum-
ably, the duration represents the time cost to recalculate the
value, and is already highly optimized, emphasizing the im-
portance of improved hit rates). We found that it is roughly
proportional to the value size, so whether we fill the cache
with few large items or many small items of the same aggre-
gate size should not affect recalculation time much. On the
other hand, frequent misses do noticeably increase the load
on the back-end servers and hurt the user experience, which
explains why this cache does not prioritize byte hit rate.
Memcached optimizes for small values, because they are by
far the most common values. It may even be worthwhile
to investigate not caching large objects at all, to increase
overall hit rates.

7. RELATED WORK
To the best of our knowledge, this is the first detailed de-

scription of a large-scale KV-store workload. Nevertheless,
there are a number of related studies on other caching sys-
tems that can shed light on the relevance of this work and
its methodology.

The design and implementation of any storage or caching
system must be optimized for its workload to be effective.
Accordingly, there is a large body of work on the collection,
analysis, and characterization of the workloads on storage
systems, including enterprise computing environments [2,
20, 21] and high-performance computing environments [11,
22, 30]. The observations can be of great importance to
system design, engineering, and tuning. For example, in a
study on file system workloads for large-scale scientific com-
puting applications, Wang et. al. collected and analyzed file
accesses on an 800-node cluster running the Lustre file sys-
tem at Lawrence Livermore National Laboratory [30]. One
of their findings is that in some workloads, small requests
account for more than 90% of all requests, but almost all
data are accessed by large requests. In a study on file sys-

tem workloads across different environments, Roselli et. al.
found that even small caches can produce a high hit rate, but
larger caches would have diminishing returns [28], similar to
our conclusions on the ETC workload (Sec. 4.3).

In the work describing Facebook’s photo storage system [8],
the authors presented statistics of I/O requests for the pho-
tos, which exhibit clear diurnal patterns, consistent with our
observations in this paper (Sec. 3.3).

Web caches are widely deployed as a caching infrastruc-
ture for speeding up Internet access. Their workloads have
been collected and analyzed in Web servers [6, 25], proxies [5,
10, 16], and clients [7, 12]. In a study of requests received
by Web servers, Arlitt and Williamson found that 80% of
requested documents are smaller than ≈ 10KB. However,
requests to these documents generate only 26% of data bytes
retrieved from the server [6]. This finding is consistent with
the distribution we describe in Sec. 3.2

In an analysis of traces of client-side requests, Cunha et.
al. show that many characteristics of Web use can be mod-
eled using power-law distributions, including the distribu-
tion of document sizes, the popularity of documents, the
distribution of user requests for documents, and the number
of references to documents as a power law of their overall
popularity rank (Zipf’s law) [12]. Our modeling work on
the ETC trace (Sec. 5) also shows power-law distributions
in most request properties.

In light of the increasing popularity and deployment of
KV-stores, several schemes were proposed to improve their
performance, energy efficiency, and cost effectiveness [4, 9,
15, 26, 29]. Absent well-publicized workload traces, in par-
ticular large-scale production traces, many works used hy-
pothetical or synthetic workloads [29]. For example, to eval-
uate SILT, a KV-store design that constructs a three-level
store hierarchy for storage on flash memory with a memory
based index, the authors assumed a workload of 10% PUT
and 90% GET requests using 20B keys and 100B values,
as well as a workload of 50% PUT and 50% GET requests
for 64B KV pairs [23]. Andersen et. al. used queries of
constant size (256B keys and 1KB values) in the evalu-
ation of FAWN, a KV-store designed for nodes consisting
of low-power embedded CPUs and small amounts of flash
storage [4]. In the evaluation of CLAM, a KV-store design
that places both hash table and data items on flash, the
authors used synthetic workloads that generate keys from
a random distribution and a number of artificial workload
mixes [3]. There are also some studies that used real work-
loads in KV-store evaluations. In two works on flash-based
KV store-design, Debnath et. al. adopted workloads from
online multi-player gaming and a storage de-duplication tool
from Microsoft [13, 14]. Amazon’s production workload was
used to evaluate its Dynamo KV store, Dynamo [15]. How-
ever, these papers did not specifically disclose the workload
characteristics.

Finally, there are multiple studies offering analytical mod-
els of observed, large-scale workloads. Of those, a good sur-
vey of the methods is presented in Lublin’s and Feitelson’s
analysis of supercomputer workloads [17, 24].

8. CONCLUSION AND FUTURE WORK
This paper presented a dizzying number of views into a

very large data set. Together, these views tell a coherent
story of five different Memcached workloads at Facebook.
We have ETC, the largest and most heterogeneous of the

five. It has many keys that are requested millions of times
a day, and yet its average hit rate is only 81.4% because
half of its keys are accessed infrequently, and because a few
large values take up a disproportionate amount of the stor-
age. We have APP, which represents a single application
and consequently has more uniform objects: 90% of them
have roughly the same size. It also mirrors the interest of
Facebook’s users in specific popular objects, as evidenced
in load spikes that are accompanied by improved locality
metrics. We have VAR, a transient store for non-persistent
performance data. It has three times as many writes as
reads and 70% of its keys occur only once. But its 94%
hit rate provides noticeable improvements to the user ex-
perience. We have USR, which is more like a RAM-based
store for immutable two-byte values than a cache. It may
not be the best fit for Memcached, but its overall data size
is small enough that even a few Memcached servers can de-
liver a hit rate of 98.2%. And finally, we have SYS, another
RAM-based storage that exhibits unique behavior, because
its clients already cache its data. They only access SYS when
new data or new clients show up, resulting in a low request
rate and a nearly bimodal distribution of temporal locality:
either a key is accessed many times in a short period, or
virtually not at all.

This study has already answered pertinent questions to
improve Facebook’s Memcached usage. For example, Fig. 7
shows the relatively marginal benefit of significantly increas-
ing the cache size for the ETC pool. As another example,
the analysis in Sec. 6 demonstrated both the importance of
increasing Memcached’s hit rate, especially on larger data,
as well as the upper bound on the potential increase.

The data presented here can also be used as a basis for new
studies on key-value stores. We have also provided a simple
analytical model of ETC’s performance metrics to enable
synthetic generation of more representative workloads. The
treatment of workload modeling and synthetic load genera-
tion in this paper only scratches the surface of possibility,
and deserves its own focus in a following publication. We
plan to focus on this area and model the remaining work-
load parameters for ETC (such as key reuse), and other
workloads as well. With these models, we would like to cre-
ate representative synthetic load generators, and share those
with the community.

We would also like to see improvements in the memory
allocation model so that more room is saved for items in
high demand. Areas of investigation include an adaptive
slab allocation, using no slabs at all, or using prediction of
item locality based on the analysis in this study.

Finally, we are looking into replacing Memcached’s re-
placement policy. LRU is not optimal for all workloads, and
can be quite slow. We have already started prototyping al-
ternative replacement schemes, and the initial results are
encouraging.

Acknowledgements
We would like to thank Marc Kwiatkowski for spearheading
this project and Mohan Srinivasan for helping with the ker-
nel module. We are also grateful for the valuable feedback
provided by the following: Goranka Bjedov, Rajiv Krishna-
murthy, Rajesh Nishtala, Jay Parikh, and Balaji Prabhakar.

9. REFERENCES

[1] http://voldemort-project.com.
[2] Ahmad, I. Easy and efficient disk I/O workload

characterization in VMware ESX server. In
Proceedings of IEEE International Symposium on
Workload Characterization (Sept. 2007).

[3] Anand, A., Muthukrishnan, C., Kappes, S.,

Akella, A., and Nath, S. Cheap and large CAMs
for high performance data-intensive networked
systems. In Proceedings of the 7th USENIX conference
on Networked Systems Design and Implementation
(Apr. 2010).

[4] Andersen, D. G., Franklin, J., Kaminsky, M.,

Phanishayee, A., Tan, L., and Vasudevan, V.

FAWN: a fast array of wimpy nodes. In Proceedings of
the 22nd ACM SIGOPS Symposium on Operating
Systems Principles (SOSP) (Big Sky, Montana, 2009),
ACM, pp. 1–14.

[5] Arlitt, M., Friedrich, R., and Jin, T. Workload
characterization of a web proxy in a cable modem
environment. ACM SIGMETRICS - Performance
Evaluation Review 27 (1999), 25–36.

[6] Arlitt, M. F., and Williamson, C. L. Internet
web servers: Workload characterization and
performance implications. IEEE/ACM Transactions
on Networking 5 (October 1997), 631–645.

[7] Barford, P., Bestavros, A., Bradley, A., and

Crovella, M. Changes in web client access patterns.
In World Wide Web Journal, Special Issue on
Characterization and Performance Evaluation (1999).

[8] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and

Vajgel, P. Finding a needle in haystack: Facebook’s
photo storage. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and
Implementation (Oct. 2010).

[9] Berezecki, M., Frachtenberg, E., Paleczny, M.,

and Steele, K. Many-core key-value store. In
Proceedings of the Second International Green
Computing Conference (Orlando, FL, Aug. 2011).

[10] Breslau, L., Cao, P., Fan, L., Phillips, G., and

Shenker, S. Web caching and zipf-like distributions:
Evidence and implications. In Proceedings of the 18th
Annual IEEE International Conference on Computer
Communications (1999).

[11] Carns, P., Latham, R., Ross, R., Kamil Iskra,

S. L., and Riley, K. 24/7 characterization of
petascale I/O workloads. In Proceedings of the 4th
Workshop on Interfaces and Architectures for
Scientific Data Storage (Nov. 2009).

[12] Cunha, C. R., Bestavros, A., and Crovella,

M. E. Characteristics of WWW client-based traces. In
Technical Report TR-95-010, Boston University
Department of Computer Science, (July 1995).

[13] Debnath, B. K., Sengupta, S., and Li, J.

Flashstore: High throughput persistent key-value
store. Proceedings of 36th International Conference on
Very Large Data Bases (VLDB) 3, 2 (2010).

[14] Debnath, B. K., Sengupta, S., and Li, J.

SkimpyStash: RAM space skimpy key-value store on
flash-based storage. In Proceedings of the Annual
ACM SIGMOD Conference (June 2010), pp. 25–36.

[15] DeCandia, G., Hastorun, D., Jampani, M.,

Kakulapati, G., Pilchin, A., Sivasubramanian,

S., Vosshall, P., and Vogels, W. Dynamo:
Amazon’s highly available key-value store. In
Proceedings of the 21st ACM SIGOPS Symposium on
Operating Systems Principles (SOSP) (Stevenson,
WA, 2007), pp. 205–220.

[16] Duska, B. M., Marwood, D., and Feeley, M. J.

The measured access characteristics of world-wide web
client proxy caches. In Proceedings of USENIX

Symposium of Internet Technologies and Systems
(Dec. 1997).

[17] Feitelson, D. G. Workload modeling for
performance evaluation. In Performance Evaluation of
Complex Systems: Techniques and Tools, M. C.
Calzarossa and S. Tucci, Eds., vol. 2459 of Lecture
Notes in Computer Science. Springer-Verlag, Sept.
2002, pp. 114–141.
www.cs.huji.ac.il/~feit/papers/WorkloadModel02chap.ps.gz.

[18] Fitzpatrick, B. Distributed caching with
memcached. Linux Journal, 124 (Aug. 2004), 72–78.
www.linuxjournal.com/article/7451?page=0,0.

[19] Jiang, S., and Zhang, X. LIRS: an efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. In Proceedings of
the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems
(2002), SIGMETRICS’02, ACM, pp. 31–42.

[20] Kavalanekar, S., Worthington, B., Zhang, Q.,

and Sharda, V. Characterization of storage workload
traces from production windows servers. In
Proceedings of IEEE International Symposium on
Workload Characterization (Sept. 2008).

[21] Keeton, K., Alistair Veitch, D. O., and Wilkes,

J. I/O characterization of commercial workloads. In
Proceedings of the 3rd Workshop on Computer
Architecture Evaluation using Commercial Workloads
(Jan. 2000).

[22] Kim, Y., Gunasekaran, R., Shipman, G. M.,

Dillow, D. A., Zhang, Z., and Settlemyer,

B. W. Workload characterization of a leadership class
storage cluster. In Proceedings of Petascale Data
Storage Workshop (Nov. 2010).

[23] Lim, H., Fan, B., Andersen, D. G., and

Kaminsky, M. Silt: A memory-eficient,
high-performance key-value store. In Proceedings of
the 23rd ACM Symposium on Operating Systems
Principles (Oct. 2011).

[24] Lublin, U., and Feitelson, D. G. The workload on
parallel supercomputers: Modeling the characteristics
of rigid jobs. Journal of Parallel and Distributed
Computing 63, 11 (Nov. 2003), 1105–1122.
www.cs.huji.ac.il/~feit/papers/Rigid01TR.ps.gz.

[25] Manley, S., and Seltzer, M. Web facts and
fantasy. In Proceedings of USENIX Symposium on
Internet Technologies and Systems (Dec. 1997).

[26] Petrovic, J. Using Memcached for data distribution
in industrial environment. In Proceedings of the Third
International Conference on Systems (Washington,
DC, 2008), IEEE Computer Society, pp. 368–372.

[27] Reddi, V. J., Lee, B. C., Chilimbi, T., and Vaid,

K. Web search using mobile cores: Quantifying and
mitigating the price of efficiency. In Proceedings of the
37th International Symposium on Computer
Architecture (ISCA) (June 2010), ACM.
portal.acm.org/citation.cfm?id=1815961.1816002.

[28] Roselli, D., Lorch, J. R., and Anderson, T. E. A
comparison of file system workloads. In Proceedings of
the 2000 USENIX Annual Technical Conference (June
2000).

[29] Vasudevan, V. R. Energy-Efficient Data-intensive
Computing with a Fast Array of Wimpy Nodes. PhD
thesis, Carnegie Mellon University, Oct. 2011.

[30] Wang, F., Xin, Q., Hong, B., Miller, E. L.,

Long, D. D. E., Brandt, S. A., and McLarty,

T. T. File system workload analysis for large scientific
computing applications. In Proceedings of 21st IEEE /
12th NASA Goddard Conference on Mass Storage
Systems and Technologies (Apr. 2004).

[31] Zhao, H. HipHop for PHP: Move fast.
https://developers.facebook.com/blog/post/358/,
Feb. 2010.

Ding C, Xiang X, Bao B et al. Performance metrics and models for shared cache. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 29(4): 692–712 July 2014. DOI 10.1007/s11390-014-1460-7

Performance Metrics and Models for Shared Cache

Chen Ding1 (丁 晨), Xiaoya Xiang1 (向晓娅), Bin Bao1 (包 斌), Hao Luo1 (罗 昊), Ying-Wei Luo2 (罗英伟)
and Xiao-Lin Wang2 (汪小林)

1Department of Computer Science, University of Rochester, Rochester, NY 14627-0226, U.S.A.
2School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: cding@cs.rochester.edu; {sappleing, bin.bao}@gmail.com; hluo@cs.rochester.edu; {lyw, wxl}@pku.edu.cn

Received March 1, 2014; revised May 14, 2014.

Abstract Performance metrics and models are prerequisites for scientific understanding and optimization. This paper
introduces a new footprint-based theory and reviews the research in the past four decades leading to the new theory. The
review groups the past work into metrics and their models in particular those of the reuse distance, metrics conversion,
models of shared cache, performance and optimization, and other related techniques.

Keywords memory performance metric, cache sharing, reuse distance

1 Introduction

Computing is ubiquitous in science, engineering,
business, and everyday life. Most of today’s applica-
tions, whether for cloud, desktop, or handheld, run on
multicore processors. As a result, they interact with
peer programs. It is beneficial to minimize the nega-
tive interaction. The benefit is important not just for
good performance but also for stable performance, not
just for parallel code but also for sequential applications
running in parallel.

This paper surveys the theories and techniques to
measure and improve program interaction on multicore
processors. A program is either a sequential application
or a parallel application being treated as a single party
in interaction. Here we assume that programs do not
share data or computation, but they share the hard-
ware host. We call it a solo-run if a program runs by
itself on a machine and a co-run if multiple programs
run in parallel.

Cache sharing is a primary cause of co-run interfer-
ence. Modern applications take most of their time to
access memory, and most memory accesses — over 99%
typically — happen in cache. A commodity system to-
day has 2 to 8 processors (sockets), 2 to 6 physical cores
per processor, and 2 to 4 hyperthreaded logical cores
per physical core. Nearly a hundred programs can run
together in parallel.

Partitioned cache solves the interference problem
via program isolation. However, cache partitioning is
wasteful when only one program is running and ineffi-
cient when co-run programs share data. Current multi-
core processors use a mix of private and shared cache.
For example, Intel Nehalem has 256 K L2 cache per core
and 4 MB to 8MB L3 cache shared by all cores. IBM
Power 7 has 8 cores, with 256 KB L2 cache per core and
32MB L3 shared by all cores.

Depending on which CPU they are using, programs
interact in different ways. Physical cores have private
caches at the first and second levels but share the last
level cache. Logical cores share the caches at all levels.
Different processors do not share the caches. However,
they share the memory bandwidth, and the demand
of memory bandwidth depends entirely on the perfor-
mance of the cache. In addition, some caching policies,
e.g., inclusive cache on Intel machines, may induce in-
direct interaction, where a program may lose data in
its private cache due to the data access by another pro-
gram in the shared cache.

The advent of cache sharing the 2000s is reminiscent
of the middle 1960s when time sharing was invented.
Since then, the problem of memory management has
been well studied and solved, and modern operating
systems routinely manage memory for a large number
of programs. However, the problem of cache sharing is
more complex.

Survey
The work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61232008, the

NSFC Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao under Grant No. 61328201, the
National Science Foundation of USA under Contract Nos. CNS-1319617, CCF-1116104, CCF-0963759, an IBM CAS Faculty Fellowship
and a research grant from Huawei. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding organizations.

Xiang has graduated and is now working at Twitter Inc. Bao has graduated and is now working at Qualcomm Inc.
©2014 Springer Science +Business Media, LLC & Science Press, China

Chen Ding et al.: Performance Metrics and Models for Shared Cache 693

Cache is managed by hardware, not the operating
system. Cache has multiple levels and varying mixes of
exclusivity and sharing. Events of cache accesses and
replacements are orders of magnitude more frequent
than memory access and paging. A single program may
access cache a billion times a second and can wipe out
the entire content of the cache in less than a millisec-
ond. The intensity multiplies when more programs are
run in parallel. Furthermore, the size of cache is fixed
on a given machine. One cannot get online and buy
more cache as one can with memory.

Cache interference is asymmetrical, non-linear, and
circular. The asymmetry was shown experimentally by
Zhang et al.[1] at Rochester and confirmed by later
studies. In a pair-run experiment we conducted using
Zhang’s setup. One program becomes 85% slower, while
its partner is only 15% slower. The interference changes
from program to program. The effect depends not as
much on how many programs are running as on which
programs are running. Finally, the effect is circular. As
a program affects its peers, it is also affected by them.

The solution to these problems requires a special th-
eory called the theory of locality. Locality is a basic
property of a computing system. Denning[2] defined lo-
cality as “a concept that a program favors a subset of its
segments during extended intervals (phases).” There
is a difference between the data that a program has
and the data that the program is actively using. The
“active” data is a subset, which Denning[3] called the
working set.

Performance depends on how fast a computer system
provides access to the active data subset. The access
time of the other data is irrelevant. Locality analysis
is therefore a prerequisite to memory design, for the
oft quoted reason “we cannot improve what we can-
not measure.” In this article, we review the metrics for
measuring and techniques for improving performance
in shared cache.

2 Footprint Theory of Locality

2.1 Footprint

As a locality metric, the footprint measures the
amount of active data usage. Given a program exe-
cution, we extract the data accesses as a linear sequence
of memory addresses or object IDs. The sequence is
called an access trace or an address string. A window
is a sub-sequence of consecutive accesses. The length
of a window is measured by time, either logically based
on the number of accesses in the window or physically
based on the time when the first and the last accesses
were made.

Given a window, the footprint is the amount of data
accessed in the window, i.e., the size of the “active”
data. For an execution, the footprint is defined for each
window length as the average footprint of all windows
of that length. In a dynamic execution, the data usage
may change in different length windows and in differ-
ent windows of the same length. The footprint shows
the change over all window lengths. For each length, it
shows the average footprint, which is a single, unique
value.

For example, consider three data blocks a, b, c. Fig.1
shows two patterns of data accesses. One has a stack ac-
cess pattern, where the data block last accessed is first
reused. The other has a streaming pattern, where the
blocks are traversed in the same order. The footprints
are shown for all length-3 windows, four in each trace.
The footprint of a trace is the average. For length-3
windows, the footprint, fp(3), is 2.5 in the stack trace
and 3 in the streaming trace. Therefore, the stream-
ing access has a greater data activity for that window
length. The complete footprint is defined for all window
lengths and would count in the amount of data access
in all windows of all lengths.

Fig.1. Amount of data accessed in length-3 windows in two ac-

cess traces: (a) stack accesses and (b) streaming accesses. The

footprint of a trace is the average amount. It is defined for each

window length. When the length is 3, the footprint, fp(3), is 2.5

in the stack trace and 3 in the streaming trace.

In practice, the footprint is too numerous to enume-
rate. The number of time windows is quadratic to the
length of the trace①. Assuming a program running for
10 seconds on a 3 GHz processor, we have 3E10 CPU
cycles in the execution and 4.5E20 distinct windows.

Brock et al.[4] described program analysis as a Big
Data problem, and showed the scale of the problem by
the number of time windows in an execution. Fig.2
shows that as the length of execution increases from
1 second to 1 month, the number of CPU cycles (n)
ranges from 3E9 to 2E15, and the number of distinct
execution windows

(
n
2

)
from 4.5E18 to 5.8E29, that is,

from 4 sextillion to over a half nonillion.
As a dynamic analysis problem, the scale quickly

reaches the size of any static problem. As a compa-
rison, the figure shows the radius of the Milky Way in
centimeters, 48 sextillion, and the radius of the observ-
able universe, 44 octillion.

①If the trace length is n, the number of windows (and hence footprints) is
(n
2

)
+ n =

n×(n+1)
2

or O(n2) asymptotically.

694 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

Fig.2. Scale of the problem shown by the number of footprint

windows in a program execution, compared to the size of a galaxy

and the universe. Reproduced from [4].

For system design, it may not be very useful to
consider very large windows, since caching decisions
are usually based on information on the recent exe-
cution. For programming, however, it is necessary
to analyze the full execution to find opportunities of
global optimization. This is shown by Zhong et al. in
whole-program locality analysis, which analyzes the full
length of reuse distances to see how it changes with the
input[5], and in affinity-based data layout, which groups
structure fields based on the distribution of long reuse
distances[6].

The purpose of a footprint theory is to overcome the
enormity of the analysis problem, characterize the ac-
tive data usage in all windows, and make it useful for
system analysis and optimization.

2.2 Footprint Theory

For locality analysis, the basic unit of information
is a data access, and the basic relation is a data reuse.
The theory of locality is concerned with the fundamen-
tal properties of data accesses and reuses, just as the
graph theory is with nodes and their links.

The footprint theory consists of a set of formal defini-
tions, algorithms, and properties based on the concept
of the footprint. This subsection introduces the four
components of the theory and their supporting tech-
niques, based on the material published in a series of
papers[7-12].

Footprint Measurement. The enormous scale of all-
window analysis is tackled by a series of three algo-
rithms. Each is two orders of magnitude more efficient
than the previous one.
• Footprint distribution analysis, which enumerates

all O(n2) footprints in O(n log m) time, where n is the
length of the trace and m the maximal footprint.
• Average footprint analysis, which reduces the cost

to linear time O(n) by computing the average without
enumerating all footprints.
• Footprint sampling, which samples limited-size

windows and further reduces the cost.
The distribution analysis is the first algorithm to

measure the all-window footprint. As it actually enu-
merates all footprints, it finds the largest, smallest, me-
dian, average, and any percentile footprint for each win-
dow length. However, the cost is sometimes thousands
of times slowdown compared to the speed of the original
program.

The second algorithm computes just the average
footprint, and the cost is reduced from a thousand times
slowdown to about 20 times. Being a linear time algo-
rithm, it is scalable in that the cost increases propor-
tionally to the length of the program execution.

The cache on a real machine has a finite size, so an
analysis does not have to consider windows whose foot-
print is greater than the cache size. In addition, the
behavior of a long running program tends to repeat it-
self. Furthermore, on modern processors, the analysis
can be carried out on a separate core in parallel with
the analyzed execution. Footprint sampling specializes
and parallelizes the analysis for a specific machine and
program. The average cost is reduced to 0.5% of the
running time of the unmodified execution.

The algorithmic development attains immense gains
in both computational complexity and implementation
efficiency. As the baseline, the distribution analysis is
the first viable solution for precise all-window analysis.
The second and the third algorithm each improves effi-
ciency by another order of magnitude, eventually mak-
ing it fast enough for real-time analysis. This has a
beneficial impact elsewhere, because the footprint can
be used to compute other locality metrics, as we will
see in the third part of the footprint theory.

Composability. A locality metric is composable if the
metric of a co-run can be computed from the metric of
solo-runs. If co-run programs do not share data, the
footprint is composable. Let the average footprint of
a program be prog .fp(x) for window length x. If we
have k programs prog1, prog2, . . . , progk actively shar-
ing the cache, the aggregate footprint is the sum of the
individual footprints.

corun.fp(x) =
k∑

i=1

prog i.fp(x).

In comparison, the miss ratio is not composable. We
will prove it later in Subsection 3.6.3. Intuitively, the
co-run miss ratio will change compared to the solo-run
miss ratio, since each program has now a fraction in-
stead of the whole cache. The change in miss ratio,
as mentioned earlier, is asymmetrical, non-linear, and

Chen Ding et al.: Performance Metrics and Models for Shared Cache 695

affected by circular feedback. As a result, we cannot
directly add the solo-run miss ratio to compute the co-
run miss ratio, as we can with the footprint.

Another locality metric is reuse distance. Reuse dis-
tance does not depend on cache parameters, but as we
will explain in Subsection 3.2, neither is it composable.

As mentioned earlier, we can measure the average
as well as the distribution of footprints. The average
footprint is immediately composable. The distribution,
although composable, requires a convolution which is
expensive to compute and difficult to visualize. In the
following, the term “footprint” means the average foot-
print.

The next question is whether the footprint composa-
bility can help in analyzing the miss ratio and other
locality metrics in shared cache. This is solved in the
third part of the new theory.

Locality Metrics Conversion. Locality has different
measurements, just like temperature can be measured
in different scales, Celsius or Fahrenheit. For locality,
the two most common metrics are miss ratio for hard-
ware design and reuse distance for program optimiza-
tion.

Central to a locality theory is the conversion between
different metrics. The footprint theory shows that the
footprint is convertible with a number of other met-
rics. Let mr(c) be the miss ratio for cache size c. It
can be computed from the footprint using the following
formula[10]:

mr(c) =
fp(x + ∆x)− fp(x)

∆x
,

where c = fp(x). If these are continuous functions, we
would say that the miss ratio is the derivative of the
footprint.

The higher order mathematics implies mathematical
properties. Since the derived metric, the miss ratio, is
non-decreasing, the source metric, the footprint, must
be not just non-decreasing, but also concave. Indeed,
the monotonicity and concavity were proved in two suc-
cessive papers[9-10].

The conversion is reversible. If we have the miss ra-
tios of all cache sizes, we can reverse the formula and
compute the average footprint. The reverse process is
the analog of integration for a discrete function.

Combining footprint composition and metrics con-
version, we can see immediately that if the co-run miss
ratio (miss ratio seen by the shared cache) can be com-
puted from the aggregate footprint. Fig.3 shows the
derivation by adding the individual footprints and then
converting the sum into the co-run miss ratio.

Since the conversion formula is reversible, we can
switch between the footprint and the miss ratio and co-

Fig.3. Joint use of two theoretical properties: composition (dot-

ted line) and conversion (solid lines).

mpose the latter indirectly through the former. First,
we compute the individual footprint from the individual
miss ratios (of all cache sizes). Then we add the individ-
ual footprints and finally compute the co-run miss ratio
in the shared cache (of all sizes). Fig.3 shows this type
of deduction and others that are made possible by com-
position and conversion. In particular, the figure shows
how to compose another locality metric, the reuse dis-
tance. We use the terms private reuse distance (PRD)
and concurrent reuse distance (CRD), as introduced by
[13-14].

The solution of composition raises the problem of de-
composition. The co-run miss ratio does not tell us the
contribution from each program. To see the individual
effects, we need more elaborate models.

Composable Locality Models. We say a model is com-
posable if the co-run result can be computed from solo-
run results, not just for the co-run group as a whole,
but also for the co-run effect on each individual pro-
gram. In other words, a composable model must be
both composable and decomposable.

As a composable metric, the footprint has the fol-
lowing useful traits:
• Machine Independent. The analysis is based on

data accesses, not cache misses. It takes a single pass
to analyze a trace for all cache sizes, and the result is
not affected by program instrumentation. In compa-
rison, it is inescapable for direct measurement to be
affected by instrumentation.
• Clean-Room Statistics. The footprint of one pro-

gram can be measured in a co-run environment, unper-
turbed by other programs. The clean-room effect solves
the chicken-or-egg problem of direct measurement: the
behavior of one program depends on its peer, but the
peer behavior in turn depends on itself.
• Peer Independent. The footprint of a program

is independent of co-run peers. The analysis of cache
sharing does not require actual cache sharing. The co-
run effect is computed rather than measured.
• Statically Composable. There are 2P co-run com-

binations for P programs. The footprint model can
predict the interference in these 2P runs by testing P
single-program runs. For the P sequential runs, we can

696 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

choose to run them one by one or some of them in para-
llel to increase speed. The composition is static if there
is no actual co-run; otherwise we say the composition
is dynamic. Here dynamic composition means parallel
testing, while static composition does not need parallel
testing at all.

To compute the co-run effect on each individual pro-
gram, this dissertation describes three models. The
models solve the decomposition problem as a composi-
tion problem: how one program is affected by its peers.
• Composition by Reuse Distance and Footprint.

Variations of this model were invented by Thiebaut
and Stone[15] and Suh et al.[16] for time-sharing systems
(time-switched cache sharing) and Chandra et al.[17] for
multicore (continuous cache sharing). These studies es-
timated the footprint since there was no feasible ways
to measure it. After the invention of the fast measure-
ment, the cost of the model became limited by the time
required for reuse distance measurement[9-10].
• Composition by Footprint Only. The second model

converts the footprint into reuse distance, so it no
longer needs to measure the reuse distance and can be
hundreds of times faster[10].
• Composition by Program Pressure and Sensitivity.

The last model is as fast as the second model but more
intuitive and easier to use. It characterizes the behavior
of a program by two factors, pressure and sensitivity.
The two can be visualized as two curves. Performance
composition is as simple as looking up related values on
the two curves[12].

The composable models provide answers to a num-
ber of long-standing questions about shared cache, in-
cluding a machine independent way to compare pro-
grams by their shared cache behavior, the correlation
between a program’s cache interference and its miss ra-
tio, and the performance of cache sharing compared
with cache partitioning[12].

These models are theoretical, and they are appealing
partly due to the generality. The footprint is defined
on a program trace without knowing co-run peers or
machine parameters (other than having shared cache).
There are many sources of error due to the fact that
the basic models do not consider the effect of cache as-
sociativity, program phase behavior, the time dilation
due to interference, the filtering effect in a multi-level
cache hierarchy, and the impact of the prefetcher. A th-
eory must be validated to be practically relevant. The
past studies have used experiments on real systems to
evaluate the theoretical models and compare their pre-
dictions with actual miss counts measured by hardware
counters[8-10,12]. They also showed extensions of the

models to consider time dilation[8,12], cache associati-
vity, and program phases[10].

3 Locality Theory from 1968

Locality was started as an observation that programs
do not use all their data at all times[2]. After decades of
research, it has been developed into an important scien-
tific field. At its foundation are locality metrics, so the
concept and its effect can be measured. Among the ba-
sic problems are the measurement speed and accuracy
of these metrics.

3.1 Miss Ratio and Execution Time

The metric of miss ratio was first used by Belady[18]

to find out how often individual policies caused page
faults. It was challenging at that time to measure
page traces and simulate the various policies on them.
Today, the hardware performance counters on modern
machines enable a tool to measure program speed and
count cache misses in real time with little cost. The per-
formance of a single program or a group of programs
can be observed directly. However, direct observation
has difficulties in characterizing the locality cleanly due
to dependences on the observation environment. These
dependences include:
•Machine Dependence. Different machines have dif-

ferent memory hierarchies and processors, so we can-
not compare the locality in different programs entirely
based on their performance.
• Instrumentation Dependence. The analysis code

itself consumes processor and cache resources. It may
not be possible to completely separate the effect of the
instrumentation.
• Peer Dependence. It is unknown how the perfor-

mance has changed due to cache sharing. It would have
required another test on an unloaded system. It is also
unknown how the performance will change if the peer
programs change.

The effect of cache on performance is often dis-
ruptive. This phenomenon was first discussed by
Denning[19] and stated as the thrashing, which happens
when the sum of the working sets exceeds the available
memory. Chilimbi once compared the phenomenon to
strolling leisurely until suddenly falling over a cliff②.
The danger is greater in a shared environment. As more
programs are added, the combined working set grows.
When it exceeds the size of the shared cache, sharp
performance drops would ensue. Being peer and ma-
chine dependent, direct testing cannot foresee a pending
calamity. What is worse, it cannot even tell whether a

②Trishul Chilimbi made this analogy in a presentation in 2002[20].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 697

given parallel mix is efficient or not without testing
them individually first.

3.2 Reuse Distance

The most common metric in program characteriza-
tion is the reuse distance. For each memory access in
a trace, the reuse distance is the number of distinct
data elements accessed between this and the previous
access to the same data. Mattson et al. first defined the
concept (to model the performance of an LRU stack)
and called it the LRU stack distance[21]. LRU is a
cache management method that favors recently used
data. Recognizing it as a measure of recency, Jiang and
Zhang[22] called the metric the inter-reference recency
(IRR).

For example, the reuse distance shows the locality
of stack access and streaming access traces in Fig.4.
When a block is first accessed, the reuse distance is
infinite. When the block is reused, the reuse distance
is the number of distinct blocks accessed between the
previous access and the reuse. The reuse would miss in
(fully associative LRU) cache if and only if its reuse dis-
tance is greater than the cache size. The figure shows
that the stack trace can reuse the data in cache when
the cache size is less than 3 but the streaming trace
cannot.

Fig.4. The locality of two traces, stack accesses on the left and

streaming accesses on the right, measured by the reuse distance

of each memory reference. An access is a miss in fully associative

LRU cache if and only if its reuse distance is greater than the

cache size.

The reuse distance quantifies the locality of every
memory access. The locality of a program, or a loop
or a function inside it, is the collection of all its reuse
distances. The collective result can be represented as
a distribution. It is called a locality signature [5] and
locality profile [14].

3.2.1 Relation with Cache Performance

In the absence of cache sharing, the capacity miss ra-
tio can be written as the fraction of the reuse distance
that exceeds the cache size[21]. Let the test program be
A and cache size be C; we have

P (capacity miss byA) = P (A’s reuse distance > C).
(1)

The reuse distance is machine independent but can
give the capacity miss ratio for cache of all sizes, as the
formula shows. The locality signature can be viewed

as a discrete probability density function, showing the
probability of a memory access having a certain de-
gree of locality. The miss ratio is then the probability
function, showing the probability of the access being
a miss for a given cache size. A probabilistic adjust-
ment invented by Smith can estimate the effect of cache
conflicts in set-associative cache[23-25]. Combining the
reuse distance and the Smith formula, we can compute
the miss ratio in the cache of all sizes.

Miss Ratio Curve (MRC). The miss ratio curve
(MRC) shows the miss ratio of all its cache sizes as
a discrete function. It is easy to visualize and show
directly the trade-off between performance and cache
size. For fully associative LRU cache, the miss ratio
curve is equivalent to the reuse distance distribution, as
the preceding formula shows. The problem is equivalent
in theory to the argument whether it is measuring the
miss ratio curve or the reuse distance. In practice, the
miss ratio curve is defined for only practical cache sizes,
i.e., powers of two between some range, e.g., 32KB and
8MB. The reuse distance has the full range between 1
and the size of program data.

The full range of reuse distance represents the com-
plete temporal locality. The miss ratio curve is a pro-
jection of the full information on a subset of cache
sizes. The two would be equivalent if the miss ratio
is defined for all cache sizes between 1 and infinity.
The unbounded size of the representation is necessary,
as shown by the theoretical result of Snir and Yu[26]

that temporal locality cannot be fully encoded using a
bounded number of bits. In the following, we review
the prior work on both the reuse distance and the miss
ratio curve.

3.2.2 Locality Analysis and Optimization

Reuse distance has found many uses. The locality
signature shows how the cache behavior changes with
the program input, and the changes can be predicted by
whole-program locality analysis[5,25,27], which was used
to predict the miss ratio of all inputs and cache sizes[28].
Fang et al. modeled locality signature for each memory
reference and used it to find critical memory loads and
important program paths[27,29]. Marin et al.[25] mode-
led the locality signature at reference, loop, and func-
tion levels to predict performance across different com-
puter architectures. Beyls and D’Hollander[30-31] built
a program tuning tool SLO, which identifies the cause
of long distance reuses and gives improvement sugges-
tions for restructuring the code. In addition to cache
misses, reuse distance has been used to analyze the re-
sponse time in server systems[32] and the usage pattern
in web reference streams[33]. Zhong et al.[5] classified
these and other uses of reuse distance as “Five Dimen-

698 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

sions of Locality” and reviewed the analysis techniques
for program input, code, data, execution phase, and
program interaction.

Reuse distance provides a common foundation to
model program behavior, predict machine performance,
and guide program optimization. Locality analysis and
profiling are to infer, measure, and decompose reuse
distances, and locality optimization is to shorten long
reuse distances. The analysis and the optimization
are free of machine, instrumentation, and peer depen-
dences. The downside, however, is the complexity of
measuring reuse distance.

3.2.3 Direct Measurement

Reuse distance is one of the stack distances defined
in the seminal paper in 1970 by Mattson et al.[21] The
stack algorithm in the paper needs O(nm) time to pro-
file a trace with n accesses to m distinct data. The
efficiency has been steadily improved over the past four
decades. In 1975, Bennett and Kruskal[34] organized
the trace as a tree and reduced the cost to O(n log n).
In 1980, Olken[35] made the tree compact and reduced
the cost further to O(n log m).

The Olken algorithm has been the most efficient
asymptotic solution (for full reuse distance measure-
ment) until 2003, when Ding and Zhong gave an
approximation algorithm[5,36]. The approximation
guarantees a relative precision, e.g., 99%, and takes
O(n log log m) time, which is effectively linear to n for
any practical data size m. Zhong et al. also gave an
algorithm that guarantees a constant error bound and
does not reduce the asymptotic cost[37]. In an indepen-
dent implementation, Schuff et al.[38] reported that the
average cost of the O(n log log m) method is as high as
several thousand times slowdown.

Kim et al.[39] gave a linear-time algorithm to mea-
sure the miss ratio for a fixed number of cache sizes,
which may be used to approximate reuse distance.

There are practical improvements to the Olken algo-
rithm. Cheetah implemented the Olken algorithm using
a splay-tree[40]. It became part of the widely used Sim-
pleScalar simulator[41]. Almasi et al.[42] used a different
tree representation to further improve the efficiency. A
greater efficiency can be obtained through sampling and
parallelization (Subsections 3.2.6 and 3.2.7).

Zhong et al. gave a lower bound result showing
that the space cost of precise measurement is at least
O(n log n), indicating that reuse distance is fundamen-
tally a harder problem than streaming, i.e., counting
the number of 1’s in a sliding window, which can be
done using O(n) space[5].

3.2.4 Approximation by Reuse Time

While the reuse distance counts the number of dis-
tinct memory accesses, the reuse time counts all ac-
cesses. It is simply the difference in logical time be-
tween the previous access and the current reuse and
can be measured quickly in O(n) time. The working
set theory uses the reuse time (inter-reference gap) to
compute the time-window miss rate[43]. If we take time-
window miss rate as an approximation of the LRU miss
rate, we may say that the working set theory is the first
approximation technique.

Two series of more recent studies have used the
reuse time to compute the reuse distance. The first
is StatCache and StatStack by Hagersten and his
students[44-47],③, and the second is time-based locality
approximation[48-50]. For brevity, we name the latter
technique after its lead author and call it the Shen con-
version.

Berg and Hagersten solved the following equation for
the miss ratio R[44]. Let N be the length of the trace,
h(t) be the number of accesses whose reuse time is t, and
f(k) be the probability that a cache block is replaced
after k misses. The cache is assumed to have random
replacement, so f(k) = 1− (1− 1

C)k, for cache with C
blocks. The total number of misses can be computed
in two ways, and they should be equal:

NR =
∑
t=1

Nh(t)ft(R).

StatCache solves the implicit equation for the miss ratio
R using numerical methods.

In the Shen conversion[48,51], the key measure is the
interval access probability p(∆), which is the probabi-
lity of a randomly chosen datum v being accessed dur-
ing a time interval ∆. For a reuse at time distance ∆,
below is the probability that its reuse distance is k:

p(k,∆) =
(

N
k

)
p(∆)k(1− p(∆))N−k.

The formula computes the probability for k distinct
data items to appear in a ∆-long interval. It assumes a
binomial distribution given the interval access probabi-
lity p(∆), which is computed as

p(∆) =
∆∑

t=1

T∑

δ=t+1

1
N − 1

p
T
(δ), (2)

where pt = h(t)
N is the probability that an access has the

time distance t. The derivation for p(∆) can be found
in a technical report[51].

③Berg and Hagersten used the term reuse distance for what we mean by reuse time[44].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 699

The two statistical techniques are successful in pre-
dicting performance. StatCache was used to model first
private cache[44-45] and then shared cache[46-47]. The
Shen conversion was used first for sequential code[48-49]

and then multi-threaded code[50,52].
Although both using statistical analysis, StatCache

and the Shen conversion are fundamentally different:
one models the random cache, and the other the LRU
cache. Next we explore the difference between random
and LRU modeling in greater depth.

3.2.5 Random vs LRU

Any statistical analysis of locality invariably makes
some assumptions about randomness. We examine
three such assumptions.

The first is random access to a cache set, which
means that a data access can happen at any cache set
with equal probability. The Smith formula uses the as-
sumption to calculate the contention in a cache set and
the effect of cache associativity[23].

The second is random cache replacement, which
means that a miss may evict any cache block with equal
probability. Under the assumption of random replace-
ment, the lifetime of a block in cache is binomially dis-
tributed over the number of cache misses. Not knowing
the miss rate, StatCache uses the relation to compute
the miss rate from the reuse time[44]. Knowing the miss
rate, West et al. computed the cache occupancy[53]. Fe-
dorova et al. devised a fair scheduling policy based on
the assumption that a set of applications divide the
cache equally if they had the same miss rate[54].

Since real cache does not use random replacement,
the accuracy of the assumption needs to be examined.
For cache occupancy, West et al. compared the pre-
diction with the actual measurement (through cache
simulation) and found that the prediction is accurate
for caches using random replacement but less so for
caches using LRU[53].

Random has two other differences from LRU. One
is well known, which is that the random replacement
cache is fully associative by definition. The other is
less recognized, which is that the cache performance is
not deterministic as the replacement decisions change
randomly every time a program is run. Fortunately,
the problem is recently solved. Zhou gave an ingenious
algorithm to compute the average miss ratio in a sin-
gle pass, without having to simulate multiple times to
compute the average[55].

The way to model LRU is using reuse distance.
Knowing the reuse distance, the Smith formula uses
it to model the LRU replacement within a cache set[23].
Not knowing the reuse distance, the Shen conversion
needs a way to compute it[48,51]. It assumes a third
type of randomness — in a time window, each data

block is uniformly randomly accessed. By computing
the reuse distance, the Shen conversion models LRU
rather than random cache replacement.

Cache models can be divided by the replacement pol-
icy: LRU or random. There is a second dimension to
compare them: the metrics used to measure window-
based locality. For random replacement, we want to
know the number of misses in a time window. There
is a (trivial) linear relation between the miss count and
the window length. For LRU, we want to know the
footprint in a window. The relation is non-linear, and
it is the main source of complexity in the Shen conver-
sion in particular the derivation of the interval access
probability.

Cache models use two types of window-based local-
ity: the miss count and the footprint. The miss count
is linear but cache size dependent. In comparison, the
footprint is non-linear but cache size independent. For
example, StatCache has to solve its equation for every
cache size, while the Shen conversion produces the reuse
distance and the miss ratio for all cache sizes. The past
solutions represent different trade-offs between mode-
ling simplicity and power. With the footprint theory,
we have a new option, which is to compute the reuse
distance using the footprint, which we can measure as
accurately as we can with the miss count.

The three modeling methods, StatCache, the Shen
conversion, and the footprint conversion, are not gua-
ranteed to always give the correct reuse distance. In-
deed, a precise linear-time solution is unlikely given the
lower bound result in Zhong et al.[5] Among the three,
the footprint theory is unique in formulating the condi-
tion for correctness, which is the reuse hypothesis[10].

3.2.6 Sampling Analysis

Sampling is usually effective to reduce the cost of
profiling. Choosing a low sampling rate may reduce the
amount of profiling work by factors of hundreds or thou-
sands. In program analysis, bursty tracing is widely
used, where the execution alternates between short
sampling periods and long hibernation periods[20,56-57].
During hibernation, the execution happens in the origi-
nal code and has no analysis overhead.

Locality sampling, however, is tricker. Locality is
about the time of data reuse, but the time is unknown
until the access actually happens. The uncertainty has
two consequences. First, the length of the sampling pe-
riod cannot be bounded if it is to cover a sampled data
reuse pair. Second, the analyzer has to keep examining
every data access. Complete hibernation is effectively
impossible.

The problem of locality sampling is addressed by a
series of studies, including the publicly available SLO
tool[30], continuous program optimization[58], bursty

700 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

reuse distance sampling[59], and multicore reuse dis-
tance analysis[38]. Sampling can drastically reduce the
cost if sampled windows accurately reflect the behavior
of other windows[45-47].

SLO has been developed by Beyls and D’Holla-
nder[30]. It instruments a program to skip every k
accesses and take the next address as a sample. A
bounded number of samples are kept in a sample reser-
voir — hence the name reservoir sampling. To capture
the reuse, SLO checks each access to see if it reuses
some sample data in the reservoir. The instrumenta-
tion code is carefully engineered in GCC to have just
two conditional statements for each memory access (one
for address and the other for counter checking). Reser-
voir sampling reduces the time overhead from 1000-fold
slow-down to only a factor of 5 and the space overhead
to within 250 MB extra memory. The sampling accu-
racy is 90% with 95% confidence. The accuracy is mea-
sured in reuse time, not reuse distance or miss rate.

To accurately measure reuse distance, a record must
be kept to count the number of distinct data that ap-
peared in a reuse window. Zhong and Chang[59] de-
veloped the bursty reuse distance sampling, which di-
vides a program execution into sampling and hiber-
nation periods. In the sampling period, the counting
uses a tree structure and costs O(log log M) per access.
If a reuse window extends beyond a sampling period
into the subsequent hibernation period, counting uses
a hash-table, which reduces the cost to O(1) per access.
Multicore reuse distance analysis by Schuff et al.[38] uses
a similar scheme for analyzing multi-threaded code. Its
fast mode improves over hibernation by omitting the
hash-table access at times when no samples are being
tracked. Both methods track reuse distance accurately.

StatCache by Berg and Hagersten[45] is based on un-
biased uniform sampling. After a data sample is se-
lected, StatCache puts the page under the OS protec-
tion (at page granularity) to capture the next access to
the same datum. It uses the hardware counters to mea-
sure the time distance until the reuse. OS protection
is limited by the page granularity. Two other systems,
developed by Cascaval et al.[58] and Tam et al.[60], use
the special support on IBM processors to trap accesses
to specific data addresses. To reduce the cost, these
methods use a small number of samples. Cascaval et
al.[58] used the Hellinger Affinity Kernel to infer the ac-
curacy of sampling. Tam et al.[60] predicted the miss
rate curve in real time.

3.2.7 Parallel Analysis

Schuff et al.[38] combined sampling and parallel
analysis for parallel code on multicore. At the IPDPS
conference in 2012, three groups of researchers reported
that they made the analysis of even sequential pro-

grams many times faster with parallel algorithms. Niu
et al.[61] parallelized the analysis to run on a computer
cluster, while Cui et al.[62] and Gupta et al.[63] paral-
lelized it for GPU.

Unlike the reuse distance, the footprint can be eas-
ily sampled and analyzed in parallel using shadow
profiling[64-65]. By measuring the footprint and con-
verting it to reuse distance, we have shown the equiva-
lent of parallel sampling analysis for reuse distance,
which can be done in near real-time, with just 0.5% vis-
ible cost on average[10]. We note that the accuracy of
footprint conversion is conditional[10], but direct (para-
llel) measurements are always accurate.

3.2.8 Compiler Analysis

Reuse distance can be analyzed statically for sci-
entific code. Cascaval and Padua[66] used the depen-
dence analysis[67], and Beyls and D’Hollander[68] de-
fined reuse distance equations and used the Omega
solver[69]. While they analyzed conventional loops,
Chauhan and Shei[70] analyzed MATLAB scripts us-
ing dependence analysis. Unlike profiling whose re-
sults are usually input specific, static analysis can
identify and model the effect of program parameters.
Beyls and D’Hollander[68] used the reuse distance equa-
tions for cache hint insertion, in particular, conditional
hints, where the caching decision is based on program
run-time parameters. Shen et al.[71] used static and
lightweight reuse analysis in the IBM compiler for ar-
ray regrouping and structure splitting.

Using the static reuse distance analysis and the
footprint theory, Bao and Ding demonstrated a com-
piler technique for analyzing the program footprint
and discussed the potential use in peer-aware program
optimization[72-73]. In [72], they used the tiled matrix
multiply (Fig.5) as an example to show the reuse dis-
tance computed at the source level (Table 1). They also

for (jj = 0; jj < N ; jj = jj + Bj)

for (kk = 0; kk < N ; kk = kk + Bk)

for (i = 0; i < N ; i = i + 1)

for (j = jj; j < min(jj + Bj , N); j = j + 1)

for (k = kk; k < min(kk + Bk, N); k = k + 1)

C[i][j] = beta × C[i][j] + alpha ×A[i][k]×B[k][j];

Fig.5. Loop nest of tiled matrix multiply.

Table 1. Reuse Distance as a Function of the Loop Bounds

Loop Array Reuse Distance (Bytes)

k C[i][j] 8× 3

j A[i][k] 8× 1 + 8×Bk + 8×Bk

i B[k][j] 8×Bj + 8×Bk + 8×Bk ×Bj

kk C[i][j] 8×N ×Bj + 8×N ×Bk + 8×Bk ×Bj

jj A[i][k] 8×N ×Bj + 8×N ×N + 8×N ×Bj

Chen Ding et al.: Performance Metrics and Models for Shared Cache 701

showed the use of the conversion theory (Subsec-
tion 2.2) to compute the miss ratio curve and a measure
of shared-cache friendliness called the fill time.

3.2.9 Domain-Specific Modeling

To model graph algorithms, Yuan et al.[74] defined
the notion vertex distance and used statistical analysis
to derive the reuse distance. The study examines ran-
dom graphs and scale-free graphs. It shows the dual
benefits of domain-specific analysis. On the one hand,
the structure of a graph facilitates locality analysis. On
the other hand, locality analysis reveals the relation be-
tween the properties of a graph, e.g., edge density, and
the efficiency of its computation.

3.2.10 Discussion

Reuse distance is a powerful tool for program analy-
sis. It quantifies the locality of every program instruc-
tion. For a single sequential execution, the metric is
composable. For example, the composition can happen
structurally to show the locality of larger program units
such as loops, functions, and the whole program, or it
can happen temporally to show program executions as
(integer valued) signals.

There are at least two limitations. First, reuse dis-
tance is insufficient to analyze program interaction.
While programs interact at all times in the shared
cache, reuse distance provides locality information for
only reuse windows, not all windows. Second, precise
reuse distance is still costly to measure. Despite all
of the advances in sampling and parallelization, the
asymptotic cost is still more than linear. These prob-
lems will be addressed indirectly through the study of
another locality metric, the footprint.

3.3 Early Footprint

Measuring footprint requires counting distinct data
elements, and the result depends on observation win-
dows. The problem has long been studied in measur-
ing various types of reuse distances as discussed be-
fore. However, footprint measurement is a more diffi-
cult problem than reuse distance measurement. Given
a trace of length n, there is only O(n) reuse windows
but in total O(n2) footprint windows. This subsection
focuses on the measurement problem, which prior work
solved by either selecting a window subset to measure
or constructing a model to approximate.

Direct Counting for Subset Windows. Agarwal et
al.[75] counted the number of cold-start misses for all
windows starting from the beginning of a trace (cumu-
lative cold misses). Cumulative cold misses, together
with warm-start region misses, were used to evalu-

ate cache performance degradation caused by operation
system and multiprogramming activity.

The footprint in single-length execution windows
can be computed in linear time. On time-shared sys-
tems, the window of concern is the scheduling quan-
tum. On these systems, the cached data of one process
may be evicted by data brought in by the next pro-
cess. Thiebaut and Stone computed what is essentially
the single-window footprint by dividing a trace by the
fixed interval of CPU scheduling quantum and taking
the average amount of data access of each quantum[15].

Ding and Chilimbi[7] gave a sampling solution. At
each access, it measures the footprint of a window end-
ing at the current access. The length of the measured
window is chosen at random.

For an execution of length n, direct counting mea-
sures the footprint in O(n) windows. If we use direct
counting to estimate all-window footprint, we have a
sampling rate O(1

n). The sampling rate may be too low
to be statistically meaningful, or it may be sufficient in
practice. Without a solution for all-window analysis,
we would not have a way to evaluate the accuracy of
direct counting.

Footprint Equations. Suh et al.[16] and Chandra et
al.[17] used a recursive equation to estimate the foot-
print. As a window of size w is increased to w + 1, the
change in the footprint depends on whether the new
access is a miss. The equation is as follows: consider a
random window wt of size t being played out on some
cache of infinite size. As we increase t, the footprint
increases with every cache miss. Let E[wt] be the ex-
pected footprint of wt, and M(E[wt]) be the probabi-
lity of a miss at the end of wt. For window size t + 1,
the footprint either increases by an increment of one or
stays the same depending on whether t + 1 access is a
cache miss.

E[wt+1] = E[wt](1−M(E[wt]))+(E[wt]+1)M(E[wt]).

The term M(E[wt]) requires simulating sub-traces
of all size t windows, which is impractical. Suh et al.[16]

solved it as a differential equation and made the as-
sumption of linear window growth when the range of
window sizes under consideration is small. On the other
hand, Chandra et al.[17] computed the recursive relation
bottom up. Neither method can guarantee a bound on
the accuracy, i.e., how the estimate may deviate from
the actual footprint.

In addition, these approaches produce the average
footprint, not the distribution. The distribution can be
important. Consider two sets of footprints, A and B.
One tenth of A has size 10N and the rest has size 0.
All of B has size N . A and B have the same average
footprint N , but their different distribution can lead

702 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

to very different types of cache interference. With the
footprint distribution analysis[8], we now have a way
to evaluate whether the average footprint produces the
same composition results as the footprint distribution.

The past solutions on reuse distance often make simi-
lar estimates because the reuse distance is the footprint
in a reuse window. These techniques[45,48-50,76] were
mentioned in Subsection 3.2. They do not guarantee
the precision of the estimation.

3.4 Analytical Models

Instead of measuring the reuse distance or footprint,
a mathematical model may be used to characterize the
cache performance. Apex-Map uses a parameterized
model and a probe program to quickly find the model
parameter for a program and a machine[77]. Ibrahim
and Strohmaier[78] compared the result of synthetic
probing and that of reuse distance profiling, while He
et al.[79] used a fractal model to estimate the miss rate
curve through efficient online analysis.

There was much work earlier on analytical models
for memory paging performance. An extensive survey
can be found in [2]. Saltzer[80], a designer of the Multics
system, gave one simple formula (Subsection 3.6.1). He
explained that “Although it is only occasionally that
a mathematically tractable model happens to exactly
represent the real-world situation, often an approxi-
mate model is good enough for many engineering calcu-
lations. The challenge ... is to maintain mathematical
tractability in the face of obvious flaws and limitations
in the range of applicability and yet produce a useful
result.” Saltzer’s formula has been used by Strecker[81]

in cache modeling.
Another type of analytical models is the independent

reference model. Given a program with n pages, each
has an independent access probability p that adds to
1, King[82] showed that a steady miss rate exists for
fully associative caches managed by LFU, LRU, and
FIFO replacement policies. Later studies gave efficient
approximation methods for LRU and FIFO[83-84]. Gu
and Ding[85] proved a simple relation between random
access and the reuse distance distribution (which is uni-
form). The method of Dan and Towsley[84] can be used
to analyze a more general case where data is divided
into multiple groups and has different (random access)
probabilities. It is a type of composable model.

3.5 Metrics Conversion and Denning’s Law

Footprint is a form of working set. The working
set theory is the scientific basis as much for memory

management as it is for cache management. Denning
defined the working set precisely as “the set of distinct
pages referred to in a backward window of fixed size
T .”④ The average footprint for window length T is the
average working set size for all size T windows.

A breakthrough in this area is a simple formula dis-
covered by Denning④ and first published in 1972[43]. It
shows the relation between the working set size, which
is difficult to measure, and the frequency and interval
of data reuses, which are easy to measure. The formula
converts between two locality metrics. Metrics conver-
sion is at the heart of the science of locality, because
it shows that memory behavior and performance are
different displays of the same underlying property.

While the proof of Denning and Schwartz[43] de-
pends on idealized conditions in infinitely long exe-
cutions, subsequent research has shown that the work-
ing set theory is accurate and effective in managing
physical memory for real applications.

There are three ways to quantify the working set:
as a limit value in Denning’s original paper[3], as the
time-space product defined by Denning and Slutz[86],
and as the all-window footprint just defined in Subsec-
tion 3.3 (initially in [7]). The equation Denning dis-
covered holds in all three cases. In our 2013 paper[10],
we stated it as a law of locality and named it after its
discoverer:

Denning’s Law of Locality 1. The working set is
the second-order sum of the reuse frequency, and con-
versely, the reuse frequency is the second-order differ-
ence of the working set.

The footprint theory subsumes the infinitely long
case in the original working set theory and proves Den-
ning’s law for all executions. It gives a theoretical ex-
planation to the long observed effectiveness of the work-
ing set theory in practice.

Easton and Fagin[87] gave another important for-
mula for the conversion between the cold-start and
warm-start miss ratios. The authors called it their
“recipe”. The recipe reveals that the (cold-start) life-
time in cache size C is the sum of the inter-miss times of
the (warm) cache for sizes smaller than C. They found
that their “estimate was almost always within 10∼15
percent of the directly observed average cold-start miss
ratio.” They further quoted the analysis of [88] as cor-
roborating evidence. In these studies, as in the work of
Denning and Schwartz[43], a program is assumed to be
a stationary stochastic process. In the footprint theory,
the Easton-Fagin formula can be derived directly, and
the theory shows the correctness condition when it is
used for finite-length program executions.

④Personal communication, December 17, 2013.

Chen Ding et al.: Performance Metrics and Models for Shared Cache 703

3.6 Locality Models of Shared Cache

3.6.1 Early Models

There are two types of cache sharing: the shar-
ing between multiple time-switched programs, and the
sharing between the instruction and data of the same
program. Easton and Fagin[87] studied the former,
comparing the difference between cold-start and warm-
start miss ratios and computing the effect of task in-
terruptions as a weighted average of expected cold-
start miss ratios. Thiebaut and Stone[15] defined a pre-
cise measure called the reload transient. For a depart-
ing process, the reload transient is the amount of its
cached data lost when it returns after another process
is run. To compute the reload transient, Thiebaut and
Stone[15] defined cache footprint, which is the number
of data blocks a program has in cache. Given two pro-
grams A,B, the reload transient of A after B is the
overlap between their cache footprints.

To compute footprints and their overlap, Thiebaut
and Stone[15] assumed that a program has an equal
probability of accessing any cache block. The probabi-
lity is independent and identically distributed. The
overlap is then computed from expectations of bino-
mial distributions.

Instead of discrete probabilistic models, Strecker[81]

put forward an intuitive notion that a program is a
continuous flow and fills the cache at the rate that is
the product of two probabilities: the chance of a miss
and the chance that the miss results in a new loca-
tion in the cache being filled. A differential equation
was constructed since the fill rate is the derivative of
the footprint over time. To compute the miss ratio,
Strecker[81] used an analytical formula by Saltzer[80].
Saltzer[80] computed the inter-miss time in which he
called the headway as the number of hits between suc-
cessive misses.

The second type of cache sharing happens between
the instruction and the data of a program. Stone et
al.[89] investigated whether LRU produces the optimal
allocation. Assuming that the miss rate functions for
instruction and data are continuous and differentiable,
the optimal allocation happens at the points “when
miss-rate derivatives are equal”[90]. The miss rate func-
tions, one for instruction and one for data, were mode-
led instead of measured. The authors showed that LRU
is not optimal, but left open a question as to whether
there is a bound on how close LRU allocation is to op-
timal allocation. The footprint theory can be used to
compute the effective cache allocation (LRU allocation)
among any group of programs.

As a component of the Wisconsin Wind Tunnel
(WWT) project, Falsafi and Wood[91] developed a per-

formance model for cache. They used the formulation of
Thiebaut and Stone[15] but computed the overlap using
a queuing model. In implementation, they measured
the cold-start miss rate and used a reverse mapping
to estimate the footprint. Since WWT ran the con-
current processes of a parallel program, the instruction
code was shared between processes. The sharing was
modeled as the shared footprint in the overall process
footprint.

Falsafi and Wood[91] revised the terminology of
Thiebaut and Stone[15] and redefined the footprint as
the set of unique data blocks a program accesses. The
projection of the footprint is the set of data blocks that
the program leaves in cache. Viewed in another way,
the footprint is the program data in an infinite cache,
and the projection is the data in a finite cache. The
footprint theory uses their definition of the word foot-
print.

3.6.2 Reuse Distance in Parallel Code

Reuse distance measures the locality of a program
directly and does not rely on the assumptions that are
necessary for analytical models. In a parallel program,
we have two types of reuse distance. One considers
only the accesses of a single task, and the other consid-
ers the interleaved accesses of all tasks. Using the ter-
minology of Wu and Yeung[13] and Jiang et al.[50], we
call them private reuse distance (PRD) and concurrent
reuse distance (CRD). The new problem in analyzing
the parallel locality is the relation between PRD and
CRD.

Recent work has studied several solutions. Ding and
Chilimbi[76] built models of data sharing and thread
interleaving to compose CRD. Jiang et al.[50] tackled
the composition problem using probabilistic analysis,
in particular, the interval access probability based on
[48], discussed in Subsection 3.2.

Multicore reuse distance by Schuff et al.[38] mea-
sures CRD directly using improved algorithms made
efficient by sampling and parallelization. For loop-
based code, Wu and Yeung gave a scaling model to
predict how the reuse distance, both PRD and CRD,
changes when the work is divided by a different number
of threads[13]. These modeling techniques have found
uses in co-scheduling[52] and multicore cache hierarchy
design[13-14,92].

3.6.3 Non-Composability of Reuse Distance

A model is composable if the locality of a parallel
execution can be computed from the locality of indi-
vidual tasks. However, the reuse distance is insufficient
to build composable models.

704 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

We illustrate this limitation by a counter example,
first published in [8]. Fig.6 shows three short program
traces. Programs A,B have the same set of private
reuse distances (PRD). However, when running with a
third program C, the pair A,C produces a different set
of concurrent reuse distances (CRD) than the pair B,C.
Assuming that the cache size is 4, the pair A,C has no
capacity miss, but B,C has. The example also shows
the same limitation for miss ratio. With identical reuse
distances, A,B have the same number of misses in the
private cache. But in the shared cache co-running with
the same program C, they incur a different number of
cache misses.

Fig.6 is a disproof by counterexample. It shows con-
clusively that PRD is not enough to compute CRD,
and the solo-run miss ratio is not enough to compute
the co-run miss ratio.

In the example, the reason for the different co-run
locality is the different interaction based on the time
span of a reuse. Consider the data accesses to a in A,B.
They have the same private reuse distance, 2, but very
different (logical) reuse times, 3 in A and 7 in B. When
co-running with C, the reuse distance is lengthened be-
cause of the data accesses by C. Since the reuse in B
spans over a longer time, it is affected more by cache
sharing. As a result, the concurrent reuse distance for
a is 4 in the A,C but 5 in the B,C co-run.

Chandra et al.[17] described three models of cache
sharing. A simple one is the composition of reuse dis-
tance, called (LRU) stack distance competition (SDC).
Since the model uses the reuse distance as the only in-
put, it would have given the same prediction in our
example for A,C and B,C. Therefore, it is a flawed
model. A number of earlier studies have reached the
same conclusion through experiments[93-95].

3.6.4 Classic Composition Model

Let A,B be two programs that share the same cache
but do not share data. The effect of B on the locality
of A is:

P (capacity miss by A when running with B)

=P (A’s reuse distance + B’s footprint > cache size).

In this model, the cache interference (i.e., CRD) is
computed by combining the footprint (i.e., the interfer-
ence), and the reuse distance, i.e., the per-task locality.
Specialized versions of this model were first developed
by Suh et al.[16] for time-sharing systems and Chandra
et al.[17] for multicore cache sharing. While Chandra[17]

described and evaluated the composition for two pro-
grams, Chen and Aamodt[96] improved the accuracy
when analyzing more programs with a greater number
of cache conflicts. A later study by Jiang et al.[52] gives
the general form of the classic model not tied to cache
parameters such as associativity.

In the work of Suh et al.[16] and Chandra et al.[17],
the footprint equation is iterative (see Subsection 3.3),
while in the work of Jiang et al.[52], the footprint equa-
tion is statistical (see Subsection 3.2). Another foot-
print equation is the conversion formula by Denning
and Schwartz[43]. These equations are not completely
constrained, so the solution is not unique and depends
on modeling assumptions.

The classic model is not simple as presented in
the previous publications. In the work of Chandra
et al.[17], hardware and program factors were consid-
ered together. Xie and Loh[97] noted that the model
by Chandra et al. “is fairly involved; the large num-
ber of complex statistical computations would be very
difficult to directly implement in hardware.” In addi-
tion, the model has a high cost. It was not used in
the comparison study of Zhuravlev et al.[94], because it
was not “computationally fast enough to be used in the
robust scheduling algorithm.”

There is another weakness in usability. The two in-
puts, reuse distance and footprint, do not have a simple
effect on the composed output. The complexity hin-
ders the use of composable model in practice. As in-
troduced in Subsection 2.2, the footprint theory shows
many equivalent methods of composition. The subsec-
tion lists two other methods that are faster and easier
to use.

3.7 Performance and Optimization

Cache is one of the factors in machine performance.
Locality models show the frequency of cache hits and

Fig.6. Non-composability of reuse distance. Programs A, B have the same set of reuse distances (“−” means infty), but A, C co-run

has a different set of reuse distances than B, C co-run does.

Chen Ding et al.: Performance Metrics and Models for Shared Cache 705

misses. For performance analysis, the next question is
the combined effect on the execution time, and the ul-
timate question is the limit to which the performance
can be improved.

3.7.1 From Cache Misses to CPU Cycles

The effect of cache on execution time is tradition-
ally given by two metrics, AMP (average miss penalty)
and AMAT (average memory access time), which is the
number of cycles necessary for respectively, a cache miss
and a memory access on average[98].

On modern processors, the timing effect is increas-
ingly complex. A recent analysis was conducted by Sun
and Wang[99], who explained that AMAT is affected by
the processor techniques for improving instruction-level
parallelism, including pipelining, multiple functional
units, out-of-order execution, branch prediction, specu-
lation, and by the techniques for improving memory
performance, including pipelined, multi-port, multi-
bank cache, non-blocking cache, and data prefetching.
The increasing complexity motivates the development
of new metrics such as APC (access per cycle) studied
in their paper[99].

Much of the timing delay is caused by events out-
side the CPU and the cache, in particular, the memory
controller, the memory bus and the DRAM modules.

Zhao et al.[100] developed a model of pressure that
includes both cache and memory bandwidth sharing
using regression analysis to identify a piece-wise lin-
ear correlation between the memory latency and the
memory bandwidth utilization. The model is not peer
specific. The same utilization may be caused by one
program or a group of programs. Wang et al.[101] gave
an event model called DraMon to capture the probabi-
lity of DRAM hits, misses and conflicts and the effect
of contention and concurrency at the level of a DRAM
bank. The event model was shown to be more accurate
than linear and logarithmic regression[102].

It is important to manage contention and shar-
ing at the memory layer, as shown by two re-
cent techniques, bus-cycle modulation for execution
throttling[103] and memory partitioning to reduce bank-
level interference[104]. Next we turn the attention back
to cache and review the techniques for reducing the
cache interference.

3.7.2 Characterization of Interference

Xie and Loh[97] gave an animalistic classification of
program interference. Based on the behavior in shared
cache, a program belongs to one of the four animal
classes. A turtle has little use of shared cache. A rab-

bit and a sheep both have a low miss rate. A rabbit is
sensitive and tends to be affected by co-run peers, but
a sheep does not. Both programs have small impacts
on others. The last class is a devil, which has a high
miss rate and impairs the performance of others but is
not affected by others.

Other classifications include coloring of miss inten-
sity, dual metrics of cache partitioning, and utility of
cache space to performance. These are reviewed by Xie
and Loh[97].

Jiang et al.[52] classified programs along two locality
dimensions. The sensitivity is computed from the clas-
sic composition model (Subsection 3.6.4). It shows how
a program is affected by others. The competitiveness is
distinct data blocks per cycle (DPC), which is equiva-
lent to the average footprint. If we divide each locality
dimension into two halves, we have four classes, which
we may call locality classes. Locality classes are not the
same as animal classes. For example, a program can be
extremely competitive, i.e., devilish, but may also be ei-
ther sensitive or insensitive. This phenomenon was ob-
served by Zhuravlev et al.[94], who showed that “devils
were some of the most sensitive applications”.

3.7.3 Optimal Co-Scheduling

Given a set of programs, co-scheduling divides them
into co-run groups, where each group is run together.
The goal is to minimize the interference within these
groups, so to maximize resource utilization and co-
run throughput. The interference depends mostly on
the memory hierarchy, and the effect is non-linear and
asymmetric.

While a locality model may predict the cache inter-
ference, the impact on performance depends on many
other factors including the CPU speed, the effect of
prefetching, the available memory bandwidth, and, if
a program is I/O intensive, the speed of the disk or
the network. Direct testing can most accurately mea-
sure the performance interference. Complete testing,
however, has an exponential cost, since the number of
subsets in an n-element set is 2n. Note that solo exe-
cutions are needed to compute the slowdown in group
executions.

For pairwise co-runs, the interference can be repre-
sented by a complete graph where nodes are programs
and edges have weights equal to pair-run slowdowns.
Jiang et al.[105],⑤ showed that the optimization is min-
weight perfect matching, and the problem is NP-hard.
They gave an approximation algorithm that produces
near-optimal schedules.

The throughput is often not the only goal. Other
desirable properties include fairness, i.e., no program is

⑤First published by Jiang et al.[106]

706 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

penalized disproportionally due to unfair sharing, and
quality of service (QoS), i.e., a program must maintain
a certain level of performance.

As inputs, an optimal solution requires accurate pre-
diction of co-run degradation. Prior solutions are ei-
ther locality based (see Subsection 3.6) or performance
based (this subsection). It is difficult for them to
produce accurate prediction without expensive testing.
For co-run miss rates, the footprint gives near real-
time prediction, with an accuracy similar to exhaustive
testing[10].

3.7.4 Heuristics-Based Co-Scheduling

In symbiotic scheduling (SOS), Snavely and
Tullsen[107] used a sampling phase to test a number
of possible co-run schedules and select the best one
from these samples for the next (symbiosis) phase.
They showed that a small number of possible schedules
(instead of exhaustive testing) is sufficient to produce
good improvements. The system was designed and
tested for simultaneous multi-threading. Symbiotic
scheduling assumes that program co-run behavior does
not vary significantly over time, so the sampling phase
is representative of performance in the remaining exe-
cution. Testing does not require program instrumenta-
tion.

Fedorova et al.[54] addressed the problem of perfor-
mance isolation by suspending a program execution
when needed. They gave a cache-fair algorithm to en-
sure a program runs at least at the speed with fair cache
allocation. The technique is based on the assumption
that if two programs have the same frequency of cache
misses, they have the same amount of data in cache. In
locality modeling, the assumption means uniform dis-
tribution of the access in cache. While the assumption
is not always valid, the model is efficient for use in an
OS scheduler to manage cache sharing in real time.

The two techniques are dynamic and do not need
off-line profiling. However, on-line analysis may not be
accurate and cannot predict interference in other pro-
gram combinations. Furthermore, non-symbiotic pair-
ing (during sampling) and throttling (for fairness) do
not maximize the throughput.

Blagodurov et al.[95],⑥ developed the Pain classifi-
cation. The degree of pain that application A suffers
while it co-runs with B is affected by A’s cache sensi-
tivity, which is computed using the reuse distance pro-
file (PRD), and B’s cache intensity, which is measured
by the number of last level cache accesses per million
instructions. The Pain model is similar to the classic
composition model described in Subsection 3.6.4 except
that Pain uses the miss frequency rather than the foot-

print. The choice is partly for efficiency. Other on-
line techniques also use the last-level cache miss rate as
cache use intensity[108-109].

Pain is an offline solution. This idea is extended
into an online solution called Distributed Intensity (DI),
which uses only the miss rate. An application is clas-
sified as intensive if it is above the average miss rate
and non-intensive otherwise. The scheduler then tries
to group high-resource-intensity program(s) with low-
resource-intensity program(s) on a multicore to miti-
gate the conflicts on shared resources[3,18,93-95,110-111].

Cache misses represent only a (small) subset of pro-
gram accesses. In comparison, the footprint includes
the effect of all cache accesses. Furthermore, the miss
frequency depends on co-run peers and has the effect
of circular feedback, since the peers are affected by the
self. The result of counter-based modeling is specific to
one grouping situation and may not be usable in other
groupings. In comparison, footprint analysis collects
“clean-room” statistics, unaffected by co-run peers pro-
gram instrumentation or the analyzer code and usable
for interference with any peers (which may be unknown
at the time of footprint analysis). With the new theory
in this thesis, footprint can be obtained with near real-
time efficiency.

In an offline solution, Jiang et al.[105] defined the
concept of politeness for a program as “the reciprocal
of the sum of the degradations of all co-run groups that
include the job.” The politeness is measured by the ef-
fect on the execution time, not just the miss ratio, and
is used to approximate optimal job scheduling.

In an online solution, the high cost of co-run test-
ing is addressed in a strategy called Bubble-Up[112].
The strategy has two steps. First, a program is co-
run against an expanding bubble to produce a sensi-
tivity curve. The bubble is a specially designed probe
program. In the second step, the pressure of the pro-
gram is reported by another probe and probing run.
Bubble-Up is a composable strategy, since each pro-
gram is tested individually without testing all program
combinations. Bubble-Up extracts the factors that de-
termine the program execution time. In comparison,
the footprint theory has a narrower scope, which in-
cludes just the factors that determine the program be-
havior in cache.

Two recent solutions use machine learning. Delim-
itrou and Kozyrakis[113] built a data center scheduler
called Paragon. The design of Paragon identifies 10
sources of interference. It uses offline training (through
probe programs) to build parameterized models on
their performance impact. During online use, Paragon
feeds the history information to a learning algorithm

⑥Journal version of [93-94].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 707

called collaborative filtering. Collaborative filtering
supports sparse learning. Based on a small amount of
past data, it can predict application-application inter-
ference and application-machine match.

Statistical techniques have had many uses in per-
formance analysis of parallel code, including clustering,
factoring, and correlation[114], linear models (with non-
linear components)[115], queuing models[116], directed
searches[117], and analytical models[118].

Machine learning is general and can consider differ-
ent types of resources together. It is also scalable as
more factors can be added by having additional learn-
ing. Paragon’s learning technique observes the co-run
results but has to be given the solo-run speed to com-
pute the co-run slowdown. The cache model comple-
ments performance models, which can include the spe-
cialized model as a component. Locality metrics such
as the footprint can be used as an input to a learning al-
gorithm. While the strength of machine learning is the
breadth and the general framework, the strength of the
locality theory is the depth and the focused formula-
tion. As a benefit of the latter, we now can understand
the shared cache with mathematically tractable models
and derive precise co-run miss ratios.

3.7.5 Performance Scaling Models

Using the PRD/CRD model[13], Wu et al.[14] con-
ducted experiments on a wide range of symmetric mul-
tithreaded benchmarks on modest problem size and
core counts and used their scaling framework to study
the performance (average memory access time AMAT)
over cache hierarchy scaling for large problem sizes on
large-scale (LCMPs). The study focuses on the effect
of hardware characteristics such as core counts, cache
sizes, and cache organizations on different programs
and program inputs, but not on hardware independent
program characterization.

3.8 Related Techniques

3.8.1 Input-Centric Analysis

The early work in profiling examines multiple exe-
cutions to identify what behavior is common. For
example, Wall compared the hot variables and functions
found in different executions of the same program[119].
Recent work has gone one step further to identify the
patterns of change and predict how the behavior will
differ from run to run. Shen called it input-centric
analysis [120].

Input-centric analysis covers the intermediate
ground between dynamic analysis, which is for a sin-
gle execution, and static analysis, which is for all exe-
cutions. For problems such as reuse distance and foot-

print, dynamic analysis is too specific, because the re-
sult is limited to what happens in one execution. Static
analysis is too general, since it assumes all code paths
are possible. Input-centric analysis provides a way to
overcome these limitations.

Imperative to input-centric analysis is a metric
whose results can be compared between different exe-
cutions. The access of a memory location, for example,
is not comparable because a program may allocate the
same datum to different locations in different runs. Nei-
ther is the instruction making the access, since the same
access may be made from different codes in different
runs. Reuse distance is the first metric to enable input-
centric analysis, since it is not tied to specific memory
allocation or control flow and can be compared between
different runs.

The first group of work studied how the reuse dis-
tance changes in different runs and developed sta-
tistical models of locality prediction (called whole-
program locality)[5,36,121], miss-rate prediction[28],
performance prediction (not just cross-input but
also cross-architecture)[25,122], critical load instruction
prediction[29], and locality phases[123-125]. Zhong et al.
surveyed these and other techniques and categorized
them as behavior (rather than code) based analysis,
analogous to observation and prediction in the physical
and biological sciences[5].

More recent work combined behavior and code
analysis, in particular, showed how to predict the loop
bounds in different runs. To characterize program in-
puts, Mao and Shen defined an extensible input char-
acterization language (XICL)[126]. Jiang et al. defined
the notion of seminal behavior, which is the smallest set
of program values that collectively determine the itera-
tion count of all loops[127]. Learning techniques such
as classification trees were used to identify the seminal
behavior[126,128]. Wu et al. later expanded the loop
analysis to capture sequence patterns[129].

Input-centric analysis has been used to improve the
feedback-driven program optimization (FDO) in the
IBM XL C compiler[127] and the just-in-time (JIT) com-
piler in Java virtual machines[120,130-131]. Profiles from
different inputs are routinely used in feedback-driven
and iterative compiler optimization. The quality of op-
timization depends on the quality of profiles. The de-
pendence has been examined using statistics[132-133].

3.8.2 Profiling and Performance Monitoring

The term profiling broadly refers to techniques that
extract and analyze a subset of events in a program
execution. Locality profiling extracts and analyzes the
sequence of memory accesses. It does so by program
instrumentation. At each memory reference, it inserts

708 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

a call to pass the memory address to an analyzer. The
instrumentation can be done at source or binary level.
Source level instrumentation is made by a compiler
such as GCC, Open64, and LLVM, usually at the level
of the intermediate code. Binary instrumentation is by
a binary rewriting tool. Both can be done statically,
i.e., without running a program. Binary rewriting can
also be done dynamically when a program is running.

The main problem of profiling is the cost of the
instrumentation. A compiler can optimize the instru-
mented code statically. Another advantage is that
the instrumentation tool is portable if a compiler is
portable. In comparison, binary rewriting is architec-
ture specific. For example, ATOM instruments only
Alpha binary[134], and Pin x86 binary[135]. On the
other hand, Pin can instrument dynamically loaded
library, which a static tool cannot do.

Profiling does not model the timing effect, for which
we need to either monitor an execution on actual hard-
ware or reproduce it in a simulator.

Performance monitoring for parallel code has a long
history[136-138]. Modern processors provide hardware
counters to monitor hardware events with little or no
run-time cost. The events related to memory perfor-
mance include the frequency of cache misses, cache
coherence misses, and various cycle counts, including
stalled cycles. When many events are being moni-
tored in a large system over a long execution, the large
volume of results presents two problems. The first is
the time and space cost of collecting and storing these
results. The second is analysis — how to identify high-
level information from low-level measurements.

These problems are solved by monitoring and visua-
lization tools, including commercial ones such as Intel
VTune Amplifier, AMD CodeAnalysist, and CrayPat,
and open-source projects such as PAPI library[139],
HPCToolkit[140], TAU[141], and Open|SpeedShop[142].
The aggregation of information is usually code cen-
tric, which shows performance in program func-
tions and instructions. Vertical profiling identifies
performance problems across a software stack[143].
Continuous program optimization (CPO) not only finds
performance problems but also optimizes performance
automatically[58,60,144-145]. In recent work, data-centric
aggregation is used to pin-point locality problems more
effectively, for issues of not just cache misses but
also non-uniform memory access (NUMA)
latency[146-148].

Bursty Sampling and Shadow Profiling. Arnold and
Ryder pioneered a general framework to sample Java
code, i.e., the first few invocations of a function or the
beginning iterations of a loop[56]. It has been adopted
for hot-stream prefetching in C/C++ in bursty sam-
pling [20] and extended to sample both static and dy-

namic bursts for calling context profiling[149]. Shadow
profiling pauses a program at preset intervals and forks
a separate process to profile in parallel with the base
program[64-65]. The reuse distance analysis is not a
good target for these techniques because of the un-
certain length of the reuse windows. However, the
footprint can be easily sampled using shadow profil-
ing. Reuse distance can then be computed using the
conversion theory.

4 Conclusions

In this paper we have described the recent footprint
theory of locality, including the definition and formal
properties especially the footprint composition and the
conversion between window-based statistics, i.e., the
footprint, and reuse-based statistics, e.g., the miss ra-
tio. We have surveyed a large literature, more than 140
publications over the past four decades, focusing on the
working set theory, which lays the foundation of this re-
search field, and recent performance models, which ad-
dress the complex challenges posed by the modern mul-
ticore memory hierarchy. Through the review, we have
appraised their strengths and weaknesses and pointed
out the relation with the new footprint theory.

Nicholas Wirth titled his 1976 book “Algorithms +
Data Structures = Programs” to emphasize the core
subjects and their relations. We would modernize the
figurative equation for use on today’s machines and
say “(Algorithms + Data Structures) × Locality = Ef-
ficient Programs”. In theory, locality is fundamental
in understanding the nature of computation. In prac-
tice, memory optimization is necessary in the design
and use of every computing system. Locality research
has made tremendous progress and immense impacts.
This review focuses on the growing body of research
to uncover the essential aspects of program behavior in
shared cache and as a result enhance our ability to un-
derstand and manage program interaction on multicore
systems.

Acknowledgment We thank Peter Denning and
Xipeng Shen for always patiently and promptly answer-
ing our questions about their work, for the many people
who worked with us at Rochester, and for the reviewers
and the organizers of this special issue. Given the scope
and depth of the past research, it is inevitable that the
presentation fails to be complete and completely pre-
cise. We apologize for any omission and misrepresenta-
tion. Any error is entirely ours. We appreciate reader
feedback, which can be sent to the email address listed
in the first page of the paper.

A Chinese version of the first two sections have
been co-authored with Yuan Liang and published in
the Journal of Computer Engineering and Science[150].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 709

References

[1] Zhang X, Dwarkadas S, Shen K. Towards practical page
coloring-based multicore cache management. In Proc. the
EuroSys Conference, April 2009, pp.89-102.

[2] Denning P J. Working sets past and present. IEEE Transac-
tions on Software Engineering, 1980, 6(1): 64-84.

[3] Denning P J. The working set model for program behaviour.
Communications of the ACM, 1968, 11(5): 323-333.

[4] Brock J, Luo H, Ding C. Locality analysis: A nonillion time
window problem. In Proc. Big Data Analytics Workshop,
June 2013.

[5] Zhong Y, Shen X, Ding C. Program locality analysis using
reuse distance. ACM TOPLAS, 2009, 31(6): 1-39.

[6] Zhong Y, Orlovich M, Shen X, Ding C. Array regrouping and
structure splitting using whole-program reference affinity. In
Proc. PLDI, June 2004, pp.255-266.

[7] Ding C, Chilimbi T. All-window profiling of concurrent exe-
cutions. In Proc. the 13th PPoPP (Poster Paper), Feb. 2008,
pp.265-266.

[8] Xiang X, Bao B, Bai T, Ding C, Chilimbi T M. All-window
profiling and composable models of cache sharing. In Proc.
PPoPP, Feb. 2011, pp.91-102.

[9] Xiang X, Bao B, Ding C, Gao Y. Linear-time modeling of
program working set in shared cache. In Proc. PACT, Oct.
2011, pp.350-360.

[10] Xiang X, Ding C, Luo H, Bao B. HOTL: A higher order theory
of locality. In Proc. ASPLOS, March 2013, pp.343-356.

[11] Xiang X, Bao B, Ding C, Shen K. Cache conscious task re-
grouping on multicore processors. In Proc. the 12th CCGrid,
May 2012, pp.603-611.

[12] Xiang X. A higher order theory of locality and its application
in multicore cache management [Ph.D. Thesis]. Computer
Science Dept., Univ. of Rochester, 2014.

[13] Wu M, Yeung D. Coherent profiles: Enabling efficient reuse
distance analysis of multicore scaling for loop-based parallel
programs. In Proc. PACT, Oct. 2011, pp.264-275.

[14] Wu M, Zhao M, Yeung D. Studying multicore processor scal-
ing via reuse distance analysis. In Proc. the 40th ISCA, June
2013, pp.499-510.

[15] Thiébaut D, Stone H S. Footprints in the cache. ACM Trans-
actions on Computer Systems, 1987, 5(4): 305-329.

[16] Suh G E, Devadas S, Rudolph L. Analytical cache models
with applications to cache partitioning. In Proc. the 15th
ICS, June 2001, pp.1-12.

[17] Chandra D, Guo F, Kim S, Solihin Y. Predicting inter-thread
cache contention on a chip multi-processor architecture. In
Proc. the 11th HPCA, Feb. 2005, pp.340-351.

[18] Belady L A. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 1966, 5(2): 78-101.

[19] Denning P J. Thrashing: Its causes and prevention. In Proc.
AFIPS Fall Joint Computer Conference, Part 1, Dec. 1968,
pp.915-922.

[20] Chilimbi T M, Hirzel M. Dynamic hot data stream prefetch-
ing for general-purpose programs. In Proc. PLDI, June 2002,
pp.199-209.

[21] Mattson R L, Gecsei J, Slutz D, Traiger I L. Evaluation tech-
niques for storage hierarchies. IBM System Journal, 1970,
9(2): 78-117.

[22] Jiang S, Zhang X. LIRS: An efficient low inter-reference re-
cency set replacement to improve buffer cache performance.
In Proc. SIGMETRICS, June 2002, pp.31-42.

[23] Smith A J. On the effectiveness of set associative page map-
ping and its applications in main memory management. In
Proc. the 2nd ICSE, Oct. 1976, pp.286-292.

[24] Hill M D, Smith A J. Evaluating associativity in CPU caches.
IEEE Transactions on Computers, 1989, 38(12): 1612-1630.

[25] Marin G, Mellor-Crummey J. Cross architecture performance
predictions for scientific applications using parameterized
models. In Proc. SIGMETRICS, June 2004, pp.2-13.

[26] Snir M, Yu J. On the theory of spatial and temporal local-
ity. Technical Report, DCS-R-2005-2564, Computer Science
Dept., Univ. of Illinois at Urbana-Champaign, 2005.

[27] Fang C, Carr S, Önder S, Wang Z. Path-based reuse distance
analysis. In Proc. the 15th CC, Mar. 2006, pp.32-46.

[28] Zhong Y, Dropsho S G, Shen X, Studer A, Ding C. Miss rate
prediction across program inputs and cache configurations.
IEEE Transactions on Computers, 2007, 56(3): 328-343.

[29] Fang C, Carr S, Önder S, Wang Z. Instruction based memory
distance analysis and its application to optimization. In Proc.
PACT, Sept. 2005, pp.27-37.

[30] Beyls K, D’Hollander E H. Discovery of locality-improving
refactorings by reuse path analysis. In Proc. the 2nd Int.
Conf. High Performance Computing and Communications,
Sept. 2006, pp.220-229.

[31] Beyls K, D’Hollander E H. Intermediately executed code is the
key to find refactorings that improve temporal data locality.
In Proc. the 3rd ACM Conference on Computing Frontiers,
May 2006, pp.373-382.

[32] Kelly T, Cohen I, Goldszmidt M, Keeton K. Inducing models
of black-box storage arrays. Technical Report, HPL-2004-108,
HP Laboratories Palo Alto, 2004.

[33] Almeida V, Bestavros A, Crovella M, de Oliveira A. Char-
acterizing reference locality in the WWW. In Proc. the 4th
International Conference on Parallel and Distributed Infor-
mation Systems (PDIS), December 1996, pp.92-103.

[34] Bennett B T, Kruskal V J. LRU stack processing. IBM Jour-
nal of Research and Development, 1975, 19(4): 353-357.

[35] Olken F. Efficient methods for calculating the success func-
tion of fixed space replacement policies. Technical Report,
LBL-12370, Lawrence Berkeley Laboratory, 1981.

[36] Ding C, Zhong Y. Predicting whole-program locality through
reuse distance analysis. In Proc. PLDI, June 2003, pp.245-
257.

[37] Zhong Y, Ding C, Kennedy K. Reuse distance analysis for
scientific programs. In Proc. Workshop on Languages, Com-
pilers, and Run-time Systems for Scalable Computers, March
2002.

[38] Schuff D L, Kulkarni M, Pai V S. Accelerating multicore reuse
distance analysis with sampling and parallelization. In Proc.
the 19th PACT, Sept. 2010, pp.53-64.

[39] Kim Y H, Hill M D, Wood D A. Implementing stack simu-
lation for highly-associative memories. In Proc. SIGMET-
RICS, May 1991, pp.212-213.

[40] Sugumar R A, Abraham S G. Multi-configuration simulation
algorithms for the evaluation of computer architecture de-
signs. Technical Report, University of Michigan, August 1993.

[41] Burger D, Austin T. The SimpleScalar tool set, version 2.0.
Technical Report, CS-TR-97-1342, Department of Computer
Science, University of Wisconsin, June 1997.

[42] Almasi G, Cascaval C, Padua D A. Calculating stack dis-
tances efficiently. In Proc. the ACM SIGPLAN Workshop
on Memory System Performance, June 2002, pp.37-43.

[43] Denning P J, Schwartz S C. Properties of the working set
model. Communications of the ACM, 1972, 15(3): 191-198.

[44] Berg E, Hagersten E. StatCache: A probabilistic approach
to efficient and accurate data locality analysis. In Proc. IS-
PASS, March 2004, pp.20-27.

[45] Berg E, Hagersten E. Fast data-locality profiling of native
execution. In Proc. SIGMETRICS, June 2005, pp.169-180.

[46] Eklov D, Hagersten E. StatStack: Efficient modeling of LRU
caches. In Proc. ISPASS, March 2010, pp.55-65.

[47] Eklov D, Black-Schaffer D, Hagersten E. Fast modeling of
shared caches in multicore systems. In Proc. the 6th

710 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

HiPEAC, Jan. 2011, pp.147-157.

[48] Shen X, Shaw J, Meeker B, Ding C. Locality approximation
using time. In Proc. the 34th POPL, Jan. 2007, pp.55-61.

[49] Shen X, Shaw J. Scalable implementation of efficient local-
ity approximation. In Proc. the 21st LCPC Workshop, July
31-August 2, 2008, pp.202-216.

[50] Jiang Y, Zhang E Z, Tian K, Shen X. Is reuse distance ap-
plicable to data locality analysis on chip multiprocessors? In
Proc. the 19th CC, Mar. 2010, pp.264-282.

[51] Shen X, Shaw J, Meeker B, Ding C. Locality approximation
using time. Technical Report, TR 901, Department of Com-
puter Science, University of Rochester, December 2006.

[52] Jiang Y, Tian K, Shen X. Combining locality analysis with
online proactive job co-scheduling in chip multiprocessors. In
Proc. HiPEAC, Jan. 2010, pp.201-215.

[53] West R, Zaroo P, Waldspurger C A, Zhang X. Online cache
modeling for commodity multicore processors. Operating Sys-
tems Review, 2010, 44(4): 19-29.

[54] Fedorova A, Seltzer M, Smith M D. Improving performance
isolation on chip multiprocessors via an operating system
scheduler. In Proc. the 16th PACT, Sept. 2007, pp.25-38.

[55] Zhou S. An efficient simulation algorithm for cache of random
replacement policy. In Proc. the IFIP Int. Conf. Network
and Parallel Computing, Sept. 2010, pp.144-154.

[56] Arnold M, Ryder B G. A framework for reducing the cost of
instrumented code. In Proc. PLDI, June 2001, pp.168-179.

[57] Hirzel M, Chilimbi T M. Bursty tracing: A framework for
low-overhead temporal profiling. In Proc. ACM Workshop
on Feedback-Directed and Dynamic Optimization, Dec. 2001.

[58] Cascaval C, Duesterwald E, Sweeney P F, Wisniewski R W.
Multiple page size modeling and optimization. In Proc. the
14th PACT, Sept. 2005, pp.339-349.

[59] Zhong Y, Chang W. Sampling-based program locality approx-
imation. In Proc. the 7th ISMM, June 2008, pp.91-100.

[60] Tam D K, Azimi R, Soares L, Stumm M. RapidMRC: Ap-
proximating L2 miss rate curves on commodity systems for
online optimizations. In Proc. the 14th ASPLOS, Mar. 2009,
pp.121-132.

[61] Niu Q, Dinan J, Lu Q, Sadayappan P. PARDA: A fast para-
llel reuse distance analysis algorithm. In Proc. IPDPS, May
2012.

[62] Cui H, Yi Q, Xue J, Wang L, Yang Y, Feng X. A highly para-
llel reuse distance analysis algorithm on GPUs. In Proc. the
26th IPDPS, May 2012, pp. 1284-1294.

[63] Gupta S, Xiang P, Yang Y, Zhou H. Locality principle re-
visited: A probability-Based quantitative approach. In Proc.
the 26th IPDPS, May 2012, pp.995-1009.

[64] Moseley T, Shye A, Reddi V J, Grunwald D, Peri R. Shadow
profiling: Hiding instrumentation costs with parallelism. In
Proc. CGO, March 2007, pp.198-208.

[65] Wallace S, Hazelwood K. Superpin: Parallelizing dynamic
instrumentation for real-time performance. In Proc. CGO,
Mar. 2007, pp.209-220.

[66] Cascaval C, Padua D A. Estimating cache misses and local-
ity using stack distances. In Proc. the 17th ICS, June 2003,
pp.150-159.

[67] Allen R, Kennedy K. Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. Morgan Kaufmann
Publishers, 2001.

[68] Beyls K, D’Hollander E H. Generating cache hints for im-
proved program efficiency. Journal of Systems Architecture,
2005, 51(4): 223-250.

[69] Pugh W, Wonnacott D. Eliminating false data dependences
using the Omega test. In Proc. PLDI, June 1992, pp.140-151.

[70] Chauhan A, Shei C Y. Static reuse distances for locality-based
optimizations in MATLAB. In Proc. the 24th ICS, June 2010,
pp.295-304.

[71] Shen X, Gao Y, Ding C et al. Lightweight reference affinity
analysis. In Proc. the 19th ICS, June 2005, pp.131-140.

[72] Bao B, Ding C. Defensive loop tiling for shared cache. In
Proc. CGO, Feb. 2013, pp.1-11.

[73] Bao B. Peer-aware program optimization [Ph.D. Thesis].
Computer Science Dept., Univ. of Rochester, January 2013.

[74] Yuan L, Ding C, Štefankovič D, Zhang Y. Modeling the local-
ity in graph traversals. In Proc. the 41st ICPP, Sept. 2012,
pp.138-147.

[75] Agarwal A, Hennessy J L, Horowitz M. Cache performance
of operating system and multiprogramming workloads. ACM
Transactions on Computer Systems, 1988, 6(4): 393-431.

[76] Ding C, Chilimbi T. A composable model for analyzing local-
ity of multi-threaded programs. Technical Report, MSR-TR-
2009-107, Microsoft Research, August 2009.

[77] Strohmaier E, Shan H. APEX-Map: A parameterized scal-
able memory access probe for high-performance computing
systems. Concurrency and Computation: Practice and Expe-
rience, 2007, 19(17): 2185-2205.

[78] Ibrahim K Z, Strohmaier E. Characterizing the relation be-
tween Apex-Map synthetic probes and reuse distance distri-
butions. In Proc. ICPP, Sept. 2010, pp.353-362.

[79] He L, Yu Z, Jin H. FractalMRC: Online cache miss rate curve
prediction on commodity systems. In Proc. IPDPS, May
2012, pp.1341-1351.

[80] Saltzer J H. A simple linear model of demand paging perfor-
mance. Communications of the ACM, 1974, 17(4): 181-186.

[81] Strecker W D. Transient behavior of cache memories. ACM
Transactions on Computer Systems, 1983, 1(4): 281-293.

[82] King W F. Analysis of demand paging algorithms. In Proc.
IFIP Congress, August 1971, pp.485-490.

[83] Fagin R, Price T G. Efficient calculation of expected miss ra-
tios in the independent reference model. SIAM Journal of
Computing, 1978, 7(3): 288-297.

[84] Dan A, Towsley D F. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proc. SIGMETRICS,
May 1990, pp.143-152.

[85] Gu X, Ding C. Reuse distance distribution in random access.
Technical Report, URCS #930, University of Rochester, Jan-
uary 2008.

[86] Denning P J, Slutz D R. Generalized working sets for segment
reference strings. Communications of the ACM, 1978, 21(9):
750-759.

[87] Easton M C, Fagin R. Cold-start vs. warm-start miss ratios.
Communications of the ACM, 1978, 21(10): 866-872.

[88] Shedler G, Tung C. Locality in page reference strings. SIAM
Journal on Computing, 1972, 1(3): 218-241.

[89] Stone H S, Turek J, Wolf J L. Optimal partitioning of cache
memory. IEEE Transactions on Computers, 1992, 41(9):
1054-1068.

[90] Thiébaut D, Stone H S, Wolf J L. Improving disk cache hit-
ratios through cache partitioning. IEEE Transactions on
Computers, 1992, 41(6): 665-676.

[91] Falsafi B, Wood D A. Modeling cost/performance of a para-
llel computer simulator. ACM Transactions on Modeling and
Computer Simulation, 1997, 7(1): 104-130.

[92] Wu M J, Yeung D. Identifying optimal multicore cache hi-
erarchies for loop-based parallel programs via reuse distance
analysis. In Proc. the ACM SIGPLAN Workshop on Memory
System Performance and Correctness, June 2012, pp.2-11.

[93] Fedorova A, Blagodurov S, Zhuravlev S. Managing contention
for shared resources on multicore processors. Communica-
tions of the ACM, 2010, 53(2): 49-57.

[94] Zhuravlev S, Blagodurov S, Fedorova A. Addressing shared
resource contention in multicore processors via scheduling. In
Proc. ASPLOS, March 2010, pp.129-142.

Chen Ding et al.: Performance Metrics and Models for Shared Cache 711

[95] Blagodurov S, Zhuravlev S, Fedorova A. Contention-aware
scheduling on multicore systems. ACM Transactions on
Computer Systems, 2010, 28(4): Article No.8.

[96] Chen X E, Aamodt T M. A first-order fine-grained multi-
threaded throughput model. In Proc. HPCA, Feb. 2009,
pp.329-340.

[97] Xie Y, Loh G H. Dynamic classification of program memory
behaviors in CMPs. In Proc. CMP-MSI Workshop, June
2008.

[98] Hennessy J L, Patterson D A. Computer Architecture: A
Quantitative Approach (4th edition). Morgan Kaufmann,
2006.

[99] Sun X H, Wang D. APC: A performance metric of memory
systems. ACM SIGMETRICS Performance Evaluation Re-
view, 2012, 40(2): 125-130.

[100] Zhao J, Feng X, Cui H et al. An empirical model for predict-
ing cross-core performance interference on multicore proces-
sors. In Proc. PACT, Sept. 2013, pp.201-212.

[101] Wang W, Dey T, Davidson J W et al. DraMon: Predicting
memory bandwidth usage of multi-threaded programs with
high accuracy and low overhead. In Proc. HPCA, Feb. 2014.

[102] Kim M, Kumar P, Kim H, Brett B. Predicting potential
speedup of serial code via lightweight profiling and emula-
tions with memory performance model. In Proc. IPDPS,
May 2012, pp.1318-1329.

[103] Zhang X, Zhong R, Dwarkadas S, Shen K. A flexible frame-
work for throttling-enabled multicore management (TEMM).
In Proc. ICPP, Sept. 2012, pp.389-398.

[104] Liu L, Cui Z, Xing M et al. A software memory partition
approach for eliminating bank-level interference in multicore
systems. In Proc. PACT, Sept. 2012, pp.367-376.

[105] Jiang Y, Tian K, Shen X, Zhang J, Chen J, Tripathi R. The
complexity of optimal job co-scheduling on chip multiproces-
sors and heuristics-based solutions. IEEE Trans. Parallel
and Distributed Systems, 2011, 22(7): 1192-1205.

[106] Jiang Y, Shen X, Chen J, Tripathi R. Analysis and approxi-
mation of optimal co-scheduling on chip multiprocessors. In
Proc. PACT, Oct. 2008, pp.220-229.

[107] Snavely A, Tullsen D M. Symbiotic jobscheduling for a simul-
taneous multithreading processor. In Proc. ASPLOS, Nov.
2000, pp.234-244.

[108] Shen K. Request behavior variations. In Proc. ASPLOS,
Mar. 2010, pp.103-116.

[109] Knauerhase R, Brett P, Hohlt B, Li T, Hahn S. Using OS
observations to improve performance in multicore systems.
IEEE Micro, 2008, 38(3): 54-66.

[110] Denning P J. Equipment configuration in balanced computer
systems. IEEE Transactions on Computers, 1969, C-18(11):
1008-1012.

[111] Wulf W A. Performance monitors for multi-programming sys-
tems. In Proc. the ACM Symposium on Operating System
Principles, Oct. 1969, pp.175-181.

[112] Mars J, Tang L, Skadron K, Soffa M L, Hundt R. Increas-
ing utilization in modern warehouse-scale computers using
bubble-up. IEEE Micro, 2012, 32(3): 88-99.

[113] Delimitrou C, Kozyrakis C. Paragon: QoS-aware scheduling
for heterogeneous datacenters. In Proc. ASPLOS, March
2013, pp.77-88.

[114] Ahn D H, Vetter J S. Scalable analysis techniques for micro-
processor performance counter metrics. In Proc. ACM/IEEE
Conf. Supercomputing, Nov. 2002.

[115] Rodŕıguez G, Badia R M, Labarta J. Generation of simple
analytical models for message passing applications. In Proc.
Euro-Par., Aug. 31-Sept. 3, 2004, pp.183-188.

[116] Jacquet A, Janot V, Leung C et al. An executable analyt-
ical performance evaluation approach for early performance
prediction. In Proc. IPDPS, April 2003.

[117] Miller B P, Callaghan M D, Cargille J M et al. The Para-
dyn parallel performance measurement tool. IEEE Computer,
1995, 28(11): 37-46.

[118] Kerbyson D J, Hoisie A, Wasserman H J. Modelling the per-
formance of large-scale systems. IEE Proceedings - Software,
2003, 150(4): 214-222.

[119] Wall D W. Predicting program behavior using real or esti-
mated profiles. In Proc. PLDI, June 1991, pp.59-70.

[120] Tian K, Jiang Y, Zhang E Z, Shen X. An input-centric
paradigm for program dynamic optimizations. In Proc. OOP-
SLA, Oct. 2010, pp.125-139.

[121] Shen X, Zhong Y, Ding C. Regression-based multi-model pre-
diction of data reuse signature. In Proc. the 4th Annual Sym-
posium of the Los Alamos Computer Science Institute, Oct.
2003.

[122] Marin G, Mellor-Crummey J. Scalable cross-architecture pre-
dictions of memory hierarchy response for scientific applica-
tions. In Proc. the Symposium of the Los Alamos Computer
Science Institute, Oct. 2005.

[123] Shen X, Ding C. Parallelization of utility programs based on
behavior phase analysis. In Proc. the International Work-
shop on Languages and Compilers for Parallel Computing,
Oct. 2005, pp.425-432.

[124] Shen X, Zhong Y, Ding C. Locality phase prediction. In Proc.
ASPLOS, Oct. 2004, pp.165-176.

[125] Shen X, Zhong Y, Ding C. Predicting locality phases for dy-
namic memory optimization. Journal of Parallel and Dis-
tributed Computing, 2007, 67(7): 783-796.

[126] Mao F, Shen X. Cross-input learning and discriminative pre-
diction in evolvable virtual machines. In Proc. CGO, Mar.
2009, pp.92-101.

[127] Jiang Y, Zhang E Z, Tian K et al. Exploiting statistical cor-
relations for proactive prediction of program behaviors. In
Proc. the 8th CGO, April 2010, pp.248-256.

[128] Cavazos J, Moss J E B. Inducing heuristics to decide whether
to schedule. In Proc. PLDI, June 2004, pp.183-194.

[129] Wu B, Zhao Z, Shen X, Jiang Y, Gao Y, Silvera R. Exploiting
inter-sequence correlations for program behavior prediction.
In Proc. OOPSLA, Oct. 2012, pp.851-866.

[130] Arnold M, Welc A, Rajan V T. Improving virtual machine
performance using a cross-run profile repository. In Proc.
OOPSLA, Oct. 2005, pp.297-311.

[131] Tian K, Zhang E Z, Shen X. A step towards transparent in-
tegration of input-consciousness into dynamic program opti-
mizations. In Proc. OOPSLA, Oct. 2011, pp.445-462.

[132] Chen Y, Huang Y, Eeckhout L et al. Evaluating iterative op-
timization across 1000 datasets. In Proc. PLDI, June 2010,
pp.448-459.

[133] Wu B, Zhou M, Shen X et al. Simple profile rectifications
go a long way — Statistically exploring and alleviating the
effects of sampling errors for program optimizations. In Proc.
the European Conference on Object-Oriented Programming,
July 2013, pp.654-678.

[134] Srivastava A, Eustace A. ATOM: A system for building cus-
tomized program analysis tools. In Proc. PLDI, June 1994,
pp.196-205.

[135] Luk C, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wal-
lace S, Reddi V J, Hazelwood K. Pin: Building customized
program analysis tools with dynamic instrumentation. In
Proc. PLDI, June 2005, pp.190-200.

[136] Wagner Meira Jr., LeBlanc T, Poulos A. Waiting time analy-
sis and performance visualization in Carnival. In Proc. ACM
SIGMETRICS Symposium on Parallel and Distributed Tools,
May 1996.

[137] Reed D A, Elford C L, Madhyastha T M, Smirni E, Lamm S E.
The next frontier: Interactive and closed loop performance
steering. In Proc. ICPP Workshop, Aug. 1996, pp.20-31.

712 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

[138] Darema-Rogers F, Pfister G F, So K. Memory access patterns
of parallel scientific programs. In Proc. SIGMETRICS, May
1987, pp.46-58.

[139] Browne S, Dongarra J, Garner N, Ho G, Mucci P. A portable
programming interface for performance evaluation on modern
processors. The International Journal of High Performance
Computing Applications, 2000, 14(3): 189-204.

[140] Adhianto L, Banerjee S, Fagan M, Krentel M, Marin G,
Mellor-Crummey J, Tallent N R. HPCTOOLKIT: Tools for
performance analysis of optimized parallel programs. Con-
currency and Computation: Practice and Experience, 2010,
22(6): 685-701.

[141] Shende S, Malony A D. The TAU parallel performance sys-
tem. International Journal of High Performance Computing
Applications, 2006, 20(2): 287-311.

[142] Schulz M, Galarowicz J, Maghrak D, Hachfeld W, Montoya D,
Cranford S. Open|SpeedShop: An open source infrastructure
for parallel performance analysis. Scientific Programming,
2008, 16(2/3): 105-121.

[143] Hauswirth M, Sweeney P F, Diwan A. Temporal vertical pro-
filing. Software: Practice and Experience, 2010, 40(8): 627-
654.

[144] Childers B, Davidson J, Soffa M L. Continuous compilation:
A new approach to aggressive and adaptive code transforma-
tion. In Proc. Symp. Parallel and Distributed Processing,
April 2003.

[145] Cascaval C, Duesterwald E, Sweeney P F, Wisniewski R W.
Performance and environment monitoring for continuous pro-
gram optimization. IBM Journal of Research and Develop-
ment, 2006, 50(2/3): 239-248.

[146] McCurdy C, Vetter J S. Memphis: Finding and fixing NUMA-
related performance problems on multi-core platforms. In
Proc. ISPASS, March 2010, pp.87-96.

[147] Liu X, Mellor-Crummey J M. Pinpointing data locality prob-
lems using data-centric analysis. In Proc. the 9th CGO, April
2011, pp.171-180.

[148] Liu X, Mellor-Crummey J. A tool to analyze the perfor-
mance of multithreaded programs on NUMA architectures.
In Proc. the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Feb. 2014, pp.259-272.

[149] Zhuang X, Serrano M J, Cain H W, Choi J. Accurate, effi-
cient, and adaptive calling context profiling. In Proc. PLDI,
June 2006, pp.263-271.

[150] Ding C, Yuan L. Program interaction on multicore: Theory
and applications. Computer Engineering and Science, 2014,
36(1): 1-5. (In Chinese)

Chen Ding received his Ph.D.
degree from Rice University, M.S.
degree from Michigan Technologi-
cal University, and B.S. degree from
Beijing University, all in computer
science before joining University of
Rochester in 2000. His research
received young investigator awards
from NSF and DOE. He co-founded
the ACM SIGPLAN Workshop on

Memory System Performance and Correctness (MSPC) and
was a visiting researcher at Microsoft Research and a vis-
iting associate professor at MIT. He is an external faculty
fellow at IBM Center for Advanced Studies.

Xiaoya Xiang graduated in 2005
from Huazhong University of Science
and Technology with a B.S. degree in
computer science and technology and
at the same time from Wuhan Uni-
versity with a B.S. degree in finance.
She got her M.S. degree in computer
science from Institute of Computing
Technology, Chinese Academy of Sci-
ences, Beijing, in 2008. She earned

her Ph.D. degree in computer science at the University of
Rochester in 2013. She is now a software engineer at Twit-
ter Inc., where her main focus is the runtime performance
of the Twitter services in a cloud environment.

Bin Bao is a senior software engi-
neer at Qualcomm Technologies, Inc.
Prior to joining Qualcomm in 2013,
Bin spent one year at Adobe Inc. as
a computer scientist. He received
his Ph.D. degree in computer sci-
ence from University of Rochester
in 2013, M.S. degree in computer
science from Institute of Computing
Technology, Chinese Academy of Sci-

ences in 2007, and B.S. degree in software engineering from
the University of Science and Technology of China in 2004.
His current research interests include program analysis and
compilation for graphics processors.

Hao Luo is a third year Ph.D.
student in the Department of
Computer Science, University of
Rochester. His research interest lies
on performance modeling of multi-
threaded applications, locality-aware
task management, and program be-
havior analysis.

Ying-Wei Luo received his
Ph.D. degree in computer science
from Peking University in 1999. He
is a full professor of computer science
in the School of Electronics Engineer-
ing and Computer Science (EECS) in
Peking University. His research in-
terests include operating system, sys-
tem virtualization, and cloud com-
puting.

Xiao-Lin Wang received his
Ph.D. degree in computer science
from Peking University in 2001. He
is now an associate professor of com-
puter science in the School of EECS
in Peking University. His research in-
terests include operation system, sys-
tem virtualization, and cloud com-
puting.

J. Parallel Distrib. Comput. 64 (2004) 108–134

ARTICLE IN PRESS
$Parts of t

International

(IPDPS’01 and

Languages and
�Correspond

E-mail addr

ken@rice.edu (
1We derived

speed, pin cou

et al. [11].

0743-7315/$ - se

doi:10.1016/j.jp
Improving effective bandwidth through compiler enhancement
of global cache reuse$

Chen Dinga,� and Ken Kennedyb

aDepartment of Computer Science, University of Rochester, P.O. Box 270226, Rochester, NY 14627, USA
b Center for High Performance Software Research (HiPerSoft), Rice University, Houston, TX, USA

Received 20 November 2002; revised 11 September 2003
Abstract

The performance of modern machines is increasingly limited by insufficient memory bandwidth. One way to alleviate this

bandwidth limitation for a given program is to minimize the aggregate data volume the program transfers from memory. In this

article we present compiler strategies for accomplishing this minimization. Following a discussion of the underlying causes of

bandwidth limitations, we present a two-step strategy to exploit global cache reuse—the temporal reuse across the whole program

and the spatial reuse across the entire data set used in that program. In the first step, we fuse computation on the same data using a

technique called reuse-based loop fusion to integrate loops with different control structures. We prove that optimal fusion for

bandwidth is NP-hard and we explore the limitations of computation fusion using perfect program information. In the second step,

we group data used by the same computation through the technique of affinity-based data regrouping, which intermixes the storage

assignments of program data elements at different granularities. We show that the method is compile-time optimal and can be used

on array and structure data. We prove that two extensions—partial and dynamic data regrouping—are NP-hard problems. Finally,

we describe our compiler implementation and experiments demonstrating that the new global strategy, on average, reduces memory

traffic by over 40% and improves execution speed by over 60% on two high-end workstations.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Reference affinity; Data locality; Program analysis; Loop fusion; Data transformation; Global cache reuse
1. Introduction

Over the past two decades, the computing power of
single-chip microprocessors has increased by a factor of
over 6400, in sharp contrast with the much slower rate
of improvement for off-chip memory bandwidth, which
has increased by a factor of no more than 150 over the
same period.1 To bridge the growing gap between CPU
and memory, modern systems employ a hierarchy of
cache memory. For the purposes of this paper, we define
effective bandwidth as the bandwidth at which a memory
his work have been published in 2001 and 2000

Parallel and Distributed Processing Symposium

IPDPS’00) and 1999 International Workshop on

Compilers for Parallel Computing.

ing author.

esses: cding@cs.rochester.edu (Chen Ding),

Ken Kennedy).

this estimate based on historical data about CPU

nt, and pin-bandwidth increases compiled by Burger

e front matter r 2003 Elsevier Inc. All rights reserved.

dc.2003.09.005
hierarchy can service a program’s demand for data. The
goal of the work reported here is to improve effective
bandwidth by reducing the total volume of memory
access in a program. In the remainder of this section, we
discuss the memory bandwidth problem and present the
basic ideas underlying our approach.

1.1. The problem of limited memory bandwidth

We measure the balance between the data demand of
a program and the memory supply of a machine as
defined by Callahan et al. [13]. The demand of a
program or program balance is the number of bytes of
memory data the program needs to support a single
CPU operation on average. The supply of a machine or
machine balance is the ratio of the maximal number of
bytes the machine can transfer on each cycle to the
maximal number of operations the machine can perform
on each cycle. If the machine balance is significantly
lower than the program balance, the CPU will be

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 109
partially idle because the memory system cannot deliver
data fast enough to keep it busy on the given program.

As a preliminary to our compiler work, we conducted
a performance study in which we measured the machine
balance of a 195 MHz MIPS R10K processor on SGI
Origin2000 and the program balance of six scientific
programs, which include four kernels—convolution,
matrix multiply, FFT, and dmxpy (matrix-vector multi-
ply from Linpack)—and two full applications—SP, a
fluid dynamics simulation program from NAS, and
Sweep3D, a particle transport simulator from DoE. The
study used machine parameters, micro-benchmarks, and
hardware event counters to measure program and
machine balance. All programs were compiled with full
optimization from the SGI MIPSpro compiler (except
for matrix multiply, for which we used a lower
optimization level -O2 because its performance was
not memory bound after loop blocking). This study was
presented in detail in an earlier paper [20], but we review
it briefly here.

Table 1 shows the ratio of program balance to
machine balance between four levels of memory
hierarchy: registers, level-one cache, level-two cache,
and main memory. A ratio of x means that the program
needs x times the bandwidth at this memory level to
achieve full CPU utilization. Each of these numbers,
save one, is significantly greater than one, demonstrating
that the bandwidth is insufficient at every level. The
numbers in the last column are several times larger than
the numbers in the other two columns, establishing that
bandwidth from main memory is the most limited. To
run at the full CPU speed, these programs would require
3.4 to 10.5 times more memory bandwidth than the SGI
m

(a)

a d c a a

a a a d d c c

(b) (c

Fig. 1. An example use of our two-step strategy: (a) a sequence of data acces

same computation.

Table 1

Ratios of program balance (bandwidth demand) to machine balance

(bandwidth supply) on SGI Origin2000

Applications Bandwidth demand vs. supply

L1-Reg L2-L1 Mem-L2

convolution 1.6 1.3 6.5

dmxpy 2.1 2.1 10.5

mmjki (-O2) 6.0 2.1 7.4

FFT 2.1 0.8 3.4

SP 2.7 1.6 6.1

Sweep3D 3.8 2.3 9.8
delivers. This insufficient bandwidth severely limits
program performance. Even in the best case (lowest
ratio), the programs cannot on average exceed 33% of
the peak CPU performance. The problem is worse in
large applications: the average CPU utilization can be
no more than 16% for SP and 10% for Sweep3D.

The bandwidth constraint, as described here, is
different from the latency constraint. We define memory

latency as the time needed for a datum to travel from
main memory to CPU without any resource contention.
Memory latency can be tolerated by fetching data early.
However, prefetching cannot alleviate the bandwidth
problem because it does not reduce the aggregate
volume of data transfer from memory. In fact, it often
aggravates the bandwidth problem by generating
unnecessary prefetches. Bandwidth is a fundamental
constraint on program performance. For example, if a
program needs 10 GB of memory transfer on a machine
with 1 GB=s memory bandwidth, the execution would
take at least 10 s; even when the machine has zero
memory latency, infinite CPU speed, and arbitrarily
early and accurate data prefetching.

Previous compiler techniques have fallen far short of
solving the bandwidth problem. The SGI Origin had
one of the highest memory bandwidths for its time—
300 MB=s on a 195 MHz processor. The problem is
worse on newer systems because CPU speed is increas-
ing much faster than memory bandwidth is improving.
The programs we used in this study were compiled with
an excellent commercial compiler that implemented
extensive loop and scalar optimizations. Data prefetch-
ing was performed by both the hardware and the
compiler. Yet, most of these programs could not utilize
more than a fraction of the CPU capacity. Thus, the
bandwidth constraint has become a principle factor
limiting the performance of modern processors.

1.2. A two-step solution strategy

We present a software solution strategy that attempts
to minimize the total memory demand of a program. We
describe the basic idea of this strategy through an
example. Fig. 1(a) shows a sequence of seven accesses to
three data elements. Assume that the CPU can either
access memory directly for data or access cache for a
copy. Given a single-element cache with the commonly
da c... ...
emory

layout

c d

)

ses; (b) fuse computation on the same data; (c) group data used by the

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134110
used LRU replacement policy, we have one cache reuse,
which is the third access of element a: The best caching
policy stores the data with the closest reuse in the future,
as shown by Best in the context of the first Fortran
compiler [7] and by Belady for virtual memory [10]. For
this example, it would keep a in cache from the
beginning and get two cache reuses. This is the best
hardware can do, given complete information of data
accesses.

By transforming a program in two distinct steps, we
can dramatically improve cache performance. The first
step is computation fusion, which brings together
different computations on the same data. For the
previous example, it would cluster accesses to the same
data element and, assuming no other constraints on
access order, produce the sequence in Fig. 1(b). The new
sequence has four cache reuses, twice that of the best
hardware method.

The second step of our strategy is data regrouping,
which organizes data elements used by the same
computation into contiguous locations in memory.
Because cache is organized in non-unit size cache
blocks, grouping data in this manner improves band-
width utilization by ensuring that, when a cache block is
loaded, more than one of its data elements is used before
it is evicted. In the previous example, the data
regrouping step would place the three data elements
into contiguous memory locations so that they will
occupy the same cache block, as shown in Fig. 1(c).

The two-step transformation achieves optimal cach-
ing: useful data are loaded once and only once in a
minimal number of cache blocks. Thus the transformed
sequence has the lowest possible amount of aggregate
memory transfer.

To be effective in large programs, computation fusion
must recombine all functions, and data regrouping must
re-shuffle the entire data layout. Current compiler
techniques are not adequate to carry out these tasks.
Most loop transformations target a single loop nest and
do not exploit data reuse among disjoint loops. Most
data transformations change a single array or object and
do not recombine useful data across array and object
boundaries.

In what follows, we begin by presenting computation
fusion, which attempts to group all accesses to the same
datum in a program. We first describe reuse-based loop

fusion, which fuses loops of different control structures
in large applications. Then we prove that optimal
fusion for bandwidth is NP-hard. Finally, we examine
the limit of computation fusion using perfect program
information.

Next, we present data regrouping, which attempts to
group all data involved in the same computation. A set
of data elements is said to exhibit reference affinity if
these elements are always used together in a program—
that is, if one of the elements is used in a program, the
others will be as well. We then present affinity-based

data regrouping, which ensures that program data
elements with reference affinity are allocated together
in memory, and we show that the regrouping method
presented is compile-time optimal. Then we describe two
extensions, partial and dynamic data regrouping, and
prove that they are NP-hard problems. We show the use
of data regrouping on structure data in addition to array
data.

The new global strategies presented here complement
rather than replace existing techniques that work on a
single loop nest or a single array. Examples of local
techniques include unroll-and-jam, loop blocking, loop
interchange, loop skewing, and single-array data trans-
formations. Our global techniques target data reuses
across loop and array boundaries. They combine loops
and arrays but they do not change the relative order of
accesses in a loop (except in small ways), nor do they
alter the relative placement of data elements in an array.
For example, if a loop nest benefits from some local
technique, the fused loop nest benefits as well. In fact,
the local technique would be more beneficial since the
amount of data and data reuse often increase after loop
fusion. The global techniques in this article are designed
as an independent step before applying local techniques.
Joint optimization may produce better results but it is
outside the scope of this article.

The next two sections of the paper present computa-
tion fusion and data regrouping. The combined strategy
is evaluated in Section 4. Section 5 discusses related
work and Section 6 provides a summary of the paper’s
contributions.
2. Reuse-based computation fusion

In this section we cover three main topics: reuse-based
loop fusion, a form of computation fusion that focuses
on loops; an analysis of the complexity of optimal
fusion; and an experimental exploration of the practical
limits of fusion given complete program information.

2.1. Reuse-based loop fusion

In most programs, data reuses occur primarily in
loops, hence computation fusion equates to loop fusion.
This section describes the three components of reuse-
based loop fusion: pair-wise fusion, sequential greedy
fusion, and multi-level fusion.

2.1.1. Program model

We begin with a program model that abstracts away
details that are not relevant to improving data reuse.

* A program consists of a list of loops and non-loop
statements. The body of each loop consists of a

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 111
similar list. A structured branch is treated as a single
meta-statement. A function call is either in-lined or
treated as a meta-statement. Programs with unstruc-
tured goto statements will not be considered, as these
can be eliminated by systematic transformation (see
for example Chapter 7 of Allen and Kennedy [5]).

* Each subscript position of an array reference is in one
of the two forms: a½i þ t� and a½t�; where a is the array
name, i is a loop index, and t represents a loop-
invariant value. Otherwise we assume the subscript
ranges over all involved data dimensions.

We use this simple model because it is sufficient for us
to test loop fusion on a set of commonly used bench-
mark programs. It simplifies the description of our
fusion algorithms. In principle, we can extend the three
new techniques described in this section to optimize
more complex loops by using more powerful models
such as affine subscript expressions and integer-set
mappings, although at the expense of a slower fusion
algorithm.

2.1.2. Pair-wise fusion

The loops in real programs often have different
control structures, such as single statements, loop nests
with different numbers of subloops and perfect or
imperfect nesting. Previous fusion techniques have been
limited to fusing loops of the same general type and
control structure. Pair-wise fusion as specified in this
section strives to be more general than earlier strategies
by fusing two loops at a time based on their data reuse
rather than their control structure.

Given two loops, pair-wise fusion analyzes the data
access patterns in the outer-most loop and then
combines the iterations that share the same data. The
two loops can have any control structure. A single
statement is considered to be a degenerate loop. Pair-
wise fusion classifies data sharing into the following
three cases and uses different transformations for each
case. Example of pair-wise fusion will be given later in
Fig. 2 and Fig. 3.

* Loop fusion and alignment, when data are shared

between iterations of the two loops. It interleaves the
data-sharing iterations of the two loops. It may align
the loops in two directions. It may shift the second
loop down to preserve data dependences, or it may
shift the second loop up to bring together data reuse.

* Loop embedding, when data are shared between one

loop and one or more iterations of the other loop. It
embeds the former loop into the latter at the earliest
data-sharing iteration.

* Iteration reordering, when two loops cannot be fused

entirely. It breaks up the loops and fuses iterations
that can be fused. Special cases of iteration reordering
include loop splitting and loop reversal. In this paper,
we consider only splitting at loop boundaries.
A compiler determines the data sharing between two
loops by array section analysis [25]. It analyzes the data
access of each iteration of each loop. The iteration
access (its data footprint) is parameterized by the loop
index of this and all outer loops. It also summarizes the
data access patterns of all inner loops. For each
dimension of an array, a loop accesses either the whole
dimension, a number of elements on the border, or a
loop-variant section (a range parameterized by the loop
index variable). Data dependence is tested by the
intersection of data footprints. The alignment factor is
also determined by comparing data footprints.

Algorithm 1 shows the steps of pair-wise fusion. It
first determines whether to apply loop fusion, embed-
ding, or splitting. It then finds the alignment factor for
fusion and embedding and finally returns the fused loop.

Algorithm 1 Pair-wise fusion
procedure PairwiseFusion(s, p)

Require: s and p are either a loop or a non-loop
statement

if s and p do not share data then

return
end if
{determine whether to use loop fusion, embedding, or
splitting}

{find the alignment factor for fusion and embedding}

for each array accessed in both s and p do
find the smallest alignment factor that

(1) satisfies data dependence, and

(2) has the closest reuse
if a constant alignment factor is not possible then

try splitting off boundary iterations
else
the alignment factor is infinite

end if
end for
find the largest of all alignment factors, f
if f is not a constant then

fusion failed

return
else
fuse or embed loops with the alignment f
return the merged loop and pieces after splitting if
any
end if

end PairwiseFusion

When two loops share more than one array,
PairwiseFusion may have multiple fusion choices. One
example is shown in part (a) of Fig. 2. At the top level,
we may fuse the two loops at i-level to reuse array A; or
we may embed the first loop as one i-iteration to reuse
array B: In general, we need to choose between fusion
and embedding and between embedding one loop and

ARTICLE IN PRESS

for i=1, N
 for j=1, N
 D[i,j]=A[i,j]+B[i,j]
 end for
end for

for i=1, N
 for j=1, N
 for k=1, N
 C[i,j]+=A[i,k]+B[k,j]
 end for
 end for
end for

for i=2, N
 A[i] -= A[i-1]
end for

A[1] = A[N]

for i=2, N
 A[i] -= A[i-1]
end for

(a) (b)

Fig. 2. Two examples of pair-wise fusion: (a) An example showing multiple choices of reused-based fusion; (b) an example showing that fusible

relation is not transitive.

Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134112
embedding the other. We resolve the conflict by choosing
the one that reuses the largest arrays or the largest
number of arrays. Otherwise, we make a random choice,
which would be the case for the example in Fig. 2(a).

One advantage of pair-wise fusion is the efficient test
of fusibility. The fusible relation is not transitive. For
example for two loops and a statement in Fig. 2(b), any
two of the three are fusible but all three together are not,
because the alignment required to safely fuse all three
would leave no iterations in common between the first
and third loop. Since the fusibility of a group of loops
cannot be inferred from the fusibility of its subsets,
finding all fusion choices would incur a cost exponential
to program size. Pair-wise fusion avoids this exponential
cost by incremental fusion. However, because it does not
examine all possible choices, pair-wise fusion does not
always produce the best result. The next section
describes a heuristic. Sections 2.2 and 2.3 discuss the
problem of optimal fusion and the practical limit of the
heuristic-based fusion.

Pair-wise fusion works in the same way for program-
mer-written loops as for partially fused loops. The two
algorithms we present shortly apply pair-wise fusion
loop by loop and level by level until no more loops can
be fused.

2.1.3. Single-level sequential greedy fusion

We use a heuristic we call sequential greedy fusion: for
every statement or loop from the beginning of a
program to the end, we fuse it forward as much as
possible toward the previous data-sharing statement or
loop. The heuristic is sequential because it considers
loops in program order. It is greedy because it tries to
merge all the uses of the same data into the place of its
first definition. The heuristic is symmetrical to the policy
of Best and Belady—while their scheme evicts data that
has the furthest reuse, sequential greedy fusion executes
the instruction that has the closest reuse. This section
applies this heuristic at the source level. Section 2.3
studies its potential by applying it to the execution trace.

Algorithm 2 gives the basic steps of single-level fusion.
For each statement s; the algorithm finds the closest
predecessor p that shares data with s: Then it invokes
pair-wise fusion described in the previous section. If
fusion succeeds, the process is repeated for the fused
loop because it now accesses a larger set of data and
may share data with its predecessors.

Algorithm 2 Single-level sequential greedy fusion
procedure SingleLevelFusion(p)

Require: Program p is a list of statements and loops

for each statement or loop s[i] do
GreedyFusion(s[i])
end for

end SingleLevelFusion
procedure GreedyFusion(s)

Require: s is a loop or a statement

search backward from s to find the last data-sharing
predecessor p
if p does not exist or (s,p) has been marked as not
fusible then

return
end if
PairwiseFusion(s, p)
if fusion failed then

mark (s,p) as not fusible, return
else
{let q be the fused loop}

GreedyFusion(q)
for each remaining piece t after splitting do

GreedyFusion(t)
end for
end if

end GreedyFusion

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 113
The example in Fig. 3(a) illustrates the sequential
greedy heuristic and pair-wise fusion. The program has
two loops sharing access to array A: The loops cannot
be fused directly because two intervening statements
also access parts of A: GreedyFusion examines each loop
and statement in program order. It embeds the two
statements into the first loop. The two remaining loops
are not fusible because A½1� is assigned by the last
iteration of the first loop but used by the first iteration of
the second loop. PairwiseFusion uses iteration splitting
to peel off the first iteration of the second loop so that
all later iterations can be fused with the first loop.
Finally, PairwiseFusion uses loop alignment to shift up
the iterations of the second loop so that they directly
reuse A½i � 1�: The fused program is shown in Fig. 3(b).
The cache locality is greatly improved. Before fusion,
most elements of array A cannot be cached if the size of
the array is larger than cache. After fusion, most of
array A is cached regardless of the size of the array.

Reuse-based loop fusion may add significant instruc-
tion overhead because of the inserted branches. Branch
statements can be avoided using a code-generation
scheme from Allen and Kennedy (Section 8.6.3 of [5]),
but at the cost of replicated loop bodies. Future
processors will be better equipped to handle branches
with features such as predicated execution. Even on
current machines, our study in Section 1 shows that
programs spend most time waiting for memory, so
higher instruction overhead may be tolerated. Section 4
will evaluate reuse-based loop fusion on current
machines.

For single-level loops, the algorithm ensures bounded
reuse distance for most data reuses in the fused loop,
which can then be cached by a constant-size cache
regardless of the volume of the input data. We now
establish this bound. Our program model allows two
forms of array references, AðcÞ and Aði þ cÞ; where i is
the loop index and c is a loop invariant. When the
number of loop iterations is sufficiently large, most data
(a)

for i=2, N
 A[i] = f(A[i-1])
end for

A[1] = A[N]
A[2] = 0.0

for i=3, N
 B[i] = g(A[i-2])
end for

for i=2, N
 A[i] = f(A[i-1])
 if (i==3)
 A[2] = 0.0
 else if (i==N)
 A[1] = A[N]
 end if

 if (i>2 and i<N)
 B[i+1] = g(A[i-1])
 end if
end for
B[3] = g(A[1])

(b)

Fig. 3. Examples of pair-wise and sequential greedy fusion: (a) An

example program; (b) transformed program.
elements are accessed by array references in the form of
Aði þ cÞ: Let Aði1 þ c1Þ and Aði2 þ c2Þ be two array
references in two initial loops with index variables i1 and
i2; respectively. If two loops are fused with no
alignment, the reuses of an A array element are
separated by jc1 � c2j iterations. Now we consider the
effect of the alignment. At each step of pair-wise fusion,
the alignment factor must be a constant. Suppose that
Nloops are fused, the alignment is then OðNloopsÞ: The
reuses of an A element are separated by OðNloops þ jc1 �
c2jÞ or OðNloopsÞ iterations in the fused loop.

We assume that each initial loop contributes a
constant number of references of the form Bði þ cÞ for
each array B: Hence, the fused loop has at most
OðNloopsÞ references of that form for each array,
covering a section of OðNloopsÞ elements in each
iteration. The size of the section would be OðNloops þ
kÞ for k consecutive iterations. Replacing k with Nloops;
we see that the reuses of an A element are separated by
at most OðNloops þ NloopsÞ or OðNloopsÞ elements from
each array. The maximal reuse distance is bounded by
the amount of accessed data from all arrays, which is
OðNarraysNloopsÞ:

The upper bound is tight because a worst-case
example can be constructed as follows: the body of the
first loop is B1ðiÞ ¼ Aði � nÞ; next are n loops with a
body B1ðiÞ ¼ B1ði þ 1Þ þ B2ði þ 1Þ þ?þ Bmði þ 1Þ; fi-
nally is a loop with the body AðiÞ ¼ B1ðiÞ: Let all loops
run from 1 to N except for the first loop, which runs
from n þ 1 to N: According to our informal proof, the
reuse distance between the reuses of an A element will be
bounded by nm in the fused loop. This asymptotic
bound is the lowest possible because the value of each A

array element has to flow through n elements of B1 array
and combine the value of N � 1 elements of arrays B2 to
Bm before returning to itself. Therefore, the fusion
algorithm achieves the tightest asymptotic upper bound
on the length of reuse distances in a fused loop.

Being a heuristic, sequential-greedy fusion has two
major weaknesses. First, it is not an optimal solution. It
fuses loops upward as much as possible and often results
in very large loops at the beginning. The second and
related problem is that the heuristic is unconstrained, so
a fused loop may access too much data and conse-
quently overflow the limited register and cache re-
sources. We have recently developed a method for
resource-constrained fusion [29], which could be used to
ameliorate this problem, but it is still under evaluation
and not used in the results reported here. The evaluation
section will measure the effect of the current, uncon-
strained fusion method.

2.1.4. Multi-level fusion

Multi-level fusion first decides the order of loop levels
and then applies single-level fusion level by level. It tries

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134114
to minimize the total distance of data reuses by
minimizing the number of fused loops at outer levels.

Like pair-wise fusion, multi-level fusion is based on
the data access patterns rather the control structures of
loops. While all data are considered for the correctness
of fusion, only large arrays are used to determine the
profitability. Different choices lead to different loop
fusions. Our current heuristic chooses arrays that have
the largest size. It requires that if a loop accesses more
than one of the chosen arrays, it must traverse the same
data dimension of each of these arrays. Otherwise, it
chooses the largest array subset that meets the require-
ment. In the worst case, it chooses only one array. As a
result, each loop level accesses either no data dimension
or a unique data dimension of the chosen array(s). Two
loop levels may access the same data dimension. In the
following description, data dimension refers to a dimen-
sion of a chosen array.

Algorithm 3 shows the steps of multi-level fusion. For
each loop level starting from the outermost, Multi-

LevelFusion determines nesting order at each level L in
three steps. First, it examines all data dimensions that
are iterated by loops at L or deeper levels. For each data
dimension s; it performs a hypothetical analysis in which
it first moves all s-traversing loops to level L if possible,
then performs sequential greedy fusion, and finally
measures the number of fused loops at level L:
The analysis in this step is based on the technique
developed by McKinley et al., which permutes the loops
that access the contiguous data dimension to the
innermost level [43]. We use a variation of this method
to permute loops that access a chosen data dimension to
level L:

Algorithm 3 Multi-level loop fusion
procedure MultiLevelFusion(S, L)

Require: S is the set of data dimensions; L is the current
loop level
{Step 1. find the best data dimension for level L}

for each dimension s in S; test hypothetically do
LoopInterchange(s, L)
apply SingleLevelFusion at level L
count the number of fused loops

end for
chose dimension s0 that yields the fewest fused loops

{Step 2. fuse loops for level L on dimension s0}

LoopInterchangeðs0;LÞ

apply SingleLevelFusion at level L
{Step 3. continue fusion at level L þ 1}

for the body of each loop at level L do
MultiLevelFusion(S-s,L+1), s is the data dimen-
sion iterated at level L
end for

end MultiLevelFusion
proce
du
re LoopInterchange(s, L)
Require: s is a data dimension; L is the current loop level

for each loop nest do

if loop level t ðt4LÞ iterates data dimension s then
interchange level t to L if possible, otherwise do
nothing
end if
end for

end LoopInterchange

The second step of Algorithm 3 picks the dimension
that yields the smallest number of loops after fusion at
level L: The third step recursively applies MultiLevelFu-

sion at the next loop level. Note that after fusion, not all
level-L loops iterate over the same data dimension. Since
loop interchange may not always succeed, some level-L
loops may access a different data dimension than others.
In the algorithm, the dimension s in the third step is not
always the dimension s0 found in the second step. Loop
fusion may take place even if the loops access a
dimension other than s0:

We now analyze the time complexity of multi-level
loop fusion. Assuming loop splitting at boundary
iterations is the only form of iteration reordering, pair-
wise fusion takes OðNarraysÞ; and single-level fusion takes
OðNinit: loops � Nfused loops � NarraysÞ; where Ninit: loops is
the number of loops or statements before fusion,
Nfused loops is the number of loops after fusion, and
Narrays is the number of data arrays in the program.
Although this is quadratic in the number of loops
in the program, we believe that the running time
will be manageable because the number of loops to
which fusion will be applied will not usually be large
and, the application is developed in a modular style, this
number should not grow linearly with the size of the
program.

Other types of iteration reordering may increase time
complexity of the algorithm. However, boundary split-
ting is sufficient for the programs used in our evaluation.
Since multi-level fusion examines each dimension at
each loop level, the total cost is OðNdimensionsÞ times the
cost of single-level fusion, where Ndimensions is the
number of data dimensions in data arrays.

2.2. Optimal computation fusion

This section formulates the problem of optimal fusion
and proves that the problem is NP-hard.

We use the following program model in this section. A
program is a sequence of computation units. We assume
no cache reuse between different units but perfect cache
reuse within the same unit. In other words, when a unit
is executed, it loads its data from memory once and only
once. Thus, a unit can be thought of as a single loop nest
or program section in which all reuse is out of cache.

ARTICLE IN PRESS

Loop 1

Loop 2

Loop 3

Loop 4

A, D, E, F

A, D, E, F

A, D, E, F

B, C, D, E, F

Loop 5 Loop 6

Loop 5 and 6 cannot be fused

Data Arrays: A, B, C, D, E, F

A B, C

a hyper edge

Fig. 4. An example of optimal fusion. The min-cut for a hyper graph

fuses loops 1–4 with loop 6, while the min-cut for a normal graph fuses

loops 1–4 with loop 5. The former fusion minimizes the bandwidth

consumption.

Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 115
When two computation units are fused, the fused unit
accesses the union of the data of the original units.

At the source level, most programs do not confirm to
this model because of branches. However, when a
program is executed, it becomes a sequence of opera-
tions that can be divided into computation units.
Dividing a program into computation units is the job
of program analysis. Our goal is to study the fusion
rather than the analysis of computation units. We
assume that all computation units and their execution
order is known. Our result is not limited to loops. A
computation unit can be any program code that accesses
a large set of data elements, either directly or indirectly
through calls to (possibly recursive) functions. Still, we
note that most current compilers are best at analyzing
large numbers of data accesses only in loop nests.

For our study of computation fusion, we model a
program as a hyper graph. The computation units are
represented as nodes. Each data element is represented
as a hyper edge that connects all nodes in which the
element is accessed. In addition, we represent the legality
constraint of computation fusion by bad groups, which
are groups of nodes that cannot be fused together. A set
of loops can be fused if they do not include any bad
group. Gao et al. [24] and Kennedy and McKinley [31]
modeled a program as a normal graph, where each node
represents a loop and each edge represents the amount
of register reuse between two nodes. Kennedy and
McKinley modeled the legality constraint with bad
nodes and edges [31]. We use bad groups because the
fusible relation is not transitive in pair-wise fusion, as
discussed in Section 2.1. We model data dependences as
directed edges as in the previous work [24,31].

Definition 1 (Optimal fusion). Given a graph, the fusion
minimizes the bandwidth consumption if it fuses the
nodes into a sequence of partitions such that

* (Correctness) All dependences between partitions
flow forward, and no partition contains a subset that
forms a bad group.

* (Optimality) The sum of the node degree of all nodes
is minimal, where the degree of a node is the number
of hyper edges connected to this node.
Assuming perfect cache reuse within a node and no
cache reuse between nodes, the optimality requirement
guarantees that the total amount of memory access is
minimal over the entire execution. The fused program
then consumes a minimal amount of memory bandwidth
compared to any version of the program with the same
execution time.

The example in Fig. 4 shows why we use a hyper
graph instead of a normal graph. The program has six
loops. Assuming that all loops can be freely fused except
for loops 5 and 6, which form a bad group and cannot
be fused together. The bandwidth consumption is
measured by the number of arrays read in all loops.
The initial program requires a transfer of 20 arrays.

The optimal fusion needs to divide the six nodes into
two partitions and minimize the number of hyper edges
connecting them. The problem is essentially that of
finding a minimal cut on a hyper graph. In this example,
the min-cut should put loops 1–4 with loop 6 in one
partition and leave loop 5 in the other. The fused
program needs a transfer of 7 arrays.

If we were to model register reuse with weighted
normal edges and find optimal fusion through a minimal
cut on a normal graph [24,31], we would put loops 1–4
with loop 5 in one partition and leave loop 6 in the
other. However, this solution does not minimize the
bandwidth consumption, because it needs a transfer of 8
arrays instead of 7. This suggests that the problem might
be intractable.

The following theorem proves intractability by estab-
lishing that general k-way fusion is NP-hard. The proof
involves reducing the k-way cut [18] problem to the
fusion problem, following the reduction used by
Kennedy and McKinley [31]. A direct corollary is that
optimal multi-level fusion is also NP-hard. The proof
assumes that the number of hyper edges can be the
square of the number of nodes, which is not the case in
typical programs. If we assume that the number of hyper
edges is constant, then k-way cut is polynomial [18].

Theorem 2. The optimal fusion problem is NP-hard when

the number of partitions is greater than two.

Proof. We reduce k-way cut problem [18] to the fusion
problem. Given a graph G ¼ ðV ;EÞ and k nodes
designated as terminals, k-way cut finds a set of edges
of minimal total weight such that removing the edges
renders all k terminals disconnected from each other. To
convert a k-way cut problem to a fusion problem, we

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134116
construct a hyper graph G0 ¼ ðV ;EÞ; where each edge
simply becomes a hyper edge connecting exactly two
nodes. We assume that each pair of terminals are in a
bad group and therefore not fusible. No dependence
exists between nodes since there is no directed edge. A k-
way cut is minimal in G if and only if the cut gives
optimal fusion in G0: Since k-way cut is NP-hard when k

is more than two, so is the problem of optimal fusion for
bandwidth reduction. &

2.3. Reuse-driven execution

Computation fusion at the source level is often
hindered by insufficient information about a program.
In this section, we study the limit of computation fusion
by assuming it knows the complete execution of a
program. We present a technique, Reuse-driven execu-

tion, that applies sequential greedy fusion to operations
in an execution trace. Trace-level reordering gives
maximal freedom to computation fusion: it knows
precise dependence relation among operations, and it
is not restricted by source-level program structures. The
results will show the full effect of computation fusion.

Given a program, we first collect its execution trace by
instrumenting the source program. A run-time instance
of a statement is recorded as an operation in the
execution trace. We rank program operations based on
their issuing cycle on an infinite parallel machine. Then
we carry out reuse-driven execution according to
Algorithm 4. The effect is to execute the instructions
in the trace on a different schedule in which, at each
step, priority is given to operations that reuse the data of
recently scheduled operations.

The basic scheduling problem addressed by reuse-
driven execution is similar to loop fusion. Each trace can
be viewed as a fusion graph where nodes represent
instructions and hyper edges represent data reuses. We
use the algorithm in Fig. 4 because it is efficient enough
for us to process large traces. Furthermore, the heuristic
is essentially the same as sequential greedy fusion,
allowing us to compare the effect of source-level loop
fusion with that of trace-level computation fusion later
in the evaluation section.

Algorithm 4 Reuse-driven execution
procedure ReuseDrivenExecution
while there exist unexecuted instructions do

let i be the first such instruction in the ideal parallel
execution order

enqueue i to ReuseQueue
while ReuseQueue is not empty do

dequeue i from ReuseQueue
if (i has not been executed) ForceExecuteðiÞ

end while
end while

end ReuseDrivenExecution
procedure ForceExecuteð jÞ

for each operation i that produces operands for j do
if (i has not been executed) ForceExecuteðiÞ

end for
execute j
for each operand d used by j do
find the next operation m that uses d
enqueue m into ReuseQueue
end for

end ForceExecute

To measure how a program reuses its data, we use a
concept we call reuse distance [21,60], which is the
number of distinct data elements accessed between two
uses of the same datum. Reuse distance is the same as
LRU stack distance, defined by Mattson et al. and
measured using a stack algorithm in 1970 [42]. We use a
different name because it is shorter, and it is measured
much faster using a tree instead of a stack [21]. Reuse
distance is an inherent property of a program, and it
allows quantitative comparison between programs with-
out being tied to any particular machine. It measures the
number of capacity misses: a data access hits in cache if
and only if its reuse distance is smaller than the size of
cache. We therefore measure the locality of a program
execution by the length histogram of all its reuse
distances, which gives the number of capacity misses
for all cache sizes. A detailed description of reuse
distance and its measurement can be found elsewhere
[21,60].

Reuse-driven execution changes data reuse behavior,
as shown by the histograms in Fig. 5. A histogram
consists of a set of points with integer coordinates on the
x-axis. A point at a height y means that y thousands of
memory references have a reuse distance between
½2ðx�1Þ; 2xÞ: We link discrete points of a histogram into
a curve to emphasize peaks, where large portions of
memory references reside. Peaks at the far end of the x-
axis are memory references that have long reuse
distances. A recent study shows that the reuse distance
of these references increases at larger program input
sizes [21]. Consequently, these references will be cache
misses when the input size is sufficiently large. In this
study, we measure the number of references with long
reuse distances. The goal of reuse-driven execution is to
reduce this number.

Fig. 5 shows four graphs. The upper two are a kernel
program ADI—which has 8 loops in 4 loop nests—and a
full application SP (Serial version 2.3)—which has over
218 loops in 67 loop nests. Both programs see a
significant reduction in the number of long reuse
distances, suggesting a significant reduction in cache
misses. The reduction is about 30% for ADI and 60%

ARTICLE IN PRESS

0 2 4 6 8 10 12 14 16 18

reuse distance (log scale, base 2)

0

30

60

90

120
nu

m
be

r
of

 r
ef

er
en

ce
s

(in
 th

ou
sa

nd
s)

ADI, 100x100

program order
reuse driven execution

0 2 4 6 8 10 12 14 16 18 20 22

reuse distance (log scale, base 2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nu
m

be
r

of
 r

ef
er

en
ce

s
(in

 th
ou

sa
nd

s)

NAS/SP, 28x28x28

program order
reuse driven execution

0 2 4 6 8 10 12 14 16 18 20

reuse distance (log scale)

0

200

400

600

800

1000

1200

nu
m

be
r

of
 r

ef
er

en
ce

s
(in

 th
ou

sa
nd

s)

FFT, 128x128

program order
reuse driven execution

0 2 4 6 8 10 12 14 16 18 20

reuse distance (log scale)

0

2000

4000

nu
m

be
r

of
 r

ef
er

en
ce

s
(in

 th
ou

sa
nd

s)

DOE/Sweep3D, 20x20x20

program order
reuse driven execution

Fig. 5. The effect of reuse-driven execution, shown by the histogram of the length of reuse distances.

Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 117
for SP. The lower two graphs of Fig. 5 show another
kernel program, FFT, and a full application, Sweep3D.
Reuse-driven execution did not improve FFT (a portion
of reuse distances is actually lengthened), but it reduced
the number of long reuse distances by 67% in Sweep3D.
The result of FFT shows that as a heuristic, sequential
greedy fusion does not always improve locality. We used
a few other heuristics, for example, not executing the
next reuse if it is too far away in the ideal parallel
execution order. But we did not observe any further
improvement in locality.

Our experiments with reuse-driven execution demon-
strate the potential for improving reuse from cache in
applications with a large number of loop nests such as
SP and Sweep3D. Section 4 will compare this result with
that of source-level loop fusion.

3. Affinity-based data regrouping

This section presents affinity-based data regrouping,
which is the second step of our global strategy. While
computation fusion improves the temporal locality in
data access, data regrouping improves the spatial
locality in data storage including cache blocks and
memory pages. On today’s high-end machines from
IBM, SUN, and companies using Intel Itanium and
AMD processors, the largest cache in the hierarchy is
composed of blocks of no smaller than 64 bytes. If only
one four-byte integer is useful in each cache block, 94%
of cache space would be occupied by useless data, and
only 6% of cache is available for data reuse. A similar
issue exists for memory pages, except that the utilization
problem can be much worse. Data regrouping reorga-
nizes data based on their reference affinity and packs
cache blocks or memory pages with data that are always
used together, therefore significantly improving the
cache and memory utilization. This section first defines
a notion of reference affinity and presents data-
regrouping algorithms and their extensions.

3.1. Reference affinity

A set of variables in a program have reference affinity

if they are always used together in the program. We say

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134118
that they are in the same reference affinity group or
affinity group in short. For single data elements, being
‘‘used together’’ means that they are accessed within the
same set of consecutive iterations, and the number of the
iterations in the set is constant. Reference affinity is
reflective, symmetric, and transitive. Therefore, affinity
groups form an equivalence partition of program data.
We will later extend reference affinity to include sections
of data referenced together in outer loops. Large data
structures such as arrays may have reference affinity
among their elements or sections. The next few
subsections will describe single-dimension and multi-
dimensional data regrouping, which exploit reference
affinity among array elements, array sections, and
structure fields. The rest of this subsection use an
example to describe the basic idea of data regrouping
and its benefits.

The left-hand side of Fig. 6 shows an example
program, which traverses a matrix first by rows and
then by columns. Assuming we cannot permute loops
because of data dependence, one of the loops must
access data in large strides, in which case only one
element in each cache block is used when the loop bound
N is sufficiently large.

The elements of the two arrays have reference affinity
because a½i; j� and b½i; j� are always referenced in the
same innermost loop. Data regrouping then interleaves
them into a single array c; converting a½i; j� into c½1; i; j�
and b½i; j� into c½2; i; j� as shown in the right-hand side of
Fig. 6. Assuming column-major array layout, the
regrouped version guarantees at least two useful
numbers in each cache block regardless of the order of
data traversal. Therefore, when data access cannot be
made fully contiguous by other transformations, data
regrouping can further improve cache spatial reuse by
combining multiple arrays based on reference affinity.

Data regrouping has three other important effects in
addition to improving cache block utilization. These
effects are beneficial even in programs where arrays are
For j=1, N
For i=1, N

F(a[i,j], b[i,j])
End for

End for

// row-by-row traversal

// column-by-column traversal

End for
End for

For j=1, N
For i=1, N

Array a[N,N], b[N,N]

G(a[i,j], b[i,j])

Fig. 6. Example of inter-ar
traversed contiguously. First, regrouping reduces the
interference among cache blocks. Data from different
arrays—for example, a and b in Fig. 6—may map to the
same cache block and cause cache interference misses.
Data regrouping will eliminate cache conflicts among
members of the same affinity group by placing them in
the same cache block.

Second, data regrouping reduces the page-table
working set of a program because it combines multiple
arrays. It reduces the number of TLB misses when a
program accesses more arrays than the available entries
in a TLB. On modern machines, TLB misses are time
consuming because the CPU halts program execution
during a TLB miss. Data regrouping may also improve
energy efficiency by reducing the number of active
memory pages and lengthening the sleep time for the
rest of the memory.

Finally, data regrouping reduces communication cost
on shared-memory parallel machines. On these ma-
chines, cache blocks are the basis of data coherence and
consequently the unit of communication among parallel
processors. Good cache-block utilization enabled by
data regrouping can better amortize communication
latency and utilize communication bandwidth.

3.2. Affinity-based array regrouping

In many applications especially scientific programs,
most data are stored in arrays and accessed in loop
nests. For these programs, we present a technique called
array regrouping, which merges arrays based on their
reference affinity. We also show that array regrouping
can be used to reorganize structure data.

3.2.1. Program analysis

A compiler identifies opportunities of array regroup-
ing in two steps. First, it partitions a program into
phases, each of which accesses a data set larger
than cache. The idea is to divide a program into
Array c[2,N,N]

// row-by-row traversal

// column-by-column traversal

End for
End for

For j=1, N
For i=1, N

For j=1, N
For i=1, N

End for
End for

F(c[1,i,j], c[2,i,j])

G(c[1,i,j], c[2,i,j])

ray data regrouping.

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 119
coarse-grained units such that its execution can be
viewed as a sequence of coarse-grained steps that do not
share data in cache. An innermost loop is a phase if it
accesses data larger than cache. An outer loop or a
conditional statement is an outer phase if it contains
other phases. A branch statement inside an innermost
loop is considered as a meta-statement that references
the union of the data referenced in all branch paths. The
analysis handles function calls in the same way as
interprocedural array-section analysis [25]. At the end of
the analysis, a program becomes a collection of nested
phases.

Since the regrouping algorithm finds groups of data
elements that are referenced together in all phases, the
execution order and frequency of different phases do not
matter. Therefore, the compiler analysis does not need
to know the exact control flow among phases. It
assumes perfect cache reuse inside a phase and no
significant cache reuse between phases. Compiler
analysis cannot always accurately determine the amount
of data access. However, any error affects only the
profitability, not the correctness, of data regrouping.
For single-dimension data regrouping, the compiler
considers only the innermost phases, which are inner-
most loops that access a significant amount of data.

The second step of the analysis identifies the sets of
compatible arrays. Two arrays are compatible if their
sizes differ by at most a constant, and if they are always
accessed in the same order in each phase. For example,
the size of array A½N� is compatible with B½N� and with
B½N � 3� but not with C½N=2� or D½N;N�: The access
order from A½1� to A½N� is compatible with B½1� to B½N�
but not with the order from C½N� to C½1� or from D½1� to
D½N=2�: The second criterion allows compatible arrays
to be accessed differently in different phases, as long as
they have the same traversal order in the same phase.2

The second step uses standard dependence analysis to
identify the access order to arrays. For array indirec-
tions such as A½B½i��; a compiler can recognize the
structure of indirection using a technique described in
Ding’s dissertation (Section 4.3.2 of [19]). The second
step also ‘‘unrolls’’ array dimensions of a constant size.
For example, array A½2;N� will be converted into two
arrays, A1½N� and A2½N�:

Array regrouping is applied to each set of compatible
arrays. We assume that grouping incompatible arrays is
either impossible or counterproductive. After these
preprocessing steps, the question now becomes how to
partition compatible arrays into reference affinity
groups, given a collection of phases and the set of
arrays accessed in each phase.
2 In general, the traversal order of two arrays needs not to be the

same as long as they maintain a consistent relation. For example, array

A and B have consistent traversal order if whenever A½i� is accessed,

B½f ðiÞ� is accessed, where f is a one-to-one map.
3.2.2. Single-dimension regrouping

Given a set of arrays and a collection of its subsets
(phases), two arrays have reference affinity if they are
always accessed together, that is, if for any subset
containing one array, it must contain the other. The
affinity relation is reflexive, symmetric, and transitive;
therefore it is a partition. The affinity-based partitioning
finds the largest affinity groups because (1) all arrays in
each partition have the same reference affinity, and (2)
all arrays with the same reference affinity belong to the
same partition. In other words, all arrays in a partition
belong to the same affinity group, and each affinity
group is the largest possible.

The affinity-based partitioning can be determined
with efficient algorithms. Algorithm 5 gives one solu-
tion. For each array, it encodes its subset membership
into a bit vector and then sorts all arrays to find the
groups of arrays that are always accessed together.
Assuming a total of NA arrays and NS phases, the time
complexity of this method is OðNA � NSÞ:

Algorithm 5 Single-dimension array regrouping
procedure SingleDimRegroupingðA;SÞ
Require: A is the set of all arrays; S is the set of array
subsets
{Step 1. construct a bit vector v for each array}

for each array a in A and each subset in S do
if (a is in i-th subset of S) v½i� ¼ 1 else v½i� ¼ 0

end for
{Step 2. partition arrays}

sort all bit vectors using radix sort

group arrays with the same bit vector

end SingleDimRegrouping

We discuss single-dimension regrouping through an
example—a simplified version of the hydro-dynamics
simulation program Magi from DOD, which simulates
high-impact particle movement in a three-dimensional
space. Table 2 lists the six major phases of the program
and the attributes accessed in each phase. Attributes of
particles are stored in separate arrays and accessed by
array indirection. Data access is often not contiguous
because particle distribution in space changes during
execution. In the worst case, a phase needs to read a
cache block for each attribute of each particle. Grouping
attribute arrays improves cache-block utilization. For
example, if we group position and speed, the second
phase needs to read only one cache block for each
particle. However, excessive grouping may hurt cache-
block utilization. For example, the same grouping
wastes half of each cache block in the first phase
because speed is not referenced.

Affinity-based data grouping combines arrays in the
same affinity group. Algorithm 5 would group attributes

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134120
energy, volume, and cumulative totals in one array,
attributes speed, heat, derivate, and viscosity in another
array, and other attributes each in a different array.
Arrays in the same group are always referenced
together, so grouping them does not introduce useless
data into a cache block. In addition, the size of the
reference groups is the largest possible. Any additional
regrouping would cause more unused attributes to be
accessed by some phase. We will formalize this
observation in Section 3.4 and show that data grouping
is compile-time optimal.

The partition of reference affinity groups depends on
the data references in program phases. When a
programmer inserts or deletes data accesses or function
calls, the reference affinity may change. Data regrouping
needs to be re-applied because the old data layout may
degrade performance instead of improving it. This
implies that data regrouping should be applied auto-
matically by a compiler, not manually by a programmer;
otherwise, the programmer has to change the layout of
all program data after any change to any data reference
in a program.
Table 2

A simplified view of Magi, a hydrodynamics simulation program

Computation phases Attributes accessed

1 building interaction list position

2 smoothing attributes position, speed, heat, derivate,

viscosity

3 hydro-dynamics 1 density, momentum

4 hydro-dynamics 2 momentum, volume, energy, cumulative

totals

5 stress interaction 1 volume, energy, strength, cumulative

totals

6 stress interaction 2 density, strength

for i
 for j
 g(A[j,i],B[j,i])
 end for
 for j
 t(C[j,i])
 end for
end for

for i
 for j
 g(D[1,j,1,i],D[2,j,1,i])
 end for
 for j
 t(D[j,2,i])
 end for
end for

(a)

(b)

wor

1
2
3
4

2N-
2N
2N+
2N+

3N

(c)

Fig. 7. An example of multidim
Affinity-based regrouping combines arrays when and
only when they are always accessed together. This might
seem a bit restrictive in practice. However, many
applications use multiple fields of a data structure array
together. The algorithm will split each field as a separate
array. In addition, aggressive loop fusion often gathers
data access of a large number of arrays in a fused loop.
Therefore, it should be quite common for two or more
arrays to always be accessed together. Later, Section 3.3
discusses methods for relaxing the condition for
regrouping at the cost of making the analysis more
complex.

3.2.3. Multidimensional regrouping

We now consider programs with nested phases
accessing arrays with multiple dimensions. We first
motivate multidimensional regrouping with an example
in Fig. 7. Part (a) is a loop nest that has one outer loop
enclosing two inner loops. Assume that arrays are stored
in column-major order. The outer loop traverses the
columns of three arrays. The first inner loop references
the elements of two arrays A and B together. The second
inner loop references only array C: Single-dimension
regrouping will recognize the reference affinity between
the elements of A and B but cannot exploit the reference
affinity between the columns of all three arrays.

Multidimensional regrouping analyzes all levels of
loops and finds reference affinity among array sections.
In this example, it analyzes the outer loop, puts the
columns of three arrays into the same affinity group,
and then combines the arrays in two dimensions. Fig.
7(b) shows the transformed program. The new program
uses a new array D; whose ith column contains the ith
column of all three arrays. Fig. 7(c) shows the new
layout for the first column of the three arrays. Arrays A

and B are regrouped by elements, and they are
d new array old arrays

D[1,1,1,1] A[1,1]
D[2,1,1,1] B[1,1]
D[1,2,1,1] A[2,1]
D[2,2,1,1] B[2,1]
... ...

1 D[1,N,1,1] A[N,1]
D[2,N,1,1] B[N,1]

1 D[1,2,1] C[1,1]
2 D[2,2,1] C[2,1]

... ...
D[N,2,1] C[N,1]

ensional data regrouping.

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 121
regrouped with C by columns. The placement order of
data elements in the first column of D is the same as the
traversal order by the first iteration of the outer loop.
After multidimensional regrouping, the program tra-
verses D contiguously, therefore having no cache
interference and a single-entry page-table working set.

Programming languages like Fortran do not allow
arrays of non-uniform dimensions like those of array D:
In addition, the new array indexing created by source-
level regrouping may confuse the back-end compiler
and negatively affect its register allocation. However,
both problems will disappear when regrouping is
applied by a back-end compiler, where it should be
applied.

Algorithm 6 shows the steps of multidimensional data
regrouping. It has two steps. The first collects the set of
arrays and their dimensions accessed by each loop. For
a loop i and an array a; Coveredði; aÞ gives the
dimension d such that the i accesses (‘‘covers’’) a on
all dimensions equal to and lower than d: The analysis
traverses loops from the outermost loop and moves
inward. For each loop i and array a; it finds
Accessedði; a; dÞ for all d greater than the dimension of
a covered by the outer loop of i; using two criteria. The
first is needed in the proof of Theorem 3 for correctness.
The second does not affect correctness. It ensures that
the algorithm counts only accesses to entire arrays, so
that accesses to partial arrays do not distract the
regrouping of fully accessed arrays. The resulting
Accessed set is the set of arrays that accessed together
at dimension d by loop i and its outer loops. Other
Accessed sets find all groups of arrays that are accessed
together at some data dimension in all other loops.

The second step of the algorithm applies single-
dimension regrouping for each data dimension. For
each d; it puts in a set S all Accessedði; a; dÞ sets for all i

and a: The set is equivalent to the set of phases for
dimension d:

Algorithm 6 Multidimensional data regrouping
notation:

A is the set of all arrays, maximal dimension is dmax; P is
the program; arrays are column-major with dimensions
numbered from 1 (right-most); loop levels are numbered
from 1 (outermost loop);
Function Outer maps from a loop to its closest outer
loop; OuterðiÞ ¼ P; if i is an outermost loop
Function Accessed maps from triple (loop i; array a;
dimension d) to a subset of A; initially maps
to the empty set
Function Covered maps from pair (loop i, array a) to a
dimension d;
Coveredði; aÞ ¼ the highest d s.t. Accessedði; a; dÞ is
not empty

initially Coveredði; aÞ ¼ 0 for all i (including P) and a
pro
cedu
re
 MultiDimRegrouping
{Step 1. find arrays and their dimension accessed by
each loop}

for each loop i in a root-first traversal do

for each array a accessed by i do
for each dimension d greater than
CoveredðOuterðiÞ; aÞ do
{Step 1.a. find Accessedði; a; dÞ}

find Accessedði; a; dÞ; the set of arrays such that
1. all arrays are accessed at dimension d and all
lower dimensions by loop i and its outer loops,
and the same dimension of all arrays is
accessed by the same loop
2. all arrays are accessed at all other dimensions
by loops inside i
{Step 1.b. update Coveredði; aÞ}

if Accessedði; a; dÞ is not empty and
d4Coveredði; aÞ then
Coveredði; aÞ ¼ d
end if
end for
end for
end for
{Step 2. partition arrays for each data dimension}

for each data dimension d between 1 and dmax do
let S ¼ Accessedði; a; dÞ for all i and a
SingleDimRegroupingðA;SÞ

end for

end MultiDimRegrouping

We briefly explain the algorithm by the example
in Fig. 8, which has two loop nests accessing two arrays.
We ignore the constant in subscript expressions, as in
single-dimension regrouping. However, it can be easily
considered by changing the first condition in Step 1.a to
require the same constant in subscript expressions.

Fig. 8 shows the Accessed functions found by the
algorithm for each data dimension. For the first (most
significant) data dimension, the algorithm finds four
non-empty Accessed sets. If array aA Accessedði; b; dÞ
for some i and d; then always bA Accessedði; a; dÞ:
Hence the four Accessed functions represent just
two sets. Applying single-dimension data regroup-
ing on these two sets will produce the affinity group
shown by the third column. Similarly, the algorithm
finds all Accessed sets for the other two data
dimensions and divides arrays into affinity groups. This
example also shows that the algorithm analyzes and
groups arrays with a different number of dimensions
together.

The correctness of the algorithm is stated in the
following theorem, which says that the algorithm fully
exploits reference affinity in high dimensional data. A
direct corollary is the consistency of the algorithm. Since
the algorithm uses single-dimension regrouping for each
dimension, it needs to avoid conflicting decisions. In

ARTICLE IN PRESS

Fig. 8. A demonstration of multidimensional regrouping algorithm. The program on the left results in the S sets and AccessedðÞ functions on the

right.

Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134122
particular, the grouping decision at a less significant
dimension must not contradict the decision at a more
significant dimension. For example, if it decides to
group two arrays by elements, then it should not decide,
at the column dimension, to separate them.

Theorem 3. Algorithm 6 groups two arrays at dimension

d if and only if two arrays are always accessed together at

dimensions d and lower. Two arrays, a and b, are accessed

together at dimension d and lower, if whenever a is

accessed as aðida
;y; id ;y; i2; i1Þ; b is accessed inside

loops i1 to id as bð jdb
;y; jdþ1; id ;y; i2; i1Þ; where loops i1

to id may appear in any order or mix with other loops.

Proof. We first prove the ‘‘if’’ part using contradiction.
Assume the algorithm groups two arrays, a and b; at
dimension d; when at least one loop i accesses the two
arrays separately at a dimension d 0; where d 0pd:
Assume loop id 0 accesses the d 0 dimension of a but not
b: Let ia be the innermost loop enclosing this reference
of a: Examine all loops nested between id 0 and ia: Let
loop i0 be the innermost loop such that
Coveredði0; aÞXd; therefore, CoveredðOuterði0Þ; aÞXd �
1: Loop i0 exists because it can at least be ia and
Coveredðia; aÞ is equal to the number of dimensions in a:
Then Step 1.a finds Accessedði0; a; dÞ to contain a but
not b because the outer loop i does not access the two
arrays in the same dimension, a violation of the first
condition of Step 1.a. Since Accessedði0; a; dÞ contains a

not b; Step 2 cannot group array a with b at dimension
d; a contradiction to the assumption.

The ‘‘only-if’’ part says that the algorithm groups two
arrays, a and b; at dimension d if they are always
accessed together at d and all lower dimensions. We
show that if, for some loop i and array c;
Accessedði; c; dÞ contains one array, say a; it must also
contain b: Without the loss of generality, we assume that
for some loop i and some array c; Step 1 found a non-
empty Accessedði; c; dÞ that contains array a: Then loop
i and its outer loops access array a at dimension d and
all lower dimensions. Considering the third loop of Step
1, we know dXCoveredðOuterðiÞ; cÞ; which means that
loop i accesses c at dimension d or lower. Since a

belongs to Accessedði; c; dÞ; loop i must access the same
dimension of array a: From the hypothesis, loop i must
also access the same dimension of array b: Also from the
hypothesis, loop i and its outer loops must access b at d

and all lower dimensions in the same way as they do a:
Hence Accessedði; c; dÞ produced by Step 1 will contain
both a and b: Therefore, if some Accessedði; c; dÞ
contains one array, it must contain the other. Step 2
should always group the two arrays at dimension d: &

Corollary 4. Algorithm 6 produces consistent regrouping,
which means that once it determines to group two arrays

at dimension d, it must group them at all dimensions lower

than d.

Proof. From Theorem 3, if the algorithm groups two
arrays at dimension d; then the program accesses the
two arrays together at dimension d and all lower
dimensions. This implies that for any dimension d 0

lower than d; the program accesses the two arrays
together at d 0 and all lower dimensions. Using Theorem
3 again, the algorithm must group the two arrays at
dimension d 0: Therefore, if the theorem groups
two arrays at d; it must group them at any lower
dimension d 0: &

Multidimensional regrouping fully exploits reference
affinity at all granularities. The algorithm subsumes
single-dimension regrouping. It extends the definition of
compatible arrays, which need not have the same
number of dimensions. Only the grouped dimensions
need a similar size and access order.

Multidimensional regrouping is especially beneficial
in large, complex programs, which often have loops that
are not perfectly nested and arrays that are traversed in

ARTICLE IN PRESS

Program I Program II

for step = 1, t
 for i = 1, n
 foo(a[i],b[i])
 end for
end for

for i = 1, n
 bar(a[i])
end for

for step = 1, t
 for i = 1, n
 foo(a[i],b[i])
 end for
end for

for step = 1, t
 for i = 1, n
 bar(a[i],c[i])
 end for
end for

Fig. 9. Examples of partial and dynamic reference affinity.

Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 123
different orders. Since data of varied granularity are
used together, multidimensional regrouping is necessary
to effectively reduce cache interference and the size of
page-table working set. Multidimensional regrouping is
particularly suitable for programs after aggressive loop
fusion, which often produces non-perfectly nested loops
that access a large number of data arrays.

3.2.4. Affinity-based structure splitting

Many program have a large number of homogeneous
objects, each of which contains the same set of data
attributes. In Fortran 77, attributes of an object are
stored in different arrays. In languages such as in C,
C++, and Java, attributes of an object are stored
together in a structure. In neither scheme is the data
layout sensitive to the access pattern of a program. The
idea that we use to improve the layout of array data can
also improve the layout of structure data.

Data regrouping can be used on structure data when
the data fields of an object can be split into individual
arrays. Examples include particles in a physics simula-
tion and tree nodes in a database. If we know the
number of objects, we can store each field in an array.
Then we can regroup field arrays based on their
reference affinity. The transformation is equivalent to
splitting the structure. We call it affinity-based structure

splitting. In the evaluation section, we will measure the
effect of affinity-based structure splitting and compare it
with other types of structure layouts.

3.3. Partial and dynamic reference affinity

This section extends data regrouping to consider
partial reference affinity—when data are not always
used together—and dynamic reference affinity—when
different groups of data are used at different times. It
also uses data regrouping to minimize memory write-
backs.

Partial reference affinity. Reference affinity is partial if
the group of references is frequently used together but
not always. An example is the first program in Fig. 9.
Arrays a and b are used together t times but separately
once. The benefit of grouping two arrays will exceed its
overhead when t is sufficiently large.

Using partial reference affinity, we gain performance
when they are used together but lose cache locality when
they are not used together. The overall effect depends on
the trade-off between the two. Since both factors are
machine dependent, the optimal regrouping is also
machine dependent. Assuming we have complete
machine information, the problem can be formulated
with a weighted, undirected graph, where each data item
is a node, and the weight of each edge is the benefit of
regrouping minus the overhead. The goal is to pack data
that are most beneficial into the same cache block.
However, the packing problem is NP-hard because it
can be reduced from the G-partitioning problem [32],
following a similar reduction given by Thabit [54].
Thabit used a weighted, undirected graph to model the
frequency when each pair of data are referenced
together. He called it a proximity graph [54]. In practice,
a compiler can focus on more frequently executed
program phases, for example, loops inside a time-step
loop.

Dynamic reference affinity. So far, data regrouping
produces a single data layout. Alternatively, it can
change data regrouping between program phases. In the
second program in Fig. 9, for example, the best
regrouping is to group a and b at the beginning of the
program and then separate these two arrays in the
middle. The effect of dynamic regrouping depends on
the benefit of data grouping and the cost of run-time
regrouping. Both factors are machine dependent, so the
optimal data layout is also machine dependent, as in the
case of partial reference affinity.

When the machine information is known, the problem
is an instance of the problem defined by Kennedy and
Kremer [30]. A program is a sequence of phases.
Different data layouts result in different execution times
for each phase and in different layout-conversion costs
between phases. The optimal layout is the one that
minimizes the overall execution time. The formulation
includes both static and dynamic data regrouping.
Kennedy and Kremer proved that the problem is NP-
hard and showed that 0-1 integer programming was
effective for finding the optimal layout.

Minimizing data write-backs. On machines with
insufficient memory bandwidth, data write-backs im-
pede memory read performance because they compete
for limited memory bandwidth. Data regrouping can
avoid unnecessary write-backs by separating read-only
data from modified data. This new requirement can be
easily enforced as follows. For each phase, the analysis
splits arrays into two disjoint subsets: the first contains
read-only data, and the second contains modified data.
It treats each as a different phase, and then applies data
regrouping. Two arrays will be grouped if and only if
they are both read-only or both modified. Data
regrouping finds the largest groups that satisfy this

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134124
condition. Two arrays being grouped does not mean
they must be read-only or modified throughout the
whole program. They can be both read-only in some
phases and both modified in other phases. When
redundant write-backs are allowed, the problem be-
comes the same as that of partial reference affinity
described earlier in this section.

3.4. Optimality

Data regrouping produces largest data groups that
are side effect free. It never increases useless data in a
cache block anywhere in a program. We can allow side
effects by considering partial reference affinity, which
increases unused data in cache blocks in some program
phase, or by considering dynamic reference affinity,
which incurs the cost of reorganization. These side
effects vary from machine to machine. If a compiler does
not know specific machine parameters or it produces
code for different machine configurations, then it should
avoid unknown side effects. Our method regroups data
if and only if it is always profitable. In this sense, it is
compile-time optimal.

Under reasonable assumptions, the optimality can
also be defined in terms of the size of the program
working set and the amount of program memory
transfer. The size of a working set is the total number
of memory units occupied by active program data. A
memory unit can be a cache block or a virtual memory
page. We first discuss the effect of regrouping on cache
and then move the discussion to virtual memory. In the
case of cache, the working set is minimal if there is no
unused data in cache blocks. Data regrouping reduces
the size of a working set by clustering useful data into
cache blocks. It produces maximal clustering, after
which we cannot add any data to any cache block
without a side effect.

The size of a working set directly affects memory
performance. The more cache blocks a program uses,
the more chances of premature eviction of useful data
caused by either limited cache capacity or associativity.
For convenience, we refer to both cache capacity misses
and cache interference misses collectively as cache

overhead misses. We assume that the number of cache
overhead misses is a non-decreasing function of the size
of the working set. Intuitively, a smaller working set
should never cause more overhead misses than a larger
one because the former contains fewer cache blocks.
This assumption implies that a minimal working set
leads to minimal cache overhead. Because data regroup-
ing minimizes the working set, it minimizes the cache
overhead and hence the number of cache capacity and
interference misses. Similarly, if virtual memory perfor-
mance is a non-decreasing function on the page working
set, then data regrouping maximizes the performance of
virtual memory.
4. Evaluation

4.1. Implementation

We have implemented computation fusion and data
regrouping in a version of the D Compiler System from
Rice University. The compiler performs whole-program
compilation given all source files of an input program. It
uses a powerful value-numbering package to handle
symbolic variables and expressions inside each subrou-
tine and parameter passing between subroutines. It
applies a standard set of analyses, including loop and
dependence analysis, data flow analysis, and interpro-
cedural analysis.

A program is processed by four preliminary transfor-
mations before loop fusion is applied. The first is
procedure in-lining, which brings all computation loops
into a single procedure. Procedure in-lining is straight-
forward for our test programs because their subroutines
are not recursive and are called only once in most cases.
In other programs, more advanced in-lining will be
needed to deal with recursion and code expansion. After
procedure in-lining, our compiler splits arrays that have
data dimensions of a small constant size. In the process,
it needs to unroll the loops that iterate those dimensions.
The third step is loop distribution. Finally, the last step
propagates constants into loop statements. Our compi-
ler performs loop unrolling, distribution, and constant
propagation automatically. In-lining is done by hand;
however, it can be automated with additional imple-
mentation.

Loop fusion is carried out by applying Algorithm 3. It
uses a technique similar to array-section analysis to
calculate the data footprint of each loop. Loop
interchange is largely unnecessary, as computations are
mostly symmetric. One exception is Tomcatv, where
loop interchange is performed by hand. Iteration
reordering is not yet implemented but the compiler
signals the places where it is needed. Only one program,
Swim, requires splitting, which is done by hand.

New code is generated as mappings from the initial
iteration space to the fused iteration space. We currently
use the Omega library [48], which has been integrated
into the D compiler [2]. The compilation time is under
1 min for all kernels. For the full application SP,
however, Omega does not scale well with the degree of
fusion. It takes 4 min for one-level fusion but 1:5 h for
three-level fusion. In contrast, our fusion analysis takes
about 2 min for one-level fusion and 4 min for full
fusion. If the running time proves excessive, we could
generate code using a linear-time algorithm given by
Allen and Kennedy (Section 8.6.3 of [5]), but this has
not been implemented in our current system.

After fusion, data regrouping is applied level by level
on fused loops using Algorithm 6, with two modifica-
tions. First, SGI’s compiler does a poor job when arrays

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 125
are interleaved at the innermost data dimension. So the
compiler groups arrays up to the second innermost
dimension. This restriction precludes regrouping for
reducing memory writebacks. It also results in grouping
in less desirable dimensions, as in Tomcatv. The other
restriction is inherited from the Fortran language, which
does not allow non-uniform array dimensions. When
multi-level regrouping produced non-uniform arrays,
manual changes are made to disable regrouping at outer
data dimensions.

4.2. Experimental design

The five test applications are described in Table 3.
They come from SPEC, NASA and DOE except for
ADI, which is a self-written program with separate loops
processing boundary conditions to better exercise
fusion. Since all programs use iterative algorithms, only
the loops inside the time step are timed. The number of
cache and TLB misses is measured by hardware
counters for the entire execution.

All but one of these programs are measured on an
SGI Origin2000 with 250 MHz R12K processors. The
exception, Swim, is measured on an SGI O2 with a
R10K processor in order for a direct comparison with
results of another group. Both the R12K and R10K
provide hardware counters that measure cache misses
with high accuracy. Each has a two-level cache. The
level-one (L1) cache uses 32-byte cache lines and is
32 kB in size. The level-two (L2) cache uses 128-byte
cache lines and is 1 MB on the O2 and 4 MB on the
Origin2000. Both levels of cache are two-way set
associative. Both processors hide memory latency
through dynamic, out-of-order instruction issuing and
compiler-inserted prefetching. The SGI compiler is the
MIPSpro Version 7.30. All applications are compiled
with the highest optimization flag with prefetching
turned on (f77 -n32 -mips4 -Ofast), except for Sweep3D,
on which we use -O2 because it is 2% ð23 sÞ faster than
for the original program. The performance improve-
ment at -Ofast is similar.

The other SPEC95fp and NAS benchmark programs
are omitted because our current implementation cannot
process them. The main problem is the lack of long
sequences of loop nests due to the extensive use of
Table 3

Description of test programs (B denotes a billion and M denotes a million)

Name Source Input size

Swim SPEC95 513 � 513

Tomcatv SPEC95 513 � 513

ADI self-written 2K � 2K

SP NAS/NPB class B,

Serial v2.3 3 iterations

Sweep3D DOE 150 � 150 � 150
abstraction by the programmer. To fully expose the
computation and data access, we need not only
procedure in-lining but an aggressive form of loop
unrolling. One such example is Sweep3d from DOE.
However, for this program we manually unrolled the
outermost loops and then fused them at the outermost
level by hand.

4.3. Effect of transformations

The effect of optimizations is shown in Fig. 10. The
graphs for the first three applications show three sets of
bars: the effect of loop fusion alone, the effect of data
grouping alone, and the effect of loop fusion plus data
regrouping together, all normalized to the original
program. For SP, one additional set of bars show the
effect of fusing one loop level instead of fusing all
loop levels. The execution time, the number of
graduated instructions, and original miss rates are also
given in the figures; however, reductions in cache and
TLB are measured on the number of misses, not on the
miss rate.

Swim solves a finite-difference model of shallow-water
equations. Its core consists of two two-dimensional
loops surrounded by statements and one-dimensional
loops. The inner loops traverse adjacent columns of 13
arrays. Loop fusion fuses all loop nests with the help of
loop splitting and reduces execution time by 10%. The
succeeding data grouping merges 13 arrays into 3 and
further reduces execution time by 2%, L1 misses by 5%,
and TLB by 8%. The performance of Swim is reported
for SGI O2 because it has the same cache configuration
as SGI Octane, a machine used in the work of iteration
slicing by Pugh and Rosser [49]. Our fusion achieves the
same improvement (10%) as Pugh and Rosser reported
for iteration slicing [49]. Our regrouped version is 2%
faster than our fused version.

Applying data regrouping only reduces execution time
by 16%, even though the data access is mostly
contiguous in this program. The improvement comes
from a 35% reduction in TLB misses—because regroup-
ing reduces the number of arrays—and a 14% reduction
in L2 misses—because grouped arrays have less inter-
ference in cache. When applied individually, loop fusion
and data regrouping execute 9% and 7% more
Lines/loops/arrays Inst./loads/stores

429/8/15 40.5B/11.0B/4.12B

221/18/7 3.33B/720M/289M

108/8/3 599M/155M/92M

1141/218/42 11.3B/3.32B/1.40B

2105/67/6 178B/53.4B/30.8B

ARTICLE IN PRESS

Fig. 10. The effect of transformations on SGI Origin 2000.

Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134126
instructions. When combined, they execute 18% fewer
instructions because they reduce memory access and
simplify address calculation. However, the lower in-
struction count does not lead to significant performance
gain.

Tomcatv has two pipelined computations progressing
along reverse directions, so multi-level loop fusion fuses
non-conflicting loops after interchanging them to the
outside. Single-dimension data regrouping cannot find
any opportunity in this program, but multi-level
regrouping merges 7 arrays into 4. Loop fusion
decreases performance by 1%, and the combined
transformation reduces the execution time by 16%,
mainly due to the 20% reduction in L2 misses. Data
regrouping increases TLB misses by 3% because of the
side effect of grouping at the outer data dimension. The
increase is insignificant, considering that the TLB miss
rate is only 0.03%.

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 127
In both Swim and Tomcatv, data regrouping performs
slightly better without loop fusion. A likely reason is
that the benefit of loop fusion does not outweigh its
instruction overhead when the data size is small. The
combined strategy does not lose on L2 cache perfor-
mance: it removes similar L2 cache misses in Swim and
4% more in Tomcatv. Loop fusion should perform
better with more optimized code generation or with
larger inputs. We will use a much larger input size in the
other three programs.

ADI performs pipelined computations in two dimen-
sions. It uses the largest input size and incidentally gains
the highest improvement. The reduction is 33% for
instruction count, 39% for L1 misses, 44% for L2, and
56% for TLB. The execution time is reduced by 57%, a
speedup of 2.33. Since only three arrays are used in the
program, data regrouping has little benefit on L2, TLB,
and the execution time, but it reduces L1 misses by 20%.
Without loop fusion, data regrouping sees no opportu-
nity and has no effect.

Sweep3D, the largest program in code size, also sees a
dramatic improvement. It traverses three-dimensional
arrays in six directions, including three along diagonals.
The reduction is 84% in L2 and 96% in TLB. The
overall performance is improved by a factor of 1.9.
Fusion accounts for the most improvement, while array
regrouping further improves performance by a small
percentage. Without loop fusion, array regrouping
reduces execution time by 3%, L2 misses by 2%, and
TLB misses by 52% but it increases instruction count
by 32%.

4.3.1. Program changes for SP

SP is a full application and deserves special attention
in evaluating the global strategy. It simulates fluid
dynamics by solving Navier–Stokes equation. The
computation proceeds along three dimensions of data
with many steps processing each dimension. The main
computation subroutine, adi, has 67 nests after in-lining.
Loop distribution and loop unrolling result in 482 loops
at three levels—157 loops at the first level, 161 at the
second, and 164 at the third. One-level loop fusion
merges all level-one loops into 8 loop nests. The full
fusion further merges loops in the remaining two levels
and produces 13 loops at the second level and 17 at the
third. Loop fusion increases the program size of the
main computation routine from 1141 lines to 28805
lines, although the size increase of the executable is
much smaller (from 490 to 526 kB).

The original program uses 15 global arrays. Array
splitting results in 42 arrays. After full loop fusion,
data regrouping combines 42 arrays into 17 new ones.
The choice of regrouping is very different from the
original ones coded by the programmer. For example,
one new array consists of four original arrays:
fainvðN;N;NÞ; usðN;N;NÞ; qsðN;N;NÞ; uðN;N;N; 1�
5Þg; and another new array includes two disjoint
sections of an original array: flhsðN;N;N; 6 � 8Þ;
lhsðN;N;N; 11 � 13Þg:

One-level fusion increases L1 misses by 5%, but
reduces the instruction count by 4%, L2 misses by 33%
and execution time by 27%, suggesting that the
performance bottleneck is memory bandwidth. Fusing
all levels eliminates half of the L2 misses (49%).
However, it creates too much data access in the
innermost loop and causes 8 times more TLB misses.
The performance is slowed by a factor of 2.32. Data
regrouping, however, merges data in affinity groups and
achieves the best performance. It reduces the instruction
count by 33%, L1 misses by 20%, L2 by 51%, and TLB
by 39%. The execution time is shortened by one third
(33%), a speedup of 1.5 (from 64.5 Mf/s to 96.2 Mf/s).

Without loop fusion, however, data regrouping can
combine only two arrays, lhsðN;N;N; 7Þ and
lhsðN;N;N; 8Þ; which yields a modest improvement,
reducing the instruction count by 7%, L1 misses by 4%,
L2 misses by 8%, and execution time by 7%. It increases
TLB misses by 15%.

Greedy fusion does not consider resource constraints
such as the number of available registers. It may fuse too
much code into the innermost loop and cause excessive
register spilling. For SP, the original execution has 4.6
billion register loads and stores. One-level loop fusion
and array regrouping reduce the number to 3.3 billion
because they simplify address calculation and utilize
integer registers better. After full fusion, however, the
number of loads and stores is increased to 4.0 billion.
We expect to avoid this increase by using a new
algorithm for loop fusion that considers resource
constraints.

We now compare the source-level fusion with the
trace-level fusion described in Section 2.3. The bottom-
right graph of Fig. 10 compares the effect of loop fusion
with that of reuse-driven execution for SP. It shows the
histogram of reuse distances for three versions of SP:
the original program, reuse-based loop fusion, and
reuse-driven execution. Reuse-based fusion reduces 45%
long-distance reuses, which is not as good as the 63%
reduction by trace-level reuse-driven execution. How-
ever, reuse-based loop fusion does realize a major
portion of the potential. Furthermore, the reduction
on long-distance reuses is very close to the reduction of
L2 misses on Origin2000 (51% vs. 45%), indicating that
the measurement of reuse distance closely matches L2
cache performance on SGI.

4.3.2. Effect on Sun and Compaq systems

We tested two other high-end systems: a 336 MHz
UltraSparc-II processor on a Sun Enterprise server and
a 600 MHz Alpha 21164 processor on a Compaq 4000
server. The UltraSparc-II processor does not have
hardware performance counters. The ones on the Alpha

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134128
21164 are not turned on. So we could measure only the
running times, which are listed in Table 4. For each
program, we tested four versions: original (orig), fusion
only (fuse), regrouping only (grp.), and combined
optimization (both). The table lists execution times by
seconds or speed by Mflop/s, as well as the relative
speedup compared to the original version. We could not
compile Sweep3D on the Sun machine because of the
absence of a Fortran 90 compiler.

In general, the performance on the Sun processor is a
factor of two to four slower than the performance on
SGI. Sun’s compiler does not implement as aggressive
loop-nest optimization or prefetching as the SGI
compiler does. Since programs run slower, the band-
width constraint is less severe and the transformations
are less effective. However, they improve performance in
all programs, from 5% in Tomcatv to 20% in NAS/SP

with an average of 13%. The numbers show the
importance of a combined strategy. Applying loop
fusion or data regrouping alone is not always beneficial.
In each program, at least one of fusion and regrouping
does not result in any improvement. In contrast, the
combined strategy consistently improves performance in
all programs. The most dramatic example is NAS/SP,
for which fusion increases running time by 3%,
regrouping increases it by 16%, but the combination
reduces running time by 20%.

The performance of the Alpha processor is about
10% slower than SGI. The bandwidth constraint is
significant at this performance level. The transforma-
tions are very effective. With the exception of Tomcatv,
the new strategy improves performance by 17% to a
factor of 2.4 with an average of 66%. The combination
of loop fusion and regrouping gives the best perfor-
mance in three programs. In the other two, the
difference is small—3% in Sweep3D and 7% in
Tomcatv. Due to the lack of performance tools, we did
not investigate the cause for the slowdown.
Table 4

Performance on Sun Ultra-II and Compaq Alpha processors

Applications 336 MHz Ultra-II

Enterprise 4500 server

SUN Fortran 4.0

Orig Fuse Grp.

Swim time (sec.) 262 286 241

speedup 1.00 0.92 1.09

Tom-catv time (sec.) 71.6 68.4 71.6

speedup 1.00 1.05 1.00

ADI time (sec.) 13.7 11.0 13.7

speedup 1.00 1.25 1.00

SP Mflop/sec. 39.7 38.7 33.5

speedup 1.00 0.97 0.84

Sweep-3D time (sec.) could not compile

speedup Fortran 90

Average speedup 1.00 1.05 0.98
The results on Sun and Compaq systems have shown
that the global strategy is effective on these two types of
machines. The combination of loop fusion and data
regrouping is crucial in achieving consistent perfor-
mance improvement. The Alpha processor sees the
largest performance improvement, the whole-program
performance of NAS/SP is increased by a factor of 2.4.

4.4. Affinity-based structure splitting

In this section, we evaluate affinity-based structure
splitting and compare it with three other schemes: array
organization, structure organization, and frequency-
based structure splitting. The attributes of an object
are stored in different arrays in the array organization
and in the same structure in the structure organization.
Frequency-based structure splitting was used by Chi-
limbi et al., who divided an object into two parts, one
including frequently accessed attributes and the other
including the rest [15].

We test two real applications in the experiment. The
first, Magi, comes from the Phillips Lab of Department
of Defense. It simulates high-impact particle dynamics
through the smoothed particle hydrodynamics (SPH)
method. It has over 9000 lines of Fortran 90 code. Each
particle has 26 attributes, accessed in 6 program phases.
A simplified view of the program was shown before in
Table 2. The access pattern depends on the distribution
of particles, and the access changes as particles move in
space. Affinity-based regrouping groups 26 attributes
into 6 arrays. Frequency-based splitting puts all 26
attributes in one structure, since all of them are
frequently used. We use a user-supplied input of 28K
particles and run the program on a 195 MHz MIPS
R10K processor on SGI Origin 2000. The user specified
the compiler flag -O2 in order to preserve numerical
accuracy. All our transformations preserve numerical
accuracy because they change only the data layout.
600 MHz Alpha 21164

Alpha 4000 server

Compaq Fortran X5.3

Both Orig Fuse Grp. Both

246 150 152 141 128

1.07 1.00 0.99 1.06 1.17

68.1 18.5 19.7 18.5 19.8

1.05 1.00 0.94 1.00 0.93

11.5 6.71 3.44 6.71 3.17

1.19 1.00 1.95 1.00 2.12

47.8 54.1 89.6 55.4 96.0

1.20 1.00 2.26 1.40 2.42

1358 785 1565 813

1.00 1.73 0.87 1.67

1.13 1.00 1.38 1.07 1.66

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 129
The second test program, Cheetah, is a simulator for
fully associative cache [53], widely distributed as part of
SimpleScalar [39]. It has 718 lines in its main program
file and 2287 lines counting all user-written header files.
We do not have a C compiler, so program analysis and
transformation are done by hand. The program uses a
self-adjusting tree (splay tree), composed of dynamically
allocated tree node structures linked by pointers. Profil-
ing analysis shows that two most time-consuming
functions are ref tree and rotate right. A manual
inspection reveals three phases with the following
attribute access: (inum, lft), (inum, rtwt, addr, rt), and
(lft, rt, rtwt). Hence, for affinity-based regrouping, we
have all attributes in separated arrays except for rt and
rtwt. Profiling shows that lft and rtwt are used at least
twice as frequently as other attributes. For frequency-
based splitting, we have these two attributes in one
structure and all others in another. The input to Cheetah

is a loop that iterates two million data elements twice.
The experiment was performed a few years after that of
Magi, so we used a different system: a 250 MHz MIPS
R10K processor on SGI Origin2000.

To apply structure splitting in Cheetah, we convert the
program from using pointer reference to using array
indexing. For example, we store left-child pointers in an
array and convert their references, for example, from
p-4lft to lft[pi]. Since Cheetah allocates a fixed
number of tree nodes, we can pack these tree nodes into
an array. The conversion reduces execution time from
7.44 to 6:31 s: In comparison, Chilimbi et al., did not
convert data to arrays [15]. Instead, they added a pointer
to link the split pieces. Their scheme supports dynamic
allocation, although the pointer adds a space and time
cost. In the above experiment, however, we use the array
code for all types of data layout including frequency-
based splitting.

For each program and each layout, Table 5 shows the
execution time and the number of cache and TLB
Table 5

Comparison of affinity-based object reorganization with array layout, struct

Performance Data layout

on MIPS R10K I. Array

SGI Origin2000 layout

Magi, a hydrodynamics simulator

Exe. Time (s) 885

Level-1 misses (billion) 5.64

Level-2 misses (million) 238

TLB misses (million) 1080

Cheetah, a fully-associative cache simulator

Exe. Time (s) 5.37

Level-1 misses (million) 11.9

Level-2 misses (million) 2.87

TLB misses (thousand) 29.4
misses, as measured by hardware counters. The initial
data layouts—array layout in Magi and structure layout
in Cheetah—happen to be the worst for performance. In
contrast, affinity-based regrouping achieves the fastest
running time and lowest number of misses in TLB and
level-one cache. The number of misses in the level-two
cache is also lowest in Magi, but it is marginally higher
(1%) than array layout in Cheetah, likely due to non-
uniform array sizes in the grouped layout. Despite this,
it is clear that affinity-based regrouping gives the best
data layout, improving program performance by 32% in
Magi and 19% in Cheetah, compared to the initial data
layout.

Frequency-based structure splitting improves the
initial layout to a lesser degree—12% in Magi and 6%
in Cheetah. The improvement from affinity is about
three times as much as that from frequency in part
because the former transfers 32% less memory data than
the latter does. The reason that frequency-based
splitting causes more memory transfer is that object
attributes are frequently accessed but not frequently
accessed together. Although not shown in the table, the
experiment studies a few other choices of structure
splitting but none performs as well as affinity-based
structure splitting.

In the past, data optimization has been the respon-
sibility of the programmer. Our results have shown that
this is unnecessary and improper. Neither Fortran-style
array layout nor C-style structure layout gives the best
performance. The optimal layout depends on the
reference affinity in a program, which may change if
some parts of a program are modified. Automatic data
regrouping would save the programmer from having to
redo the data layout. It gives programmers complete
freedom in defining data structures without worrying
about their impact on performance. It gives the optimal
data layout regardless of the initial choice or subsequent
changes of a programmer.
ure layout, and frequency-based structure splitting

II. Structure Regrouping based on

layout III. frequency IV. affinity

787 same as II 673

3.67 same as II 3.49

314 same as II 197

606 same as II 574

6.31 5.96 5.30

15.1 15.0 11.9

4.81 4.27 2.90

55.6 44.3 28.5

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134130
4.5. Comparison with traditional compiler optimization

We compare the new strategy with traditional
compiler optimization implemented in the SGI compi-
ler. Table 6 shows the amount of data transferred for
versions of each program with optimizations provided
by the SGI compiler and after transformation via the
strategy developed in this paper. The results are
normalized to the version with no optimization. If we
compare the average reduction in misses due to compiler
techniques, the new strategy, labeled by column New,
does better than the SGI compiler by factors of 8 for L1
misses, 5 for L2 misses, 2.5 for TLB misses, and 1.6 for
performance. In addition, the figures of the last two
applications show that the SGI compiler is particularly
ineffective in optimizing the two large applications, on
which the new strategy works especially well. Thus, the
global strategy we propose has a clear advantage over
the more local strategies employed by an excellent
commercial compiler, especially for large programs with
huge data sets.

4.6. Summary

As a result of better global cache reuse, the new
strategy consistently improves program performance on
three different machine architectures over three different
vendor compilers. With the exception of Tomcatv on the
Alpha processor, the combined strategy improves
whole-program performance in every case. The im-
provement is dramatic in the two fast processors—SGI
R12K and Compaq Alpha 21164. The average improve-
ment is a factor of 1.61 on the SGI system and 1.66 on
the Compaq system.

The reduction in memory traffic and the improvement
in execution time are obtained through source-to-source
compiler techniques developed for reducing program
bandwidth consumption. We highlight three features.

* Reuse-based loop fusion. Pair-wise fusion can fuse
loops of different control structures and therefore
find more fusion opportunities. In NAS/SP, over 100
loops is fused into a single loop.
Table 6

Summary of effect on memory traffic, measured on SGI Origin 2000

Program L1 misses L2 misses TLB misses Speedup

SGI New SGI New SGI New over SGI

Swim 1.26 1.15 1.10 0.94 1.60 1.05 1.14

Tomcatv 1.02 0.97 0.49 0.39 0.010 0.010 1.17

ADI 0.66 0.40 0.94 0.53 0.011 0.005 2.33

Sweep3D 1.00 0.92 0.99 0.16 1.00 0.04 1.93

NAS/SP 0.97 0.77 1.00 0.49 1.09 0.67 1.49

Average 0.98 0.84 0.90 0.50 0.74 0.35 1.61
* Affinity-based data regrouping. Data regrouping
improves performance in almost all programs on all
machines. Multidimensional regrouping is necessary
to fully exploit reference affinity at all granularity,
especially in fused loops, which are often imperfectly
nested.

* Combined strategy. Loop fusion may degrade per-
formance without data regrouping, and data re-
grouping may see less opportunity without loop
fusion. However, when combined, they almost always
achieve a dramatic improvement. It is the combination

that gives us the most effective strategy for global

optimization.
5. Related work

5.1. Related work in loop fusion

Many researchers have studied loop fusion. Early
work included those of Wolfe [56] and Allen and
Kennedy [4]. Combining loop fusion with distribution
was originally discussed by Allen et al. [3]. They also
used loop alignment to assist parallelization. To
improve the reuse of vector registers, Allen and
Kennedy fused loops with identical bounds, no fusion-
preventing dependences, and no true dependences with
intervening statements. Callahan developed a greedy
fusion that maximizes coarse-grain parallelism but not
locality [12]. McKinley et al. [43] implemented loop
fusion for cache reuse. Both of these works used the
same fusion constraints as Allen and Kennedy. McKin-
ley et al. successfully fused on average 6% of tested
loops. Fusion-preventing dependences can be avoided
by peel-and-jam as shown by Porterfield [47]. Peel-and-
jam is functionally the same as loop alignment but is
restricted to a single direction. Manjikian and Abdelrah-
man used peel-and-jam to fuse loops with different
iteration bounds but with the same control structure in
the fused levels [41]. They found more opportunities for
fusion. Still, at most 8 original loops could be fused into
a single loop. Our pair-wise fusion can fuse loops of
different control structures at all loop levels. To the best
of our knowledge, this work finds the largest degree of
fusion among published studies. Approximately 500
loops in NAS/SP were fused into 8 loop nests.

Loop fusion may cause poor spatial locality due to the
increased data access in fused loops. McKinley et al.
reported that fusion improved hit rate in four programs
but made it worse in another three programs [43].
Manjikian and Abdelrahman used a form of array
padding [41]. They did not address the situation when
different loops require different data layouts.

Global loop fusion was formulated as a graph
problem by Callahan for parallelization [12], by Gao
et al. [24] for register reuse, and by Kennedy and

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 131
McKinley [31] for locality and parallelism. Kennedy and
McKinley proved that optimal fusion is NP-hard [31].
All these studies modeled loops as nodes and data reuse
as weighted edges. We use loop fusion to reduce
program bandwidth consumption. We model data reuse
with hyper edges that can connect to any number of
loops. We prove that the extended problem is also NP-
hard. We use a greedy heuristic that examines loops in
program order. Kennedy gave a fast algorithm that
always fuses along the heaviest edge and supports both
models of reuse [28]. Graph-based methods have more
freedom than our sequential scheme. However, regard-
less of the fusion heuristic, a global method needs to fuse
loops of different control structures and to optimize
data layout after fusion. Therefore, they should benefit
from pair-wise fusion and data regrouping.

Gao et al. combined loop fusion with array contrac-
tion [24]. A similar strategy was used by Lin et al. using
language support [37], by Lim et al. using affine
partitioning [38], and by Song et al. [52] using a similar
fusion scheme as Manjikian and Abdelrahman [41]. Lim
et al. considered locality optimization in conjunction
with parallelization. Our work complements the above
studies: pair-wise fusion enables more fusion, and
affinity-based array regrouping improves data layout
for arrays that cannot be eliminated by contraction.

Kodukula et al. took a data-centric approach by
fusing computations on each data tile through ‘‘shack-
ling’’ [34]. Pugh and Rosser fused computations on each
data element by slicing loop iterations [49]. Yi et al.
organized computations in a recursive decomposition
[59]. Two simultaneous studies by Song and Li [51] and
by Wonnacott [57,58] tiled a time-step loop when its
inner loops were all fusible. Loop tiling and fusion are
complementary techniques—tiling brings together data
reuses in the outer loops of a single loop nest, while loop
fusion brings together data reuses from disjoint loops.
Since tiling needs all inner loops fusible, it can use reuse-
based loop fusion to handle inner loops of different
shapes. When not all loops are fusible, tiling cannot be
applied across disjoint loop nests. In this case, we show
that optimal fusion is NP-hard and present a greedy
heuristic. Several previous studies combined loop tiling
and fusion using powerful but expensive analysis that
computes all-to-all data dependence [34,49,59]. They
often generate code that has higher instruction over-
head. In comparison, reuse-based fusion is incremental
and therefore can more efficiently reorganize a large
number of loops. Pugh and Rosser showed mixed results
for iteration slicing. On SGI Octane, Swim was
improved by 10% but the transformation on Tomcatv

‘‘interacted poorly with the SGI compiler’’ [49]. Using
different machines, Song and Li [51] and Wonnacott [58]
achieved integer-factor performance improvement for
Swim and Tomcatv by combining fusion with time-step
tiling and single-array data transformations. They did
not report the direct effect of loop fusion. Tiling is not
applicable to the two large programs in our test suite,
SP and Sweep3D, whose time steps include loops that
are not all fusible. The second technique in this work,
array regrouping, analyzes the access pattern in all
program loops and improves spatial reuse in fused loops
as well as tiled loops.

The importance of global data reuse was shown by
McKinley and Temam, who observed that most misses
in SPECfp and Perfect benchmarks are due to inter-nest
temporal reuse [44]. Our reuse-driven execution comple-
ments their results by showing how much reuse can be
converted to cache reuse by reordering.

Scholz developed a functional array language, Single-

Assignment C (SaC), and used loop fusion as an
important optimization [50]. Since SaC programs have
no side effects, loop fusion is greatly simplified: it does
not need loop alignment for correctness. It can also
effect array contraction through forward substitution.
Scholz did not consider data transformation after loop
fusion. Recently, Pingali et al. showed that computation
fusion can be applied to non-scientific programs [46].

5.2. Related work in improving cache spatial locality

Loop interchange can make array access contiguous,
as shown by Abu-Sufah et al. [1], Gannon et al. [23],
Wolf and Lam [55], Ferrante et al. [22], and McKinley
et al. [43]. Alternatively, Mace [40] and Leung [36]
transformed array layout to effect contiguous access.
Cierniak and Li [16] and Kendemir et al. [27] showed
that loop and data transformations can be combined to
achieve a greater effect. In the context of parallelization,
Kennedy and Kremer [30], Anderson et al. [6], and
Eggers and Jeremiassen [26] used data transformation to
improve locality for parallel programs. Beckman and
Kelly studied run-time data layout selection in a parallel
library [9]. The goal of most of these techniques is to
improve data reuse within a single array. An exception is
group & transpose, which groups single-dimension
vectors used by a thread to reduce false sharing [26].
Grouping all local data may reduce cache spatial locality
if they are not used at the same time. In comparison, we
group data based on reference affinity and group high-
dimensional arrays at multiple granularity.

Locality between multiple arrays can be improved by
array padding as reported by Bailey [8], which makes
arrays well separated, and array copying as used by Lam
et al. [35], which combines array sections at run time.
Compared to array padding, data regrouping is prefer-
able because it works for all sizes of arrays or all
configurations of cache, but padding is still needed if not
all arrays can be grouped together. Copying is not
necessary if reference affinity exists. In the case of
dynamic reference affinity, copying is needed. We have

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134132
formulated the problem in terms of reference affinity
and analyzed its complexity.

5.3. Comparison with other locality models

For loop-based code, a compiler can construct very
accurate locality models. For other programs, however,
people have often relied on profiling. The concept of
reference affinity can be used in both cases to denote
data that are often accessed together. We now discuss
the differences between reference affinity and other
models used in profiling analysis.

Early analysis of execution frequency included coun-
ter-based profiling by Knuth [33] and static probability
analysis by Cocke and Kennedy [17]. Access frequency
does not distinguish the time of access. Being frequently
accessed does not mean frequently accessed together. In
the early 1980s, Thabit measured how often two data
elements were used together [54]. Pair-wise affinity does
not imply reference affinity. For example, the sequences
ab::ab bc::bc ca::ca and abc::abc can produce the same
pair-wise graph, but they have very different reference
affinity. In a recent paper, Petrank and Rawitz
formalized this observation and proved a harsh bound:
with only pair-wise information, no algorithm can find a
static data layout that is always within a factor of k � 3
from the optimal solution, where k is proportional to
the size of cache [45].

Chilimbi described a ‘‘hot-stream’’ as a model of
locality [14]. A hot stream is an identical sequence of
data accesses that occurs repeatedly in a program. By
definition and by implementation (using grammar
compression), hot-streams must be identical sub-se-
quences. It is different from reference affinity. For
example, a and b are in an affinity group in the sequence
axbyayb::azb; but they are not part of a hot stream.
Ding and Zhong recently measured data reuse pattern
by the distribution of the distance of data reuses [21].
Reuse distance pattern is a summary over all reuses of
all data and does not directly find reference affinity
among data subsets.
6. Conclusion

This research has presented a two-step strategy for
minimizing program bandwidth consumption. The first,
reuse-based loop fusion, fuses loops of different control
structures by pair-wise and sequential greedy fusion.
The second step, affinity-based data regrouping groups
data at all granularity to effect a compile-time optimal
layout. Together, the two steps transform both program
and data for the whole program and at fine granularity.

When evaluated on five standard benchmarks from
SPEC, NASA, and DOE, the new strategy achieved
significant reduction in both the amount of memory
traffic and the program running time, outperforming
current commercial compilers from SGI, Sun, and
Compaq by integer factors for applications that consist
of thousands lines of code. The evaluation also showed
that the combination of computation fusion and data
regrouping is crucial to realizing the benefit of the global
strategy.

Broadly speaking, this work is a significant step
toward alleviating the tension between today’s software
and hardware. Given the rapid innovation and diversi-
fication of computing devices, a major challenge is to
adapt software to its hardware environment. In this
work, we have demonstrated the benefit of reorganizing
the whole program and its entire data set. If these
strategies are incorporated into widely-used compilers it
will make it easier for programmers to achieve high
performance on leading-edge computer systems without
the necessity of restructuring by hand.
Acknowledgments

The implementation of the compiler is based on the D
System, a project led by John Mellor-Crummey and in
part by Vikram Adve at Rice University. It was based
on a scalar compiler framework put together by Nat
Macintosh. Leo Boyarsky hand transformed the Chee-

tah program and measured the effect of data regrouping.
We also thank Keith Cooper, Nathaniel Dean, Alan
Cox, Kathryn McKinley, Larry Carter, Sarita Adve,
Guang Gao, David Whalley, David Wonnacott, Uli
Kremer, Kath Knobe, Matthias Felleisen, Shriram
Krishnamurthi, Danny Sorensen, William Cook, and
anonymous referees of this journal and of IPDPS’01 and
IPDPS’00 conferences and LCPC’99 workshop for
helpful comments at various stages of this work.

The work was supported by the Defense Advanced
Research Projects Agency (Contract F30602-96-1-0159),
a gift from Compaq Computer Corporation (Agreement
US-1998057), and by the Department of Energy through
the Los Alamos Computer Science Institute (Contract
74837-001-0349 from the Regents of University of
California) and the Lawrence Livermore ASCI program
(Contract B347884). Chen Ding is also supported by a
Young Investigator grant from the Department of
Energy (Contract DE-FG02-02ER25525). The machines
were purchased by grants from the Defense Advanced
Research Projects Agency (Contract 03891-001-99-49),
Compaq Computer Corporation, and the National
Science Foundation (Contract SCREMS-98-72009 and
EIA-0080124).
References

[1] W. Abu-Sufah, D. Kuck, D. Lawrie, On the performance

enhancement of paging systems through program analysis and

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134 133
transformations, IEEE Trans. Comput. C 30 (5) (May 1981)

341–356.

[2] V. Adve, J. Mellor-Crummey, Using integer sets for data-parallel

program analysis and optimization, in: Proceedings of the

SIGPLAN ’98 Conference on Programming Language Design

and Implementation, Montreal, Canada, June 1998.

[3] J.R. Allen, D. Callahan, K. Kennedy, Automatic decomposition

of scientific programs for parallel execution, in: Proceedings of the

Fourteenth Annual ACM Symposium on the Principles of

Programming Languages, Munich, Germany, January 1987.

[4] J.R. Allen, K. Kennedy, Vector register allocation, IEEE Trans.

Comput. 41 (10) (October 1992) 1290–1317.

[5] R. Allen, K. Kennedy, Optimizing Compilers for Modern

Architectures, Morgan Kaufman, Los Altos, CA, 2001.

[6] J. Anderson, S. Amarasinghe, M. Lam, Data and computation

transformation for multiprocessors, in: Proceedings of the Fifth

ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Santa Barbara, CA, July 1995.

[7] J. Backus, The history of Fortran I, II, and III, in: Wexelblat

(Ed.), History of Programming Languages, Academic Press, New

York, 1981, pp. 25–45.

[8] D. Bailey, Unfavorable strides in cache memory systems,

Technical Report RNR-92-015, NASA Ames Research Center,

1992.

[9] O. Beckmann, P.H.J. Kelly, Efficient interprocedural data

placement optimisation in a parallel library, in: Proceedings of

the Fourth Workshop on Languages, Compilers, and Run-time

Systems for Scalable Computers, May 1998.

[10] L.A. Belady, A study of replacement algorithms for a virtual-

storage computer, IBM Systems J. 5 (2) (1966) 78–101.

[11] D.C. Burger, J.R. Goodman, A. Kagi, Memory bandwidth

limitations of future microprocessors, in: Proceedings of the

23th International Symposium on Computer Architecture,

Philadelphia, PA, May 1996.

[12] D. Callahan, A Global Approach to Detection of Parallelism,

Ph.D. Thesis, Dept. of Computer Science, Rice University, March

1987.

[13] D. Callahan, J. Cocke, K. Kennedy, Estimating interlock and

improving balance for pipelined machines, Journal of Parallel and

Distributed Computing 5 (4) (August 1988) 334–358.

[14] T.M. Chilimbi, Efficient representations and abstractions for

quantifying and exploiting data reference locality, in: Proceedings

of ACM SIGPLAN Conference on Programming Language

Design and Implementation, Snowbird, UT, 2001.

[15] T.M. Chilimbi, B. Davidson, J.R. Larus, Cache-conscious

structure definition, in: Proceedings of SIGPLAN Conference

on Programming Language Design and Implementation, Atlanta,

GA, May 1999.

[16] M. Cierniak, W. Li, Unifying data and control transformations

for distributed shared-memory machines, in: Proceedings of the

SIGPLAN ’95 Conference on Programming Language Design

and Implementation, La Jolla, CA, June 1995.

[17] J. Cocke, K. Kennedy, Profitability computations on program

flow graphs, Technical Report RC 5123, IBM, 1974.

[18] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour,

M. Yannakakis, The complexity of multiway cuts, in: Proceedings

of the 24th Annual ACM Symposium on the Theory of

Computing, May 1992.

[19] C. Ding, Improving Effective Bandwidth through Compiler

Enhancement of Global and Dynamic Cache Reuse, Ph.D.

Thesis, Dept. of Computer Science, Rice University, January

2000.

[20] C. Ding, K. Kennedy, Memory bandwidth bottleneck and its

amelioration by a compiler, in: Proceedings of International

Parallel and Distributed Processing Symposium, Cancun, Mexico,

May 2000.
[21] C. Ding, Y. Zhong, Predicting whole-program locality using

reuse-distance analysis, in: Proceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementa-

tion, San Diego, CA, June 2003.

[22] J. Ferrante, V. Sarkar, W. Thrash, On estimating and enhancing

cache effectiveness, in: U. Banerjee, D. Gelernter, A. Nicolau, D.

Padua (Eds.), Languages and Compilers for Parallel Computing,

Fourth International Workshop, Springer, Santa Clara, CA,

August 1991.

[23] D. Gannon, W. Jalby, K. Gallivan, Strategies for cache and local

memory management by global program transformation, J.

Parallel Distrib. Comput. 5 (5) (October 1988) 587–616.

[24] G. Gao, R. Olsen, V. Sarkar, R. Thekkath, Collective loop fusion

for array contraction, in: Proceedings of the Fifth Workshop on

Languages and Compilers for Parallel Computing, New Haven,

CT, August 1992.

[25] P. Havlak, K. Kennedy, An implementation of interprocedural

bounded regular section analysis, IEEE Trans. Parallel Distrib.

Systems 2 (3) (July 1991) 350–360.

[26] T.E. Jeremiassen, S.J. Eggers, Reducing false sharing on shared

memory multiprocessors through compile time data transforma-

tions, in: Proceedings of the Fifth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, Santa

Barbara, CA, July 1995, pp. 179–188.

[27] M. Kandemir, A. Choudhary, J. Ramanujam, P. Banerjee, A

matrix-based approach to the global locality optimization

problem, in: Proceedings of International Conference on Parallel

Architectures and Compilation Techniques, 1998.

[28] K. Kennedy, Fast greedy weighted fusion, in: Proceedings of the

2000 International Conference on Supercomputing, Santa Fe,

NM, May 2000.

[29] K. Kennedy, C. Ding, Resource constrained loop fusion,

Technical Report TR03-424, Department of Computer Science,

Rice University, September 2003.

[30] K. Kennedy, U. Kremer, Automatic data layout for distributed

memory machines, ACM Trans. Programming Languages Sys-

tems (TOPLAS) 20 (4) (1998).

[31] K. Kennedy, K.S. McKinley, Typed fusion with applications to

parallel and sequential code generation, Technical Report TR93-

208, Dept. of Computer Science, Rice University, August 1993

(also available as CRPC-TR94370).

[32] D.G. Kirkpatrick, P. Hell, On the completeness of a generalized

matching problem, in: The Tenth Annual ACM Symposium on

Theory of Computing, 1978.

[33] D. Knuth, An empirical study of FORTRAN programs, Soft-

ware—Practice Experience 1 (1971) 105–133.

[34] I. Kodukula, N. Ahmed, K. Pingali, Data-centric multi-level

blocking, in: Proceedings of the SIGPLAN ’97 Conference on

Programming Language Design and Implementation, Las Vegas,

NV, June 1997.

[35] M. Lam, E. Rothberg, M.E. Wolf, The cache performance and

optimizations of blocked algorithms, in: Proceedings of the

Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-IV),

Santa Clara, CA, April 1991.

[36] S. Leung, Array restructuring for cache locality, Ph.D. Thesis,

Technical Report UW-CSE-96-08-01, University of Washington,

1996.

[37] E. Lewis, C. Lin, L. Snyder, The implementation and evaluation

of fusion and contraction in array languages, in: Proceedings of

the SIGPLAN ’98 Conference on Programming Language Design

and Implementation, Montreal, Canada, June 1998.

[38] A. Lim, S. Liao, M. Lam, Design and evaluation of locality

optimizations using affine partitioning, in: Proceedings of ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Snowbird, UT, June 2001.

ARTICLE IN PRESS
Chen Ding, Ken Kennedy / J. Parallel Distrib. Comput. 64 (2004) 108–134134
[39] SimpleScalar LLC, SimpleScalar tool set, www.simplescalar.com.

[40] M.E. Mace, Memory storage patterns in parallel processing,

Kluwer Academic, Boston, 1987.

[41] N. Manjikian, T. Abdelrahman, Fusion of loops for parallelism

and locality, IEEE Trans. Parallel Distrib. Systems 8 (1997).

[42] R.L. Mattson, J. Gecsei, D. Slutz, I.L. Traiger, Evaluation techni-

ques for storage hierarchies, IBM System J. 9 (2) (1970) 78–117.

[43] K.S. McKinley, S. Carr, C.-W. Tseng, Improving data locality

with loop transformations, ACM Trans. Programming Lan-

guages Systems 18 (4) (July 1996) 424–453.

[44] K.S. McKinley, O. Temam, Quantifying loop nest locality using

SPEC’95 and the perfect benchmarks, ACM Transactions on

Computer Systems 17 (4) (November 1999) 288–336.

[45] E. Petrank, D. Rawitz, The hardness of cache conscious data

placement, in: Proceedings of ACM Symposium on Principles of

Programming Languages, Portland, OR, January 2002.

[46] V.K. Pingali, S.A. McKee, W.C. Hsieh, J.B. Carter, Computation

regrouping: restructuring programs for temporal data cache

locality, in: Proceedings of ACM International Conference on

SuperComputing, 2002.

[47] A. Porterfield, Software methods for improvement of cache

performance, Ph.D. Thesis, Dept. of Computer Science, Rice

University, May 1989.

[48] W. Pugh, A practical algorithm for exact array dependence

analysis, Comm. ACM 35 (8) (August 1992) 102–114.

[49] W. Pugh, E. Rosser, Iteration space slicing for locality, in:

Proceedings of the Twelfth Workshop on Languages and

Compilers for Parallel Computing, August 1999.

[50] S. Scholz, With-Loop-Folding in SAC - condensing consecutive

array operations, in: Proceedings of Conference on Implementa-

tion of Functional Languages, 1997.

[51] Y. Song, Z. Li, New tiling techniques to improve cache temporal

locality, in: Proceedings of ACM SIGPLAN Conference on

Programming Languages Design and Implementation, Atlanta,

GA, May 1999.

[52] Y. Song, R. Xu, C. Wang, Z. Li, Data locality enhancement by

memory reduction, in: Proceedings of ACM International

Conference on Supercomputing, June 2001.

[53] R.A. Sugumar, S.G. Abraham, Multi-configuration simulation

algorithms for the evaluation of computer architecture designs,

Technical Report, University of Michigan, 1993.

[54] K.O. Thabit, Cache Management by the Compiler. Ph.D. Thesis,

Dept. of Computer Science, Rice University, 1981.

[55] M.E. Wolf, M. Lam, A data locality optimizing algorithm, in:

Proceedings of the SIGPLAN ’91 Conference on Programming

Language Design and Implementation, Toronto, Canada, June

1991.
[56] M.J. Wolfe, Optimizing Supercompilers for Supercomputers.

Ph.D. Thesis, Dept. of Computer Science, University of Illinois

at Urbana-Champaign, October 1982.

[57] D. Wonnacott, Using time skewing to eliminate idle time due to

memory bandwidth and network limitations, in: Proceedings of

International Parallel and Distributed Processing Symposium,

Cancun, Mexico, May 2000.

[58] D. Wonnacott, Achieving scalable locality with time skewing,

Internat. J. Parallel Programming 30 (3) (June 2002).

[59] Q. Yi, V. Adve, K. Kennedy, Transforming loops to recursion for

multi-level memory hierarchies, in: Proceedings of ACM SIG-

PLAN Conference on Programming Language Design and

Implementation, Vancouver, Canada, June 2000.

[60] Y. Zhong, C. Ding, K. Kennedy, Reuse distance analysis for

scientific programs, in: Proceedings of Workshop on Languages,

Compilers, and Run-time Systems for Scalable Computers,

Washington DC, March 2002.
Chen Ding is an Assistant Professor of

Computer Science at University of Rochester.

His research focuses on understanding whether

a complex program has an inherent pattern of

data access and, if so, to what degree that

pattern can be modeled, measured, and mod-

ified (improved). He is a recipient of a Young

Investigator Award from the Office of Science

of the US Department of Energy, a Career

Award from the National Science Foundation,

and a best paper award from the IEEE
IPDPS’01 conference. In 2002, he co-organized the first ACM

SIGPLAN Workshop on Memory System Performance.
Ken Kennedy is the John and Ann Doerr

University Professor of Computer Science and

Director of the Center for High Performance

Software Research (HiPerSoft) at Rice Uni-

versity. He has supervised 35 Ph.D. disserta-

tions and published two books and over 170

technical articles on compilers and program-

ming support software for high-performance

computer systems. In recognition of his con-

tributions to software for high-performance

computation, he received the 1995 W. Wallace
McDowell Award, the highest research award of the IEEE Computer

Society. In 1999, he was named the third recipient of the ACM

SIGPLAN Programming Languages Achievement Award.

*http://www.simplescalar.com

书书书

多核程序交互理论及应用
!

丁
"

晨!

!袁
"

良"

!

!#

罗切斯特大学计算机系"纽约 罗切斯特
!$%"&

"美国#

"#

中科院计算所计算机体系结构国家重点实验室"北京
!''!('

$

摘
"

要!多核处理器上共享缓存使用效率!即程序局部性是影响并行程序性能的关键因素之一"提出

了以足迹为基础的局部性理论"介绍了缺失率#重用距离和足迹之间的转化关系!并利用足迹可组合性特

征建立了并行程序局部性预测模型"

关键词!局部性$足迹$重用距离$缺失率

中图分类号!

)*+!!#,

文献标志码!

-

!"#

%

!'#+(%(

&

.

#/001#!''&2!+'3#"'!$#'!#''!

$%"

&

%'(#)*+%',*#")")(-.*#,"%+

!

/0+"%

1

')!'

22

.#,'*#")3

456789:1

!

"

;<-6=/>1

?

"

!

!#4:

@

>ABC:1BDE8DC

@

FB:AGH/:1H:

"

<1/I:A0/B

J

DEKDH9:0B:A

"

KDH9:0B:A!$%"&

"

<G-

#

"#GL=DE8DC

@

FB:A-AH9/B:HBFA:

"

510B/BFB:DE8DC

@

FB/1

?

):H91DMD

?J

"

89/1:0:-H>N:C

J

DEGH/:1H:

"

O:/

.

/1

?

!''!('

"

89/1>

$

453*%',*

%

P1CDN:A1CFMB/HDA:0

J

0B:C0

"

B9:/1B:A>HB/D1Q:BR::1HD2AF1

@

AD

?

A>C0M>A

?

:M

J

N:

@

:1N0D1

H>H9:09>A/1

?

"

>1NH>H9:09>A/1

?

N:

@

:1N0D1B9:MDH>M/B

J

"

/#:#B9:>HB/I:N>B>F0>

?

:

"

/1HD2AF1

@

AD

?

A>C0#

)9:

@

>

@

:A/1BADNFH:0>1:RM

J

N:I:MD

@

:NMDH>M/B

J

B9:DA

J

Q>0:ND1>HD1H:

@

BH>MM:NB9:EDDB

@

A/1B#)9:B9:2

DA

J

09DR0B9:HDC

@

D0>Q/M/B

J

DEEDDB

@

A/1B>1NB9:HD1I:A0/D1Q:BR::1EDDB

@

A/1B>1NDB9:AMDH>M/B

J

C:BA/H0

/1HMFN/1

?

B9:C/00A>B:>1NA:F0:N/0B>1H:#)9:1:RB9:DA

J

:1>QM:0>HHFA>B:>1>M

J

0/0DE

@

:AEDAC>1H:>1N

N

J

1>C/HH>H9:>MMDH>B/D1/1B9:09>A:NH>H9:D1CFMB/HDA:

@

ADH:00DA0#

6+

1

7"%!3

%

MDH>M/B

J

#

EDDB

@

A/1B

#

A:F0:N/0B>1H:

#

C/00A>B/D

8

"

引言

在科学研究'工程设计'商业处理甚至日常生

活中"计算是无处不在的(由于硬件的发展"目前

大多数计算'云'桌面和手持电脑程序在多核处理

器上运行"同时运行的程序间会由于共享资源而产

生相互作用和干扰"因此共享环境下的一个重要问

题是如何控制程序间的交互和减少干扰影响(其

目的不只是提高程序性能"还需要保证性能的稳定

性(并且不只对并行程序"对并行运行的多个串行

程序也同样重要(

共享缓存是程序干扰的首要原因(现代应用

程序大部分运行时间开销为对内存数据的访问(

通常情况下超过
((S

的数据读写操作发生在高速

缓存(一个计算系统通常有
"

!

T

个处理器!

GDHU2

:B

$"每个处理器有
"

!

%

个物理核"每个物理核有
"

!

$

个超线程或称逻辑核"因此近百个任务可以一

起并行运行(

解决程序干扰的一个途径是高速缓存分区"通

过隔离程序解决干扰问题(然而"高速缓存分区是

一种浪费"当只有一个或少数程序执行时会产生大

量闲置缓存空间(当多线程程序共享数据时"同一

数据需要多处存放(当前多核处理器配置多层私

有和共享缓存(例如"

51B:M6:9>M:C

处理器拥有

",%LO="

私有缓存"和
$VO

!

TVO=+

共享缓

存(

5OV

的
*DR:A&

拥有
T

个内核"

",%LO

的
="

私有缓存和
+"VO=+

共享缓存(

!

收稿日期!

"'!+2!'2+'

#修回日期!

"'!+2!"2!,

基金项目!国家自然科学基金资助项目!

%!!++'',

"

%!"&"!+%

"

%!""!'%"

"

%!+"T"'!

$

通信地址!

!$%"&

美国纽约州罗切斯特市罗切斯特大学计算机系

4!!%+33

%

4:

@

>ABC:1BDE8DC

@

FB:AGH/:1H:

"

<1/I:A0/B

J

DEKDH9:0B:A

"

KDH9:0B:A!$%"&

"

6:R;DAU

"

<G-

"

86$+2!",T

&

)*

5GG6!''&2!+'3

""""

计算机工程与科学

8DC

@

FB:AW1

?

/1::A/1

?

XGH/:1H:

第
+%

卷第
!

期
"'!$

年
!

月
"

YDMZ+%

"

6DZ!

"

[>1Z"'!$

"

文章编号!

!''&2!+'3

!

"'!$

$

'!2'''!2',

共享缓存的程序以不同的方式相互影响(例

如"物理内核私有一级和二级缓存"但共享最后一

级缓存#逻辑内核共享所有层次缓存#不同的处理

器不共享缓存#然而所有程序共享内存带宽"而带

宽需求又完全取决于缓存效率(此外"某些缓存策

略"例如"

51B:M

的包容缓存有可能诱发间接影响"

例如一个程序可能由于其他程序对共享缓存数据

的访问而丢失自身私有缓存数据(

共享缓存的问世让人联想到早期分时计算机

发明的共享内存(内存管理问题已被深入研究并

得到了较好的解决"现代操作系统为大量程序分配

和管理内存(然而"高速缓存由硬件而不是操作系

统来管理"因此缓存共享问题更为复杂(缓存有多

个层次'多种不同私有和共享组合方式"缓存的数

据读写次数相比内存有更高数量级(一个程序可

以每秒访问缓存
!'

亿次"可以在不到一毫秒替换

整个缓存内容(多个程序并行运行时的访问强度

更是单一程序的数倍(此外"高速缓存的大小是固

定的"除更换机器外"不能增置更多的缓存(

高速缓存中的程序干扰有不对称性'非线性和

反馈性(文献)

!

*的实验结果展示了不对称性"这

一性质也在更多的研究中被证实(在程序配对运

行实验中"我们使用了文献)

!

*的设置"发现一个程

序性能降低
T,S

"而其并行执行的伙伴程序性能

只降低了
!,S

(因此"程序相互干扰影响大小不

仅取决于并行运行的程序数目"还取决于程序的特

性和类型(其次"干扰具有自反馈"因为一个程序

影响并行程序"而并行程序又影响本身(

局部性是一个计算系统的基本属性(文献)

"

*

提出如下概念%一个程序运行时的每一阶段只使用

所有数据的一个子集(数据和数据是有区别的"所

需要的数据不等于正在使用的数据"后者是前者的

一部分(文献)

+

*命名了后来广泛使用的术语工作

集"即为正在使用的数据子集(这些数据也可以称

为活跃数据(计算机存储系统的性能取决于如何

快速存取活跃数据"而对其他数据的访问时间无关

紧要(存储研究必须将局部性这一概念量化(科

学和工程研究的首要任务是度量"同样存储系统设

计也离不开对活跃数据的定义和度量"因为+没有

度量就没有提高,"而局部性分析正是对活跃数据

的量化(

本文使用一个称之为程序足迹工作集的概念

来度量活跃数据(我们定义数据足迹为程序在一

个时间窗口内访问的数据量(足迹就是数据脚印

的统计平均(

自然来说"窗口越长"访问数据越多"脚印也越

大(脚印的大小显示各个时期活跃数据的多少(

作为一个例子"使用单词+

EDDB

@

A/1B

,作为一个

数据序列(

&

个字母的
(

次出现可看作对
&

个数

据块的
(

次访问(每个连续子串是一个时间窗口(

它的脚印是子串中不同字母的个数(

如图
!

所示"长度为
(

的有
$,

个不同的时间

窗口!

!

"

(

#

(

$"相应地产生
$,

个脚印(随着窗口长

度!

"

轴$从
!

增加至
(

"脚印!

#

轴$从
!

增加到
&

(

最短的窗口长度是
!

"有
(

个这样的窗口"其脚印

大小自然是
!

(最长的窗口就是整个序列"只有一

个这样的窗口"长度是
(

"脚印是
&

"这也是整个序

列的脚印(

\/

?

FA:!

"

)9:EDDB

@

A/1BDE

+

EDDB

@

A/1B

,

图
!

"

+

EDDB

@

A/1B

,的足迹

在实际程序中"脚印数量为运行时间的二次方

函数!运行时间为
$

"窗户的数量!脚印个数$是

!

"

$

$(假设一个程序在
+7]̂

处理器上运行
!'

秒"

可以得到
+W!'8*<

周期和
$#,W"'

个不同窗口(

文献)

$

*指出"程序分析是一个大数据问题"

并且展示了该问题规模和窗口数量的关系(图
"

显示脚印分析的问题规模(当程序运行时间从
!

秒增加至
!

个月"

8*<

周期数从
+W(

增加至

"W!,

"不同的执行窗口从
$#,W!T

增加至
,#TW"(

"

也就是说"从
$

百亿亿增加至半个亿亿亿亿!

1D1/M2

M/D1

$(

\/

?

FA:"

"

8*<:_:HFB/D1B/C:

I01FCQ:ADER/1NDR0

图
"

"

8*<

执行时间与相应足迹窗口数量

"

8DC

@

FB:AW1

?

/1::A/1

?

XGH/:1H:

"

计算机工程与科学
"

"'!$

"

+%

!

!

$

作为一个动态问题"脚印分析的规模轻而易举

赶超任何静态问题的规模(作为比较"图
"

中显示

了银河系的半径
$T'

万亿亿厘米"可观测宇宙的半

径
$

万亿亿亿厘米(

程序足迹理论的目的"首先就是要降低分析的

难度"刻画所有窗口的活跃数据使用"并使其可用

于系统的分析和优化(

9

"

程序足迹理论

局部性分析的基本单位是一个数据访问"它们

的基本关系是数据重用(局部性理论是关于数据

访问和重复使用的基本规律和性质"正如图论是关

于节点和链接的基本规律和性质(程序足迹理论

是一套新的局部性理论"它以数据脚印为核心"包

括一系列概念'算法和定理(本节介绍新理论的四

个组成部分和配套技术(

9:8

"

足迹测量

足迹就是数据脚印的统计平均(新理论给出

足迹测量的三个算法(每一个比前一个在效率上

高两个数量级(

!

!

$足迹分布分析用
%

!

$MD

?

&

$的时间列举

所有
%

!

$

"

$的数据脚印"其中
$

为运行长度"

&

为最大脚印(这一算法发表在
"'!!

年
P

会

议)

,

*

(

!

"

$平均足迹分析用线性时间的成本
%

!

'

$计

算平均脚印大小"而不必枚举所有脚印(这一算法

发表于
"'!!

年
*-8)

会议)

&

*

(

!

+

$足迹采样分析以有限大小的窗口为样本"

更加降低了分析代价(这一算法发表于
"'!+

年

-G*=PG

会议)

T

*

(

第一个算法测量所有窗口的脚印(因为它枚

举所有的脚印"对每个窗口长度"它将找到最大'最

小'中值和任何分布百分比的脚印(然而"分析代

价有时是数千次放缓(

第二个算法只计算平均脚印"将成本从一千倍

放缓降低至约
"'

倍(作为一个线性时间的算法"

它的代价和目标程序的长度成比例"因此是可扩展

的分析(

真机上的高速缓存大小有限"所以分析上不必

考虑所有窗口大小(运行时间长的程序行为往往

重演"所以分析可以抽样(此外"在多核处理器上"

分析可以单独使用一个核并行执行(第三个算法

使用足迹采样和并行分析"将平均成本降低到

'#,S

的运行时间(

9:9

"

组织协同关系模型

相比其他局部性指标"足迹有一个独特的性

质%它是可组合的(令一个程序在长度为
3

的窗

口中的平均足迹为
(

)*

+

,

-(

!

.

$(如果有
/

个程

序"

(

)*

+!

'

(

)*

+"

'-'

(

)*

+/

共享缓存"则平均足迹

是个别足迹的和%

0*)1',

-(

!

.

$

2

$

/

3

2

!

(

)*

+3

,

-(

!

.

$

""

相比较而言"缓存缺失率不可组合(例如两个

程序共享缓存(因为现在每个程序只是使用一部

分缓存"而不是整个缓存"并行运行程序的缺失将

增加"总缺失数将大于单独运行下的缺失数之和(

缺失率的变化"正如前面提到"是不对称的'非线性

的"并且受自反馈(因此"我们不能直接用单独运

行程序的缺失率推断并行运行程序的缺失率(另

一种局部性指标是重用距离(重用距离不依赖于

具体缓存参数"但也不可组合(

接下来的问题是"可组合的足迹是否能帮助分

析缺失率'重用距离和其他局部性指标(新理论的

第三部分将解决这个问题(

9:;

"

局部性的度量转换

足迹理论给出了度量转换的换算公式)

&

*

(例

如"下面的公式用足迹计算出缺失率%

4)

!

!

$

2

-(

!

.

5%

.

$

6

-(

!

.

$

%

.

""

缓存大小
!2

-(

!

.

$(从函数概念来说"缺失

率是足迹的导函数(足迹理论证明了足迹是个凹

函数"所以推导出的缺失率是单调非递减(度量转

换是可逆的(如果我们有所有缓存的命中率大小"

我们可以逆转公式和计算平均足迹(逆过程通过

离散函数的叠加"类似连续函数的积分(

如果将足迹组合和度量转换依次使用"我们可

以看到"从单独运行程序的足迹可以推导出并行运

行程序的缺失率(第一"计算并行运行程序的足

迹(第二"计算出并行运行程序的缺失率(图
+

显

示了推导关系(

\/

?

FA:+

"

[D/1BF0:DEBRDB9:DA:B/H>M

@

AD

@

:AB/:0

%

HDC

@

D0/B/D1

!

NDBB:NM/1:

$

>1NHD1I:A0/D1

!

0DM/NM/1:0

$

图
+

"

两种理论特性"组合关系!虚线$

和转换关系!实线$的联合使用

+

丁
"

晨等%多核程序交互理论及应用

由于转换公式是可逆转的"因此可以在足迹和

缺失率之间互推"分析的功能大大增强(其一个效

果是"我们可以间接组合缺失率(首先"用每个程

序的缺失率计算其单独运行的足迹#然后累加每个

程序的脚印"计算出并行运行程序足迹(最后转换

出并行运行程序缺失率(这类推导可以间接组合

其它局部性指标"比如重用距离(组合私有重用距

离可以推算出并发重用距离)

T

*

(

合二而一之后还需要一分为二(在组合问题

解决之后"我们可以着手下一个问题%分解问题(

并行运行程序的缺失率是个总结果"并没有告诉我

们各个程序在其中的作用(需要更复杂的模型计

算出共享缓存对单个程序的影响(

9:<

"

局部性的分解模型

传统的组合和分解模型使用重用距离和足迹(

最早是文献)

(

"

!'

*在分时系统!分时缓存共享$和

文献)

!!

*在多核系统 !持续缓存共享$中提出的(

在分时系统下"足迹测量只需要针对单一窗口长

度(在多核系统下"足迹测量需要包括多个窗口长

度(在之前的工作中"足迹是估算而不是实测的(

足迹理论给出两个更高效的组合分解模型%

!

!

$足迹转换模型%类似于传统模型"但是用

足迹计算重用距离(传统模型的速度受限于重用

距离的测量效率(虽然重用距离的测量得到很好

的优化"但它仍然具有超线性的复杂度)

!"

!

!,

*

(足

迹转换模型的好处是它不再需要测量重用距离"建

模速度可以加快几百倍(

!

"

$压力和灵敏度模型%程序的行为特征由压

力和灵敏度两个函数来完全刻画(两个函数可以

作为可视化的两条曲线(组合分解的过程很简单"

只要查看两条曲线上的相关值(压力和灵敏度模

型和足迹转换模型一样高效"但更直观'更容易使

用(

9:=

"

足迹理论的应用

足迹模型的以下特点使其具有通用性和有效

性%

!

!

$不依赖于硬件(足迹分析是基于数据访问

而不是基于缓存访问的"它只需要一次足迹分析就

可以推出所有缓存大小下的缺失率"并且结果不受

分析方法和环境的影响(相比较而言"实机直接测

量缺失率会不可避免地受到测量环境的影响(

!

"

$不依赖于测量环境(一个程序的足迹可以

在共享环境中测量"不受其他程序干扰(其作用好

比洁净室(相比较而言"直接测量受到先有鸡还是

先有蛋的问题的困扰%一个程序的行为取决于它的

同行"但同行的行为又取决于它本身(

!

+

$不依赖于同伴信息(一个程序的局部性度

量完全决定于程序本身"不需要知道同伴程序(缓

存共享的分析并不需要实际的缓存共享(共同运

行的效果是靠计算"不是靠测量得到(

!

$

$组合而非测试(

7

个程序有
7

!

76!

$&

"

个不同并行共享组合(足迹模型可以通过
7

个单

程序运行测试"预测
7

!

76!

$&

"

并行运行的干扰(

对于
7

个分析运行"可以逐个运行或几个并行提

高速度(这种组合是静态的"不需要任何并行运行

和测试(

使用组合分解的模型"我们能够回答一些长期

悬而未决的问题"包括%

!

!

$是否有不依赖特定硬件的方式来比较程序

对共享缓存的需求. 不同应用领域的程序有何不

同.

!

"

$共享缓存干扰和程序缺失率的关系是什

么. 较高的缺失率是否总是带来更大的干扰.

!

+

$缓存可以被看作是一个区域邦联"每个程

序占据共享缓存的一部分(鉴于该分区是动态的'

需求驱动的"动态空间划分是否比静态划分有固有

的优势.

;

"

结束语

在多核环境下"程序在共享缓存中的相互作用

日趋重要(局部性分析的近期发展产生了新的足

迹理论(本文对足迹理论做了概括性介绍"包括足

迹测量'度量转换和共享缓存中并行程序的效应组

合和性能影响分解(足迹理论对共享缓存中程序

相互干扰的现象提供了量化分析的高效'准确和直

观的方法"以此可以提高程序在共享环境下的局部

性认识和理解"增进多核系统上程序互动的管理和

优化(

本文初稿是丁晨在
"'!+

年桂林召开的
88\

高级系列讲座和中国高性能计算会议报告的中文

讲稿的介绍部分(我们感谢组织召集者冯晓兵和

张云泉的邀请和安排(英文稿是向晓娅博士论文

的第一章(足迹理论基于她的博士工作"包括

"'!!

年
*-8)

会议发表的计算平均足迹的线性算

法!向氏公式$和
"'!+

年
-G*=PG

会议发表的高

阶局部性理论"我们同时感谢罗切斯特大学白童

心'鲍斌'罗昊"北京大学罗英伟'汪小林'李晔晨"

密执根理工大学王振林和其他学者同行的合作"以

$

8DC

@

FB:AW1

?

/1::A/1

?

XGH/:1H:

"

计算机工程与科学
"

"'!$

"

+%

!

!

$

及/计算机工程与科学0杂志编辑的整理和排版(

参考文献!

)

!

*

"

9̀>1

?

3

"

4R>AU>N>0G

"

G9:1L#)DR>AN0

@

A>HB/H>M

@

>

?

:HDM2

DA/1

?

2Q>0:NCFMB/HDA:H>H9:C>1>

?

:C:1B

)

8

*

&

*ADHDEB9:

WFADG

J

08D1E:A:1H:

"

"''(

%

T(2!'"#

)

"

*

"

4:11/1

?

*[#aDAU/1

?

0:B0

@

>0B>1N

@

A:0:1B

)

[

*

#5WWW)A>102

>HB/D10D1GDEBR>A:W1

?

/1::A/1

?

"

!(T'

"

GW2%

!

!

$%

%T2T$#

)

+

*

"

4:11/1

?

*[#)9:RDAU/1

?

0:BCDN:MEDA

@

AD

?

A>CQ:9>I/DFA

)

[

*

#8DCCF1/H>B/D10DE-8V

"

!(%T

"

!!

!

,

$%

+"+2+++#

)

$

*

"

OADHU[

"

=FD]

"

4/1

?

8#=DH>M/B

J

>1>M

J

0/0

%

-1D1/MM/D1B/C:

R/1NDR

@

ADQM:C

)

8

*

&

*ADHDEO/

?

4>B>-1>M

J

B/H0aDAU09D

@

"

"'!+

%

!#

)

,

*

"

3/>1

?

3

"

O>DO

"

O>/)

"

:B>M#-MM2R/1NDR

@

ADE/M/1

?

>1NHDC2

@

D0>QM:CDN:M0DEH>H9:09>A/1

?

)

8

*

&

*ADHDEB9:!%B9-8V

G57*=-6G

J

C

@

D0/FCD1*A/1H/

@

M:0>1N*A>HB/H:DE*>A>MM:M

*AD

?

A>CC/1

?

"

"'!!

%

(!2!'"#

)

%

*

"

3/>1

?

3

"

O>DO

"

4/1

?

8

"

:B>M#=/1:>A2B/C:CDN:M/1

?

DE

@

AD2

?

A>CRDAU/1

?

0:B/109>A:NH>H9:

)

8

*

&

ADHDE-8)

"

"'!!

%

+,'2+%'#

)

&

*

"

3/>1

?

3/>D2

J

>

"

4/1

?

89:1

"

=FD]>D

"

:B>M#]P)=

%

-9/

?

92

:ADAN:AB9:DA

J

DEMDH>M/B

J

)

8

*

&

*ADHDEB9:!TB951B:A1>B/D1>M

8D1E:A:1H:D1-AH9/B:HBFA>MGF

@@

DABEDA*AD

?

A>CC/1

?

=>12

?

F>

?

:0>1NP

@

:A>B/1

?

G

J

0B:C0

"

"'!+

%

+$+2+,%#

)

T

*

"

aFV2[

"

9̀>DV

"

;:F1

?

4#GBFN

J

/1

?

CFMB/HDA:

@

ADH:00DA

0H>M/1

?

I/>A:F0:N/0B>1H:>1>M

J

0/0

)

8

*

&

*ADHDE5G8-

"

"'!+

"

$((2,!'#

)

(

*

"

)9/:Q>FB4

"

GBD1:]G#\DDB

@

A/1B0/1B9:H>H9:

)

[

*

#-8V

)A>10>HB/D10D18DC

@

FB:AG

J

0B:C0

"

!(T&

"

,

!

$

$%

+',2+"(#

)

!'

*

"

GF97W

"

4:I>N>0G

"

KFNDM

@

9=#-1>M

J

B/H>MH>H9:CDN:M0

R/B9>

@@

M/H>B/D10BDH>H9:

@

>AB/B/D1/1

?

)

8

*

&

*ADHDE58G

"

"''!

%

!2!"#

)

!!

*

"

89>1NA>4

"

7FD\

"

L/CG

"

:B>M#*A:N/HB/1

?

/1B:A2B9A:>N

"""

H>H9:HD1B:1B/D1D1>H9/

@

CFMB/2

@

ADH:00DA>AH9/B:HBFA:

)

8

*

&

*ADHDE]*8-

"

"'',

%

+$'2+,!#

)

!"

*

"

GH9FEE4=

"

LFMU>A1/V

"

*>/YG#-HH:M:A>B/1

?

CFMB/HDA:

A:F0:N/0B>1H:>1>M

J

0/0R/B90>C

@

M/1

?

>1N

@

>A>MM:M/̂>B/D1

)

8

*

&

ADHDE-8)

"

"'!'

%

,+2%$#

)

!+

*

"

8F/]

"

;/b

"

3F:[

"

:B>M#-9/

?

9M

J@

>A>MM:MA:F0:N/0B>1H:

>1>M

J

0/0>M

?

DA/B9CD17*<0

)

8

*

&

*ADHDE5*4*G

"

"'!"

%

!'T'2!'("#

)

!$

*

"

6/Fb

"

4/1>1[

"

=Fb

"

:B>M#*-K4-

%

-E>0B

@

>A>MM:MA:2

F0:N/0B>1H:>1>M

J

0/0>M

?

DA/B9C

)

8

*

&

*ADHDE5*4*G

"

"'!"

%

!"T$2!"($#

)

!,

*

"

7F

@

B>G

"

3/>1

?

*

"

;>1

?

;

"

:B>M#=DH>M/B

J@

A/1H/

@

M:A:I/0/2

B:N

%

-

@

ADQ>Q/M/B

J

2Q>0:N

c

F>1B/B>B/I:>

@@

AD>H9

)

8

*

&

*ADHDE

5*4*G

"

"'!"

%

((,2!''(#

作者简介!

丁晨!

!(&'

$"男"北京人"博士"教

授"

88\

会员!

W"'''!%+&(V

$"研究方向

为软件分析优化(

>?('#.

%

HN/1

?"

H0#ADH92

:0B:A#:NF

@ABCD0+)

"

QDA1/1!(&'

"

*94

"

@

AD2

E:00DA

"

88\C:CQ:A

!

W"'''!%+&(V

$"

9/0A:0:>AH9/1B:A:0B0

/1HMFN:

@

AD

?

A>C>1>M

J

0/0>1ND

@

B/C/̂>B/D1#

袁良!

!(T$

$"男"河北保定人"博士"

助理研究员"

88\

会员!

W"'''!+%&!V

$"

研究方向为并行计算模型(

>?('#.

%

J

F>12

M/>1

?"

/HB#>H#H1

EF4BG#')

&

"

QDA1/1!(T$

"

*94

"

>02

0/0B>1BA:0:>AH9:A

"

88\ C:CQ:A

!

W"'''!+%&!V

$"

9/0A:2

0:>AH9/1B:A:0B/1HMFN:0

@

>A>MM:MHDC

@

FB>B/D1>MCDN:M#

,

丁
"

晨等%多核程序交互理论及应用

Making LRU Friendly to Weak Locality
Workloads: A Novel Replacement Algorithm to

Improve Buffer Cache Performance
Song Jiang and Xiaodong Zhang, Senior Member, IEEE

Abstract—Although the LRU replacement algorithm has been widely used in buffer cache management, it is well-known for its inability

to cope with access patterns with weak locality. Previously proposed algorithms to improve LRU greatly increase complexity and/or

cannot provide consistently improved performance. Some of the algorithms only address LRU problems on certain specific and

predefined cases. Motivated by the limitations of existing algorithms, we propose a general and efficient replacement algorithm, called

Low Inter-reference Recency Set (LIRS). LIRS effectively addresses the limitations of LRU by using recency to evaluate Inter-

Reference Recency (IRR) of accessed blocks for making a replacement decision. This is in contrast to what LRU does: directly using

recency to predict the next reference time. Meanwhile, LIRS mostly retains the simple assumption adopted by LRU for predicting future

block access behaviors. Conducting simulations with a variety of traces of different access patterns and with a wide range of cache

sizes, we show that LIRS significantly outperforms LRU and outperforms other existing replacement algorithms in most cases.

Furthermore, we show that the additional cost for implementing LIRS is trivial in comparison with that of LRU. We also show that the

LIRS algorithm can be extended into a family of replacement algorithms, in which LRU is a special member.

Index Terms—Operating systems, memory management, replacement algorithms.

�

1 INTRODUCTION

1.1 The Problems of the LRU Replacement
Algorithm

THE effectiveness of cache block replacement algorithms
is critical to the performance stability of I/O systems.

The LRU (Least Recently Used) replacement is widely used
in managing buffer cache due to its simplicity, but many
anomalous behaviors have been found with some typical
workloads, where the hit rates of LRU may only slightly
increase with a significant increase of cache size. The
observations reflect LRU’s inability to cope with access
patterns with weak locality such as file scanning, regular
accesses over more blocks than the cache size, and accesses
on blocks with distinct frequency. Here are some repre-
sentative examples reported in the research literature to
illustrate how poorly LRU behaves:

1. Under the LRU algorithm, a burst of references to
infrequently used blocks, such as sequential scans
through large files, may cause the replacement of
frequently referenced blocks in cache. This is a
common complaint in many commercial systems:
Sequential scans can cause interactive response
time to deteriorate noticeably [17]. An effective

replacement algorithm would be able to prevent
hot blocks from being evicted by cold blocks.

2. For a cyclic (loop-like) pattern of accesses to a file
that is only slightly larger than the cache size, LRU
always mistakenly evicts the blocks that will be
accessed the soonest because these blocks have not
been accessed for the longest time [22]. A wise
replacement algorithm would maintain a hit rate
proportional to the buffer cache size.

3. In an example of multiuser database application,
each record is associated with a B-tree index [17].
For a given number of records, assume their index
entries can be packed into 100 blocks and
10,000 blocks are needed to hold the records. We
use RðiÞ to represent an access to Record i and IðiÞ
to Index i. The database application alternates its
references to random index blocks and to the record
blocks in the access sequence of Ið1Þ, Rð1Þ, Ið2Þ,
Rð2Þ, Ið3Þ, Rð3Þ, Thus, the index blocks will be
referenced with a probability of 0.005 and the data
blocks are with a probability of 0.00005. Suppose that
the cache can only hold 101 blocks. Ideally, all
100 index blocks are cached and only one record
block is cached. However, LRU caches the 101 most
recently accessed blocks. So, LRU keeps an equal
number of index and record blocks in the cache and
perhaps even more record blocks than index blocks.
An intelligent replacement algorithm would choose
the resident blocks according to their reference
probability. Only those blocks with relatively high
access probability deserve to stay in the cache for a
longer time.

The reason for LRU to behave poorly in these situations

is that LRU makes a bold assumption—a block that has not

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005 939

. S. Jiang is with the Performance and Architecture (PAL) Group, Los
Alamos National Laboratory, CCS-3, B256, PO Box 1663, Los Alamos,
NM 87545. E-mail: sjiang@lanl.gov.

. X. Zhang is with the Computer Science Department, College of William
and Mary, Williamsburg, VA 23187. E-mail: zhang@cs.wm.edu.

Manuscript received 26 Nov. 2003; revised 5 Nov. 2004; accepted 2 Mar.
2005; published online 15 June 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0227-1103.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

been accessed for the longest time would wait for the
longest time to be accessed again. This assumption cannot
capture the access patterns exhibited in those workloads
with weak locality. Generally speaking, there is less locality
in buffer caches than that in CPU caches or virtual memory
systems [20].

Meanwhile, LRU has its distinctive merits: simplicity
and adaptability. It only samples and makes use of very
limited history information—recency. While addressing the
weakness of LRU, existing algorithms either take more
history information into consideration, such as LFU (Least
Frequently Used)-like ones in the cost of simplicity and
adaptability or switch temporarily from LRU to other
algorithms whenever certain predefined regularities are
detected. In the switch-based approach, these algorithms
actually act as supplements of LRU in a case-by-case
fashion. To make a prediction of future access times, these
algorithms assume the existence of a relationship between
the future reference of a block with the behaviors of those
blocks in its temporal or spatial locality, while LRU only
associates the future behavior of a block with the block’s
own previous reference. This additional assumption in-
creases the complexity of their implementations as well as
their performance dependence on some specific character-
istics of workloads. The replacement algorithm we propose,
called LIRS, only samples and makes use of the same
history information as LRU does—recency, and mostly
retains the LRU assumption. Thus, it is simple and
adaptive. In our design, LIRS does not directly target
specific LRU problems, but fundamentally addresses the
limitations of LRU.

1.2 An Executive Summary of Our Algorithm

We use recent Inter-Reference Recency (IRR) as the history
information of a block, where the IRR of a block refers to the
number of other distinct blocks accessed between two
consecutive references to the block (IRR is also called reuse
distance in some literature). In contrast, recency refers to the
number of other distinct blocks accessed from last reference
to the current time. We refer to the IRR between the last and
the second-to-last references to a block as recent IRR or
simply call it IRR without ambiguity in the rest of the paper.
We assume that if the IRR of a block is large, the next IRR of
the block is likely to be large. Following this assumption, we
select the blocks with large IRRs for replacement because it
is highly possible that these blocks will be evicted later by
LRU before being referenced again under our assumption.
It is noted that these evicted blocks may have been recently
accessed, i.e., each has a small recency.

By adequately considering IRR in history information in
our algorithm, we are able to eliminate negative effects
caused by only considering recency, such as the problem
shown in the aforementioned examples. When deciding
which block to evict, our algorithm utilizes the block IRR
information. It dynamically and responsively distinguishes
low IRR (denoted as LIR) blocks from high IRR (denoted as
HIR) blocks and keeps the LIR blocks in the cache, where
the block recency is only used to help determine the LIR or
HIR statuses of the blocks. We maintain an LIR block set
and an HIR block set and manage to limit the size of the
LIR set so that all the LIR blocks fit in the cache. The blocks
in the LIR set are not selected for replacement and there are
no misses for the references to these blocks. Only a very

small portion of cache is allocated to store HIR blocks.
Resident HIR blocks may be evicted at any recency.
However, when the recency of an LIR block increases to a
certain value and an HIR block gets accessed at a smaller
recency than that of the LIR block, the statuses of the two
blocks are switched. We name the proposed algorithm Low
Inter-reference Recency Set (denoted as LIRS) replacement
because the LIR set is what the algorithm tries to identify
and keep in the cache. LIRS aims at addressing three issues
in designing replacement algorithms: 1) how to effectively
utilize multiple sources of history access information, 2) how
to dynamically and responsively distinguish blocks by
comparing their possibility to be referenced in the near
future, and 3) how to minimize implementation overheads.

In the next section, we give an overview of the related
work and highlight our technical contributions. The LIRS
algorithm is described in Section 3. In Section 4, we present
the trace-driven simulation results for performance evalua-
tion and comparisons. We provide sensitivity and overhead
analysis of the proposed replacement algorithm in Section 5
and conclude the paper in Section 6.

2 RELATED WORK

The LRU replacement is widely used for the management of
virtual memory, file buffer caches, and data buffers in
database systems. The three representative problems
described in the previous section are found in the different
application fields. Many efforts have been made to address
the LRU problems. We classify existing algorithms into
three categories: 1) replacement algorithms based on user-
level hints, 2) replacement algorithms based on tracing and
utilizing history information of block accesses, and 3) re-
placement algorithms based on regularity detections.

2.1 User-Level Hints

Application-controlled file caching [3] and application-
informed prefetching and caching [19] are the schemes
based on user-level hints. These schemes identify blocks
less likely to be reaccessed in the near future based on the
hints provided by user programs. To provide appropriate
hints, programmers need to understand the data access
patterns, which adds to the programming burden. In [15],
Mowry et al. attempted to abstract hints by compilers to
facilitate I/O prefetching. In contrast, the LIRS algorithm
can adapt its behavior to different access patterns without
explicit hints. While the hint-based methods are orthogonal
to the LIRS replacement, the collected hints may help LIRS
refine the correlation of consecutive IRRs.

2.2 Tracing and Utilizing History Information

Realizing that LRU only utilizes limited access information,
some researchers have proposed several algorithms to
collect and use “deeper” history information, which include
the LFU-like algorithms such as FBR, MQ, LRFU, as well as
LRU-K and 2Q. We adopt a similar approach by effectively
collecting and utilizing access information to design the
LIRS replacement.

Robinson and Devarakonda proposed a frequency-based
replacement algorithm (FBR) by maintaining reference
counts for the purpose to “factor out” locality [20]. Zhou
et al. proposed Multi-Queue (MQ), which sets up multiple
queues and uses access frequencies to determine which

940 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

queue a block should be in [23]. However, it is slow for the
frequency-based algorithms to respond to reference fre-
quency changes and some of their parameters have to be
found by trial and error. Having analyzed the advantages
and disadvantages of LRU and LFU, Lee et al. proposed
LRFU by combining them through weighing block recency
and frequency factors [14]. The performance of the LRFU
algorithm largely relies on a parameter called �, which
determines the relative weight of LRU or LFU and has to be
adjusted according to the system configurations, even
according to different workloads. However, LIRS does not
have a tunable parameter that is sensitive to workloads.

The LRU-K algorithm addresses the LRU problems
presented in examples 1 and 3 in the previous section
[17]. LRU-K makes its replacement decision by comparing
the times of the Kth-to-last references to blocks. After such
a comparison, the oldest resident block is evicted. For
simplicity, the authors recommended K = 2. By taking the
time of the second-to-last reference to a block as the basis
for comparison, LRU-2 can quickly remove cold blocks
from the cache. However, for blocks without significant
differences of reference frequencies, LRU-2 does not work
well. In addition, LRU-2 is expensive: Each block access
requires logðNÞ operations to manipulate a priority queue,
where N is the number of blocks in the cache.

Johnson and Shasha proposed the 2Q algorithm that has
constant time overhead [10]. They showed that the algorithm
performs as well as LRU-2. The 2Q algorithm can quickly
remove sequentially referenced blocks and loopingly refer-
encedblockswith long looping intervals out of the cache. This
is achieved by using a special buffer, called queue A1in, in
which all missed blocks are initially placed. When the blocks
are replaced from the A1in queue in a FIFO order, the
addresses of those replacedblocks are temporarilyplaced in a
ghost buffer called queue A1out. When a block is rerefer-
enced, it is promoted to a main buffer called queue Am if its
address is in theA1out queue. That is, only blocks that have a
short reuse distance measured in A1in and A1out can be
cached for a long time in Am. In this way, they are able to
distinguish frequently referenced blocks from those infre-
quently referenced. By setting the sizes of theA1in andA1out
queues as constantsKin andKout, respectively, 2Qprovides
a victim block either from A1in or from Am. However, Kin
and Kout are predetermined parameters, which need to be
carefully tuned and are sensitive to the types of workloads.
While both 2Q and LIRS have simple implementations with
low overheads, LIRS has overcome the drawbacks of 2Q by
properly updating the LIR block set. Another recent algo-
rithm, ARC, maintains two variable-size lists [16]. Their
combined size is two times the number of blocks that are held
in the cache. One half of the lists contain the blocks in the
cache and the other half are for the history access information
of replaced blocks. The first list contains the blocks that have
been seen only once recently (cold blocks) and the second list
contains the blocks that have been seen at least twice recently
(hot blocks). The buffer spaces allocated to the blocks in these
two lists are adaptively changed, depending upon in which
list recent misses take place. More buffer spaces will serve
cold blocks (respectively, hot blocks) if there are more cold
block (respectively, hot block) accesses. However, although
the authors advocated the superiority of the ARC algorithm
with its adaptiveness and avoidance of tunable parameters,
the locality of the blocks in the two lists, quantified by recency

or frequency, cannot be directly and consistently compared.
For example, a block that is regularly accessed with an IRR a
little bitmore than the cache sizemayhavenohits at all,while
a block in the second list can stay in the cache without any
accesses since it has been accepted into the list.

The Inter-Reference Gap (IRG) of a block is the number
of the references between consecutive references to the
block, which is different from IRR on whether duplicate
references to a block are counted. Phalke and Gopinath
considered the correlation between history IRGs and future
IRGs [18]. The past string of IRGs of a block is modeled by
Markov chain to predict its next IRG. However, as
Smaragdakis et al. indicated, replacement algorithms based
on a Markov model fail in practice because they try to solve
a much harder problem than the replacement problem itself
[22]. An apparent difference in their algorithm from the
LIRS algorithm is in how to measure the distance between
two consecutive references to a block. Our study shows that
IRR is more justifiable than IRG in this circumstance. First,
IRR only counts the distinct blocks and filters out high-
frequency events, which may be volatile with time. Thus,
the IRR is more relevant to the next IRR than the IRG to the
next IRG. Moreover, it is the “recency” rather than the
“gap” information that is used by LRU. An elaborate
argument favoring IRR in the context of virtual memory
page replacement can be found in [22]. Second, IRR can be
easily dealt with under the LRU stack model [2], on which
most popular replacements are based.

2.3 Detection and Adaptation of Access
Regularities

More recently, some researchers took another approach to
detect access regularities from the history information by
relating the accessing behavior of a block to those of the
blocks in its temporal or spatial locality scope. Then,
different replacements, such as Most Recently Used
(MRU), can be applied to those blocks with specific access
regularities.

Glass and Cao proposed the SEQ algorithm for adaptive
page replacement in virtual memory management [9]. It
detects sequential address reference patterns. If a long
sequence of page faults with continuous addresses is found,
MRU is applied to the sequence. If such a sequence is not
detected, SEQ performs the LRU replacement. These detec-
tions only takeplacewhen there arepage faults, so it has a low
overhead acceptable in virtual memory management. How-
ever, Smaragdakis et al. argued that address-based detection
lacks generality and advocated using aggregate recency
information to characterizepagebehaviors [22]. TheirEELRU
examines aggregate recency distributions of accessed pages
and changes the page eviction points using an online cost/
benefit analysis by assuming the correlation among tempo-
rally contiguously referenced pages. This is different from
LRU, which actually always sets the eviction point at the
bottom of the LRU stack. However, EELRU has to choose an
eviction point from a predetermined set of LRU stack
positions. And, the way to select the set affects its perfor-
mance. Moreover, by an aggregate analysis, EELRU cannot
quickly respond to the changing access patterns. Without
spatial or temporal detections, LIRS uses the independent
recency events of each block to effectively characterize their
references.

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 941

Choi et al. proposed an adaptive buffer management
algorithm called DEAR, which automatically detects the
block reference patterns of applications and applies
different replacement algorithms to different applications
based on their detected reference patterns [5]. Further, they
proposed an Application/File-level Characterization (AFC)
algorithm in [4], which first detects the reference character-
istics at the application level and then at the file level if
necessary. Accordingly, appropriate replacement algo-
rithms are used to the blocks with different patterns. The
Unified Buffer Management (UBM) algorithm by Kim et al.
also detects patterns in the recorded history [13]. Unlike the
detection method used in DEAR, which associates the
backward distance and frequency with the forward dis-
tances of blocks between two consecutive detection invoca-
tion points, UBM tracks the reference information such as
the file descriptor, start block number, end block number,
and loop period if a rereference occurs. More recently,
Gniady et al. proposed the PCC replacement algorithm,
which conducts its access pattern detection on a per-system-
call-site basis to improve the detection accuracy and
efficiency [8]. Although these elaborate detections of access
patterns provide a large potential for significant perfor-
mance improvements, they addressed the LRU problems in
a case-by-case fashion and have to deal with the allocation
problem, which does not appear in LRU. To facilitate the
online evaluation of buffer utilizations, certain premeasure-
ments are needed to set predefined parameters used in the
buffer allocation schemes [4], [5], [8]. LIRS does not have
these design challenges. While it chooses the victim block in
a global stack as LRU does, it can take the advantages
provided by the detection-based algorithms.

More work on program locality analysis, prediction, and
enhancement is conducted in the program behavior studies
using static compiler analysis, data profiling, and runtime
data analysis techniques (e.g., see [6]). There are two major
differences between these studies and those on replacement
algorithms in operating systems. First, program behavior
studies are usually conducted at a finer level such as data
elements and instructions rather than at the block or page
level defined by the system. Usually, they require much
more computing effort, which could be too expensive for a
replacement algorithm running in the operating system.
Second, program behavior studies focus on understanding
the behavior of a specific program. It doesn’t consider
system parameters such as memory size and interaction
among simultaneously running programs. However, a
replacement algorithm must be designed from the system
perspective, taking both the properties of workloads and
system configurations into consideration. These constraints
prevent the replacement algorithm from conducting an
aggressive locality analysis or pattern detection. Thus, a
simple yet effective replacement algorithm becomes a
critical system design issue.

3 THE LIRS ALGORITHM

3.1 General Idea

We classify referenced blocks into two sets: High Inter-
reference Recency (HIR) block set and Low Inter-reference
Recency (LIR) block set. Each block with its history
information in cache has a status—either LIR or HIR. Some
HIR blocks may not reside in the cache, but keep their

metadata in the cache, recording their status as nonresident
HIR. We divide the cache, whose size in blocks is L, into a
major part and a minor part in terms of their sizes. The
major part, with its size of Llirs, is used to store LIR blocks
and the minor part, with its size of Lhirs, is used to store
blocks from HIR block set, where Llirs þ Lhirs ¼ L. When a
miss occurs and a block is needed for replacement, we
choose an HIR block that is resident in the cache. The blocks
in the LIR block set always reside in the cache, i.e., there are
no misses for the references to the LIR blocks. However, a
reference to an HIR block is likely to encounter a miss
because Lhirs is very small (its practical size can be as small
as 1 percent of the cache size).

We use Table 1 as a simple example to illustrate how a
replaced block is selected by the LIRS algorithm and how
LIR/HIR statuses are maintained. In Table 1, symbol “X”
denotes a block access at a virtual time.1 As an example,
block A is accessed at times 1, 6, and 8. Based on the
definition of recency and IRR in Section 1.2, at time 10,
blocks A, B, C, D, E have their IRR values of 1, 1, “infinite,”
3, and “infinite,” respectively, and have their recency values
of 1, 3, 4, 2, and 0, respectively. We assume the cache can
hold three blocks, Llirs ¼ 2 and Lhirs ¼ 1, thus, at time 10,
the LIRS algorithm leaves two blocks in the LIR set (the LIR
set = {A, B}). The rest of the blocks go to the HIR set (the
HIR set = {C, D, E}). Because block E is the most recently
referenced, it is the only resident HIR block due to Lhirs ¼ 1.
If there is a reference to an LIR block, we keep it in the LIR
block set. If there is a reference to an HIR block, we need to
know whether we should change its status to LIR.

The key to successfully making the LIRS idea work in
practice rests on whether we are able to dynamically and
responsively maintain the LIR block set and HIR block set.
When an HIR block is referenced, it gets a new IRR equal to
its recency. Then, we determine whether the new IRR
should be considered small relative to the current LIR blocks
so that we know whether we need to change its status to
LIR. Here, we have two options: compare the new IRR
either with the IRRs or with the recencies of the LIR blocks.
We take the recencies for the comparison for two reasons:
1) The IRRs are generated before their respective recencies
and may be outdated, which is not directly relevant to the
new IRR of the HIR block. A recency of a block is
determined not only by its own reference activity, but also
by the recent activities of other blocks. The outcome of
comparing the new IRR and the recencies of the LIR blocks
determines the eligibility of the HIR block to be considered
as a hot block. While we state that IRRs are used to
determine which blocks should be replaced, it is the new
IRRs that are directly used in the comparisons. 2) If the new
IRR of the HIR block is smaller than the recency of an
LIR block, it will be smaller than the upcoming IRR of the
LIR block. This is because the recency of the LIR block is a
part of its upcoming IRR and not greater than the IRR. Thus,
the comparisons with the recencies are actually the
comparisons with the relevant IRRs. Once we know that
the new IRR of the HIR block is smaller than the maximum
recency of all the LIR blocks, we switch the LIR/HIR
statuses of the HIR block and the LIR block with the
maximum recency. Following this rule, we can 1) allow an
HIR block with a relatively small IRR to join the LIR block

942 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

1. Virtual time is defined on the reference sequence, where a reference
represents a time unit.

set in a timely fashion by replacing a LIR block from the set
and 2) keep the size of LIR block set no larger than Llirs,
thus the entire set of blocks can reside in the cache.

Again, in the example of Table 1, if there is a reference to
block D at time 10, a miss occurs. The LIRS algorithm
replaces resident HIR block E, instead of block B, which
would be replaced by LRU due to its largest recency.
Furthermore, because block D is referenced, its new IRR is
2, which is smaller than the recency of LIR block B (= 3),
indicating that the upcoming IRR of block B will not be
smaller than 3. So, the status of block D is switched to LIR
and the block joins the LIR block set, while block B becomes
an HIR block. Since block B becomes the only resident
HIR block, it is going to be evicted from the cache once
another free block is requested. If, at virtual time 10, block C,
with its recency of 4, rather than block D, with its recency of
2, gets accessed, there will be no status switching. Then,
block C becomes a resident HIR block, while the replaced
block is still E at virtual time 10. In this way, the LIR block
set and HIR block set are formed and dynamically
maintained.

3.2 The LIRS Algorithm Based on LRU Stack

The LIRS algorithm can be efficiently built on the model of
LRU stack, which is an implementation structure of LRU.
The LRU stack contains L entries, each of which represents
a block.2 Usually, L is the cache size in blocks. The LIRS
algorithm makes use of the stack to keep track of recency
and to dynamically maintain LIR block set and HIR block
set. In contrast to the LRU stack, where only resident blocks
are managed by the LRU algorithm in the stack, we store
LIR blocks and HIR blocks with their recencies less than the
maximum recency of the LIR blocks in a stack called LIRS
stack S. S is similar to the LRU stack in operation but has a
variable size. With this design, we do not need to explicitly
record the IRR and recency values and to search for the
maximum recency value. Each entry in the stack records the
LIR/HIR status of a block and its residence status,
indicating whether or not the block resides in the cache.
To facilitate the search of the resident HIR blocks, we link
all these blocks into a small stack, Q, with its size of Lhirs.
Once a free block is needed, the LIRS algorithm removes a
resident HIR block from the bottom of stack Q for
replacement. However, the replaced HIR block remains in

stack S with its residence status changed to “nonresident” if
it is originally in the stack. We ensure the block in the
bottom of stack S is an LIR block by removing HIR blocks
below it. Once an HIR block in the LIRS stack gets
referenced, which means there is at least one LIR block
whose upcoming IRR will be greater than the new IRR of
the HIR block (such as the one at the bottom of the stack),
we switch the LIR/HIR statuses of the HIR block and the
LIR block at the bottom. Then, the LIR block at the bottom is
evicted from stack S and goes to the top of stack Q as a
resident HIR block. This block will soon be replaced from
the cache due to the small size of stack Q (at most Lhirs).

Such a design is partially inspired by the observation of
improper LRU replacement behavior: If a block is evicted
from the bottom of an LRU stack, it means the block
occupies a buffer during the period of time when it moves
from the top to the bottom of the stack without being
referenced. Why do we have to afford a buffer for another
long idle period when the block is loaded into the cache the
next time as what LRU does? The rationale for the
correction of the LRU decision is the assumption that
temporal IRR locality holds for block references.

3.3 A Detailed Description

In the LIRS replacement, there is an operation called “stack
pruning” on LIRS stack S, which removes the HIR blocks at
the stack bottom until an LIR block sits there. This operation
serves two purposes: 1) We ensure the block at the stack
bottom always belongs to the LIR block set. 2) After the LIR
block in the bottom is removed, those HIR blocks
contiguously located above it will not have a chance to
change their status from HIR to LIR since their recencies are
larger than the new maximum recency of the LIR blocks.

When an LIR block set is not full, all the accessed blocks
are given LIR status until its size reaches Llirs. After that,
HIR status is given to any blocks that are accessed for the
first time and to blocks that have not been accessed for a
long time so that currently they are not in stack S.

Fig. 1 shows a scenario where stack S holds three types
of blocks, LIR blocks, resident HIR blocks, nonresident HIR
blocks, and stack Q holds all of the resident HIR blocks. An
HIR block could either be in stack S or not. Fig. 1 does not
depict the nonresident HIR blocks that are not in stack S.
There are three cases for the references to these blocks in the
LIRS algorithm, which are also illustrated in Fig. 2, using
the example shown in Table 1.

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 943

TABLE 1
An Example to Explain How a Victim Block Is Selected by the LIRS Algorithm and How LIR/HIR Statuses Are Maintained

An “X” refers to the block in a row that is referenced at the virtual time of a column. The recency and IRR columns represent their respective values at
virtual time 10 for each block. We assume Llirs ¼ 2 and Lhirs ¼ 1 and, at time 10, the LIRS algorithm leaves two blocks in the LIR set (= {A, B}) and
the HIR set is {C, D, E}. The only resident HIR block is E.

2. For simplicity, in the rest of the paper we use “a block in the stack”
instead of “the entry of a block in the stack” without ambiguity.

1. Upon accessing an LIR block X. This access is

guaranteed to be a hit in the cache. We move it to the

top of stack S. If the LIR block is originally located at

the bottom of the stack, we conduct a stack pruning.

This case is illustrated in the transition from state (a)

to state (b) in Fig. 2.

2. Upon accessing an HIR resident block X. This is a

hit in the cache. We move it to the top of the stack S.

There are two cases for the original location of

block X: a) If X is in stack S, we change its status to

LIR. This block is also removed from stack Q. The
LIR block at the bottom of S is moved to the top of

stack Q with its status changed to HIR. A stack

pruning is then conducted. This case is illustrated in

the transition from state (a) to state (c) in Fig. 2. b) If

X is not in stack S, we leave its status unchanged

and move it to the top of stack Q.

3. Upon accessing an HIR nonresident block X. This
is a miss. We remove the HIR resident block at the
bottom of stack Q (it then becomes a nonresident
block) and evict it from the cache. Then, we load the
requested block X into the freed buffer and place it
at the top of stack S. There are two cases for the
original location of block X: a) If X is in the stack S,
we change its status to LIR and move the LIR block
at the bottom of stack S to the top of stack Q with its
status changed to HIR. A stack pruning is then
conducted. This case is illustrated in the transition
from state (a) to state (d) in Fig. 2. b) If X is not in
stack S, we leave its status unchanged and place it at
the top of stack Q. This case is illustrated in the
transition from state (a) to state (e) in Fig. 2.

4 PERFORMANCE EVALUATION

4.1 Experiment Settings

We use trace-driven simulations with various types of

workloads to evaluate the LIRS algorithm and compare it

with other algorithms. We have adopted many application

workload traces used in the previous studies aiming at

addressing the LRU limitations. These are traces recording

file access requests from one or multiple running applica-

tions, representing a wide range of access patterns, sizes,

and sources. We have also generated a synthetic trace.

Among these traces, cpp, cs, glimpse, and postgres are used

in [4], [5] (cs is named as cscope, and postgres is named as

postgres2 there), sprite is used in [14], multi1, multi2, and

multi3 are used in [13]. We briefly describe the traces here.

1. 2-pools is a synthetic trace which simulates applica-
tion behavior described in the third example in
Section 1.1. The trace contains 100,000 references.

2. cpp is a GNU C compiler preprocessor trace. The
total size of C source programs used as input is
roughly 11 MB.

3. cs is an interactive C source program examination
tool trace. The total size of the C programs used as
input is roughly 9 MB.

4. glimpse is a text information retrieval utility trace.
The total size of the text files used as input is roughly
50 MB.

5. postgres is a trace of join queries among four
relations in a relational database system from the
University of California at Berkeley.

6. sprite is from the Sprite network file system, which
contains requests to a file server from client work-
stations for a two-day period.

7. multi1 is obtained by executing two workloads, cs
and cpp, together.

8. multi2 is obtained by executing three workloads, cs,
cpp, and postgres, together.

9. multi3 is obtained by executing four workloads, cpp,
gnuplot, glimpse, and postgres, together. gnuplot is a
popular graph plotting tool.

The only parameter of the LIRS algorithm, Lhirs, is set as

1 percent of the cache size or Llirs ¼ 99% of the cache size in

the experiments. This selection results from a sensitivity

study on the parameter, which is described in Section 5.1.

944 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 1. LIRS stack S holds LIR blocks as well as some HIR blocks, with

or without resident status, and stack Q holds all the resident HIR blocks.

Fig. 2. Illustration of reference effects on the stacks using the example shown in Table 1. In the figure, (a) corresponds to the state at virtual time 9.

References to B, E, D, or C at virtual time 10 result in states (b), (c), (d), and (e), respectively.

4.2 Access Pattern-Based Performance Evaluation

Through an elaborate investigation, Choi et al. classified the
file cache access patterns into four types [4]:

. Sequential references: All blocks are accessed one
after another and never reaccessed;

. Looping references: All blocks are accessed repeat-
edly with a regular interval (period);

. Temporally clustered references: Blocks accessed
more recently are the ones more likely to be accessed
in the near future;

. Probabilistic references: Each block has a stationary
reference probability and all blocks are accessed
independently with their associated probability.

The classification serves as a basis for their access pattern
detections and for adapting to different replacement
algorithms. For example, MRU applies to sequential and
looping patterns, LRU applies to temporally clustered
patterns, and LFU applies to probabilistic patterns. Though
the LIRS algorithm does not rely on such a classification, we
would like to use it to present and explain our experiment
results. Because a sequential pattern is a special case of
looping pattern (with infinite interval), we only use the last
three types: looping, temporally clustered, and probabilistic
patterns.

Algorithms LRU, LRU-2, 2Q, ARC, LRFU, and LIRS
belong to the same replacement algorithm category. In other
words, these algorithms take the same technical approach—
predicting the access possibility of a block through its own
history access information. Thus, we focus on the perfor-
mance comparisons between LIRS and other algorithms in
this category. As representative algorithms in the category of
regularity detections, we choose two algorithms for compar-
isons: UBM for its spatial regularity detection and EELRU for
its temporal regularity detection. UBM simulation requires
the file ID, offset, and process ID of a reference. However,
some traces available to us only consist of logical block
numbers, which are unique numbers for the accessed blocks.
Thus, we only produce the UBM simulation results for the
traces used in paper [13], which are multi1, multi2, multi3.
We also include the results of OPT, an optimum, offline
replacement algorithm [2] for comparison.

We divide the traces into four groups based on their
access patterns. Traces cs, glimpse, and postgres belong to
the looping type, traces cpp and 2-pools belong to the
probabilistic type, trace sprite belongs to the temporally
clustered type, and traces multi1, multi2, and multi3 belong
to the mixed type.

We present the performance results for each trace using a
pair of figures: the time-space maps and the hit rate curves.
In a time-space map, the x axis represents virtual time, a
position in the reference sequence of a given workload, and
the y axis represents the logical block numbers of the
accessed blocks. The hit rate curves show the hit rates with
different cache sizes for the various replacement algorithms
on a workload trace.

4.2.1 Performance for Looping Type Workloads

Fig. 3 plots three pairs of time-space maps and the hit rate
curves generated by the various algorithms for workloads cs,
glimpse, and postgres, respectively. The time-space maps
show that all three programs have looping patternswith long
intervals. As expected, LRU performs poorly for these

workloads with the lowest hit rates. Let us take cs as an
example, which has a pure looping pattern. Each block is
accessed at almost the same frequency. Since all blocks in a
loop have the same eligibility to be kept in the cache, it is
desirable to keep the same set of blocks in the cache nomatter
what blocks are referenced currently. That is indeed what
LIRS does: The same set of LIR blocks is fixed in the cache
because the HIR blocks do not have IRRs small enough to
change their status. In the looping pattern, recency indicates
the opposite of the future reference time of a block: The
larger the recency of a block is, the sooner the block will be
referenced. The hit rate of LRU for cs is almost 0 percent
until the cache size approaches 1,400 blocks, which can hold
all the accessed blocks in a loop. It is interesting to see that
the hit rate curve of LRU-2 overlaps with the LRU curve.
This is because LRU-2 selects the same victim block as the
one selected by LRU for replacement. When making a
decision, LRU-2 compares the second-to-last reference time,
which is the recency plus the recent IRG. However, the
IRGs are the same for all the blocks at any time after the first
reference. Thus, LRU-2 relies only on recency to make its
decision, the same as LRU does. In general, when recency
makes a major contribution to the second-to-last reference
time, LRU-2 behaves similarly to LRU.

Except for cs, the other two workloads have mixed
looping patterns with various sizes of intervals. LRU
exhibits the stair-step hit rate curves for the workloads.
LRU is not effective until all the blocks in its locality scope
are brought into the cache. For example, only after the cache
can hold 355 blocks does the LRU hit rate curve of postgres
have a sharp increase from 16.3 percent to 48.5 percent.
Because LRU-2 considers the last IRG in addition to the
recency, it is easier for it to distinguish blocks with different
loop intervals than LRU does. However, LRU-2 lacks the
capability of dealing with the varying recencies of these
blocks. Our experiments show that the performance
improvement achieved by LRU-2 over LRU is limited.

It is illuminating to observe the performance difference
between 2Q and LIRS because both employ two linear data
structures followinga similarprinciple that only rereferenced
blocksdeserve to be in cache for a longer time.We can see that
the hit rates of 2Q are significantly lower than those of LIRS
for all three workloads. As the cache size increases, 2Q even
performs worse than LRU for workloads glimpse and
postgres. Another observation for 2Q on glimpse and
postgres is a serious “Belady’s anomaly” [1]: Increasing the
cache size could reduce the number of hits. Although ARC is
anadaptive algorithmwithout tunableparameters, it actually
shares the same problem as 2Q. The performance improve-
ment ofARCover LRU is very limited. Belady’s anomaly also
appears in glimpse for ARC. This is mainly caused by the
inconsistent quantification and comparison of block locality
in the two lists of ARC. This issue has been effectively
addressed in LIRS. We will provide an in-depth analysis on
this issue in Section 4.3.

LRFU, which combines LRU and LFU, is not effective on
workloads with a looping pattern because the block
reference frequencies in looping references are hard to
distinguish. As an example, the LRFU and LRU hit rate
curves for workload cs are overlapped.

Our simulation results show LIRS significantly outper-
forms all of the other algorithms and its hit rate curves are
very close to those of OPT. Meanwhile, the results also

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 945

show that the hit rates of cs and postgres are closer to those
of OPT than the hit rates of glimpse. This indicates that LIRS
can make a more accurate prediction on the future LIR/HIR
statuses when the looping intervals are of less variance.
Because cs and postgres have relatively fixed loop intervals,
their consecutive IRRs are of less variance, which makes the
IRR assumption hold well. However, the LIRS algorithm is
not sensitive to the variance of IRRs, which is reflected by
the significant hit rate improvements on workload glimpse.
This is further evidenced by the results for the mixed
pattern workloads described in Section 4.2.4.

4.2.2 Performance for the Probabilistic Type Workloads

Fig. 4 plots two pairs of time-space maps and the hit rate
curves generated by the various replacement algorithms for
traces cpp and 2-pools, respectively. According to the
detection results in [4], workload cpp exhibits a probabilistic
reference pattern. In cpp, before the cache size increases to
100 blocks, the hit rates of LRU are much lower than those
of LIRS. For example, when the cache size is 50 blocks, the
hit rate of LRU is 9.3 percent, while the hit rate of LIRS is
55.0 percent. This is because holding a reference locality

scope needs about 100 blocks. LRU cannot exploit the
locality until enough cache space is available to hold all the
recently referenced blocks. However, the capability for LIRS
to exploit locality does not rely on the cache size—when it is
identifying the LIR set, it always makes sure that the set will
be able to fit in the cache. 2-pools is generated to evaluate the
replacement algorithms on their abilities to recognize the
long-term reference behaviors. Though the reference fre-
quencies are very different between the record blocks and
the index blocks, it is hard for LRU to distinguish them
when the cache size is small relative to the number of the
referenced blocks because LRU takes only recency into
consideration. The LRU-2, 2Q, and LIRS algorithms take
one more previous reference into consideration—the time
for the second-to-last reference to a block is involved. Even
though the reference events to a block are randomized (i.e.,
the IRRs of a block are random with a certain fixed
frequency, which is unfavorable to LIRS), LIRS still outper-
forms LRU-2 and 2Q. However, LRFU utilizes “deeper”
history information. The constant long term frequency
becomes more visible to the LFU-like algorithm. Thus, the
performance of LRFU is slightly better than that of LIRS. It

946 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 3. The time-space maps and the hit rate curves of cs, glimpse, and postgres for the replacement algorithms.

is not surprising to see that the hit rate curve of EELRU
overlaps with that of LRU, showing its poor performance.
This is because EELRU relies on an analysis of a temporal
recency distribution to decide whether to conduct an early
point eviction. In 2-pools, the blocks with high access
frequency and the blocks with low access frequency are
alternatively referenced, thus no sign of an early point
eviction can be detected.

4.2.3 Performance for Temporally Clustered Type

Workloads

Fig. 5 presents the time-space map of workload sprite and
its hit rate curves generated by the various replacement
algorithms. sprite exhibits a temporally clustered reference
pattern. Fig. 5 shows that the LRU hit rate curve smoothly
climbs with the increase of the cache size. Although there is
still a gap between the LRU and OPT curves, the slope of
the LRU curve is close to the OPT curve. sprite is a so-called
LRU-friendly workload [22], which seldom accesses more
blocks than the cache size over a fairly long period of time.
For this type of workload, the behavior of the other
algorithms should be similar to that of LRU so that their
hit rates could be close to those of LRU. Before the cache
size reaches 350 blocks, the hit rates of LIRS are higher than
those of LRU. After that point, the hit rates of LRU become
slightly higher. Here is the reason for the slight performance
degradation of LIRS beyond that cache size: Whenever
there is a locality scope shift or transition, that is, some
HIR blocks get referenced, one more miss than would occur
in LRU may be experienced by an HIR block. Only the next
reference to the block in the near future after the miss makes
it switch from HIR to LIR status and then remain in the
cache. However, because of the strong locality, there are not
frequent locality scope changes. So, the negative effect of
the extra misses is limited.

4.2.4 Performance for Mixed Type Workloads

Fig. 6 presents three pairs of time-spacemaps and the hit rate
curves generated by the various replacement algorithms for
workloads multi1, multi2, and multi3. The authors in [13]
providedadetaileddiscussionwhy theirUBMshows thebest
performance among the algorithms they have considered—
UBM, LRU-2, 2Q, and EELRU. Here, we focus on perfor-
mance difference between LIRS and UBM. UBM is a typical
spatial regularity detection-based replacement algorithm
that makes exhaustive reference pattern detections. UBM
tries to identify sequential and looping patterns and applies
MRUto thedetectedpatterns.UBMfurthermeasures looping
intervals and conducts period-based replacements. For those
unidentified blocks without special patterns, LRU is applied.
A scheme for dynamically allocating buffers among the
blocks managed by different algorithms is employed. With-
out devoting specific efforts to specific regularities, LIRS
outperforms UBM for all three mixed type workloads, which
indicates that our assumption on IRR holds well and LIRS is
able to cope with weak locality in the workloads with mixed
type patterns.

4.3 LIRS versus Other Stack-Based Replacements

To get insights into the superiority of LIRS over other stack-
based replacement algorithms, including LRU, 2Q, we plot
a time-IRR graph to observe their actions on the blocks
accessed at different recencies. In a time-IRR graph, the
x axis represents virtual time, a reference in the access
stream, the y axis represents IRR, the recency where the
reference at a virtual time takes place. For first time
accessed blocks, their IRRs are infinite, which we do not
plot in the graph. We select two representative workloads, a
non-LRU-friendly one, postgres, and an LRU-friendly one,
sprite, for this study. Their IRRs are depicted in Fig. 7.

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 947

Fig. 4. The time-space maps and the hit rate curves of cpp and 2-pools for the replacement algorithms.

The stack size of LRU, which is determined by the cache

size in blocks, is fixed. If the stack size is L, all the references

shown in the graphs with their IRRs less than L are hits and

those with IRRs larger than L are misses in LRU. Thus, the

hit rates of LRU are determined by the IRR distribution. If

most of the IRRs are concentrated in the low recency area,

such as what is shown in the graph for sprite, LRU will get

a high hit rate. For workloads with dispersed recency

distributions, LRU is incompetent in achieving high hit

rates. For example, in postgres, there are two IRR concen-

trations at around IRRs 350, 1150, and 1950. In correspond-

ing to the IRR distribution, there are some apparent “lift

ups” in the LRU hit rate curve when the cache size reaches

these values (see Fig. 3). If there are a large number of

948 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 5. The time-space map and the hit rate curve of sprite for the replacement algorithms.

Fig. 6. The time-space maps and the hit rate curves of multi1, multi2, and multi3 for the replacement algorithms.

references with their IRRs larger than the LRU stack size,
many blocks with their low recencies but high IRRs would
hold the stack spaces (residing in the cache) without being
accessed before being replaced from the stack. The occupied
buffers do not contribute to the hit rate. Thus, what really
matters is IRR, not recency. To improve LRU, the criterion
to determine which accessed blocks are to be cached should
be the L blocks with the smallest IRRs, rather than the
L blocks with their recencies no more than L (L is the cache
size). Following this criterion, the LIRS algorithm uses the
LIRS stack to dynamically predict the L blocks that will
have the smallest IRRs. The LIRS stack serves two purposes:
1) providing a threshold for being a LIR block and
2) holding the L blocks with the smallest IRRs (i.e.,
LIR blocks). In the LIRS algorithm, the threshold is Rmax,
the recency of the LIR block at the LIRS stack bottom. The
threshold is also the LIRS stack size.

4.3.1 The Relationship between LIRS Stack Size and

Access Characteristics

To get insights into the relationship of the LIRS stack size
and workload access characteristics, we plot the ratio of the
LIRS stack size and the LRU stack size for two workloads,
postgres and sprite, in Fig. 8, where we fix the cache size at
500 blocks. We find that the LIRS stack size is an inherent
reflection of the LRU capability to exploit locality. If the
references have a strong locality, most of the references are
to the blocks with small recencies. Thus, the LRU stack still
holds these blocks while they get reaccessed and LRU
achieves a high hit rate. At the same time, these blocks are
low IRR blocks, i.e., most of the references go to the LIR

blocks, which would leave only a small number of
HIR blocks in the LIRS stack. So, the LIRS stack size is
small and close to the LRU stack size. This is the case for
workload sprite. With 500 buffer blocks, the LRU stack is
able to hold the most frequently referenced blocks. On the
other hand, LIRS can find enough low IRR blocks within the
recency range covered by the LRU stack. So, there is no
need for LIRS to significantly raise its stack size to hold a
large number of blocks with high recencies in the cache.
This is evidenced in Fig. 8 right, where the ratios of the LIRS
and LRU stack sizes are not far from 1 for most of the period
of time. However, once LIRS cannot find enough low
IRR blocks within the size of the LRU stack, it will raise its
size accordingly. We observe that the LIRS stack size of
postgres is significantly increased in several phases during
the periods when more references go to the blocks with
high recencies than to those with low recencies. With a
cache size of 500 and a fixed stack size, LRU cannot make
the locality distinction among the blocks with high
recencies and causes their references to all miss. By
increasing the stack size according to the current access
characteristics, LIRS can make the distinction among blocks
with weak locality and make a decision to replace the blocks
with a weak locality. The experiments also hint that the
LIRS stack size is a good indicator of the LRU-friendliness
of a workload.

The 2Q Replacement algorithm also tries to identify
blocks of small IRRs and to hold them in cache. It relies on
queue A1out to decide whether a block is qualified to be
promoted to stack Am so that it can be cached for a long
time or, consequently, to decide whether a block in Am

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 949

Fig. 7. The IRRs of the references in postgres and sprite.

Fig. 8. The ratios of LIRS stack size and LRU stack size for postgres and sprite. Cache size is 500.

should be demoted out of Am. In 2Q, the size of A1out
serves as a threshold to identify the blocks of small IRRs
and Am holds these blocks. Because the threshold is
intended to predict the blocks with the L smallest IRRs
among all accessed blocks, 2Q should also consider the
access characteristics of blocks in Am. Unfortunately, it does
not and only the blocks in A1out are used for setting the
threshold. The recommended size of A1out in paper [10] is
50 percent of the cache size. With a fixed threshold, 2Q
could make it either too easy or too difficult for the blocks to
join in Am with the varying access patterns, This explains
why 2Q cannot provide a consistent performance improve-
ment over LRU.

4.3.2 LRU as a Special Member of the LIRS Family

In the LIRS algorithm, the largest recency of the LIR blocks,
Rmax, serves as a threshold for status switching. An
HIR block with a new IRR smaller than the LIRS threshold
can change into LIR status and may demote an LIR block
into HIR status. The threshold controls how easily an HIR
block may become an LIR block or how difficult it is for an
LIR block to become an HIR one. We scale the threshold by
a weight factor to get insights into the relationship of LRU
and LIRS. A weight factor defines a particular LIRS
alternative. So, with the scaling, we have a family of LIRS
algorithms with various thresholds. Lowering the threshold
value, we are able to strengthen the stability of the LIR block
set by making it more difficult for HIR blocks to switch their
status into LIR. It also prevents the LIRS algorithm from
responding to the relatively small IRR variance. Increasing
the threshold value, we go in the opposite direction. In this
way, LRU becomes a special member of the LIRS family—
an LIRS algorithm with an indefinitely large threshold,
which always gives any accessed block an LIR status and
keeps it in the cache until it is evicted from the stack bottom.

Fig. 9 presents the results of a sensitivity study of the
threshold value. We again use workloads postgres and
sprite to observe the effects of changing the threshold
values from 50 percent, 75 percent, 100 percent, 125 percent
to 150 percent of Rmax. For postgres, we include a very
large threshold value—550 percent of Rmax to highlight the
relationship between LIRS and LRU. We have two observa-
tions. First, LIRS is not sensitive to the threshold value
across a large range. In postgres, the curves for the

threshold values of 100 percent, 125 percent, 150 percent
of Rmax are overlapped and the curves for 50 percent,
75 percent of Rmax are slightly lower than the curve for
100 percent of the Rmax threshold. Second, the LIRS
algorithm can simulate LRU behavior by significantly
increasing the threshold. As the threshold value increases
to 550 percent of Rmax, the LIRS curve of postgres is very
similar to that of LRU in its shape and is close to the
LRU curve. Further increasing the threshold value makes
the LIRS curve overlaps with the LRU curve. For sprite, an
LRU-friendly workload, increasing the threshold value
makes the LIRS hit rate curve move slowly to the
LRU curve.

5 SENSITIVITY AND OVERHEAD ANALYSIS

5.1 Cache Allocation for Resident HIR Blocks

Lhirs is the only parameter in the LIRS algorithm. The blocks
in the LIR block set can stay in the cache for a longer time
than those in the HIR block set and experience fewer page
faults. A sufficiently large Llirs (the cache size for LIR blocks)
ensures there are a large number of LIR blocks. For this
purpose, we set Llirs to be 99 percent of the cache size, Lhirs

to be 1 percent of the cache size in our experiments, and
achieve expected performance. From the other perspective,
an increased Lhirs may also be beneficial to the performance
in some cases: It reduces the first time reference misses. For
a large size of stack Q (large Lhirs), it is more likely that an
HIR will be reaccessed before it is evicted from the stack,
which can help the HIR block change into LIR status
without experiencing an extra miss. However, the benefit of
large Lhirs is limited because the number of such kind of
misses is small.

We use twoworkloads, postgres and sprite, to observe the
effect of changing the size. We change Lhirs from two blocks,
to 1percent, 10percent, 20percent, and30percent of the cache
size. Fig. 10 shows the results of the sensitivity study on Lhirs

forpostgresand sprite. For eachworkload,wemeasure thehit
rates of OPT, LRU, and LIRS with different Lhirs sizes with
increasing cache sizes. We have two observations. First, for
both workloads, we find that LIRS is not sensitive to the
increase of Lhirs. Even for a very large Lhirs, which is not in
favor of LIRS, the performance of LIRS with different cache
sizes is still acceptable.With the increase ofLhirs, the hit rates

950 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 9. The hit rate curves of postgres and sprite by varying the ratio of the status switching threshold and Rmax in LIRS, as well as the curves for

OPT and LRU.

of LIRS approach those of LRU. Second, our experiments
indicate that increasing Lhirs reduces the performance
benefits of LIRS to workload postgres, but slightly improves
performance of workload sprite.

5.2 Overhead Analysis

LRU is known for its simplicity and efficiency. Comparing
the time and space overhead of LIRS and LRU, we show
that LIRS keeps the LRU merit of low overhead. The time
overhead of LIRS algorithm is Oð1Þ, which is almost the
same as LRU with a few additional operations such as those
on stack Q for resident HIR blocks. The extended portion of
the LIRS stack S is the additional space overhead of the
LIRS algorithm.

The stack S contains metadata for the blocks with their
recency less than Rmax. When there is a burst of first-time
block references, the LIRS stack could grow to be
unacceptably large. Imposing a size limit is a practical
issue in the implementation of the LIRS algorithm. In an
updated version of LIRS, the LIRS stack has a size limit that
is larger than L, and we remove the HIR blocks close to the
bottom from the stack once the LIRS stack size exceeds the
limit. We have tested a range of small stack size limits, from
1.5 times to 3.0 times of L. From Fig. 11, we can observe
that, even with these strict space restrictions, LIRS retains its
desirable performance. The effect of limiting LIRS stack size
is equivalent to reducing the threshold values in
Section 4.3.2. As expected, the results are consistent with
the ones presented there. In addition, since a stack entry
consists of only several bytes, it is easily affordable to have

an LIRS stack size limit much more than three times
LRU stack size. There would be little negative effect on LIRS
performance by enforcing the limit of such a large size.

6 CONCLUSIONS

Replacement algorithms play important roles in the buffer
cache management and their effectiveness and efficiency
are crucial to the performance of file systems, databases,
and other data management systems. We make two
contributions in this paper by proposing the LIRS algo-
rithm: 1) We show that LRU limitations with weak locality
workloads can be successfully addressed without relying
on the explicit access pattern detections. 2) We show earlier
work on improving LRU such as LRU-K or 2Q can evolve
into one algorithm with consistently superior performance,
without tuning or adaptation of sensitive parameters. The
effort of these algorithms, which only trace their own
history information of each referenced block, is promising
to produce an algorithm that is simple and low overhead
yet effective for weak locality access patterns. We have
shown the LIRS algorithm accomplishes this goal.

As a general-purpose replacement algorithm, the LIRS
algorithm also has its potential to be applied in the virtual
memory management for its simplicity and its LRU-like
assumption on workload characteristics. Because virtual
memory system cannot afford an overhead proportional to
the number of memory accesses, neither LRU nor LIRS can
be directly used there. We have designed an LIRS
approximation, called CLOCK-Pro, with a reduced over-
head comparable to that of the CLOCK replacement policy

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 951

Fig. 10. The hit rate curves of postgres and sprite by varying the size of stack Q (Lhirs) of the LIRS algorithm, as well as the curves for OPT and

LRU. “LIRS 2” means the size of Q is 2, “LIRS x%” means the size of Q is x percent of the cache size in blocks.

Fig. 11. The hit rate curves of postgres and sprite by varying the LIRS stack size limit, as well as the curves for OPT and LRU. Limits are

represented by ratios of LIRS stack size limit and cache size in blocks.

[12]. The results of an implementation of the LIRS
approximation in a Linux kernel have shown its significant
performance advantages in terms of hit rates and program
run times.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation under grants CCR-9812187 and CCR-0098055.
The authors are grateful to Dr. Sam H. Noh at Hong-IK
University, Drs. Jong Min Kim, Donghee Lee, and Jongmoo
Choi at the Seoul National University for providing us with
their traces and simulators. They are also grateful to Dr.
Scott Kaplan at Amherst College and Dr. Yannis Smar-
agdakis at the Georgia Institute of Technology, who
provided them with the latest version of their EELRU
simulator and traces. The preliminary results of this work
were presented in [11].

REFERENCES

[1] L.A. Belady, R.A. Nelson, and G.S. Shedler, “An Anomaly in
Space-Time Characteristics of Certain Programs Running in a
Paging Machine,” Comm. ACM, vol. 12, pp. 349-353, 1969.

[2] E.G. Coffman and P.J. Denning, Operating Systems Theory.
Prentice-Hall, 1973.

[3] P. Cao, E.W. Felten, and K. Li, “Application-Controlled File
Caching Policies,” Proc. USENIX Summer 1994 Technical Conf.,
pp. 171-182, June 1994.

[4] J. Choi, S. Noh, S. Min, and Y. Cho, “Towards Application/File-
Level Characterization of Block References: A Case for Fine-
Grained Buffer Management,” Proc. 2000 ACM SIGMETRICS Conf.
Measuring and Modeling of Computer Systems, pp. 286-295, June
2000.

[5] J. Choi, S. Noh, S. Min, and Y. Cho, “An Implementation Study of
a Detection-Based Adaptive Block Replacement Scheme,” Proc.
1999 Ann. USENIX Technical Conf., pp. 239-252, June 1999.

[6] C. Ding and Y. Zhong, “Predicting Whole-Program Locality
through Reuse-Distance Analysis,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 245-257, June
2003.

[7] W. Effelsberg and T. Haerder, “Principles of Database Buffer
Management,” ACM Trans. Database Systems, pp. 560-595, Dec.
1984.

[8] C. Gniady, A.R. Butt, and Y.C. Hu, “Program Counter Based
Pattern Classification in Buffer Caching,” Proc. Sixth Symp.
Operating Systems Design and Implementation, pp. 395-408, Dec.
2004.

[9] G. Glass and P. Cao, “Adaptive Page Replacement Based on
Memory Reference Behavior,” Proc. 1997 ACM SIGMETRICS Conf.
Measuring and Modeling of Computer Systems, pp. 115-126, May
1997.

[10] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” Proc.
20th Int’l Conf. Very Large Data Bases, pp. 439-450, Sept. 1994.

[11] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache
Performance,” Proc. 2002 ACM SIGMETRICS Conf. Measuring and
Modeling of Computer Systems, pp. 31-42, June 2002.

[12] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement,” Proc. 2005 Ann.
USENIX Technical Conf., pp. 323-336, Apr. 2005.

[13] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “A
Low-Overhead, High-Performance Unified Buffer Management
Scheme that Exploits Sequential and Looping References,” Proc.
Fourth Symp. Operating System Design and Implementation, pp. 119-
134, Oct. 2000.

[14] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “On the
Existence of a Spectrum of Policies that Subsumes the Least
Recently Used (LRU) and Least Frequently Used (LFU) Policies,”
Proc. 1999 ACM SIGMETRICS Conf. Measuring and Modeling of
Computer Systems, pp. 134-143, May 1999.

[15] T.C. Mowry, A.K. Demke, and O. Krieger, “Automatic Compiler-
Inserted I/O Prefetching for Out-of-Core Application,” Proc.
Second USENIX Symp. Operating Systems Design and Implementa-
tion, pp. 3-17, Oct. 1996.

[16] N. Megiddo and D. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” Proc. Second USENIX Conf. File and Storage
Technologies, pp. 115-130, Mar. 2003.

[17] E.J. O’Neil, P.E. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” Proc. 1993
ACM SIGMOD Int’l Conf. Management of Data, pp. 297-306, May
1993.

[18] V. Phalke and B. Gopinath, “An Inter-Reference Gap Model for
Temporal Locality in Program Behavior,” Proc. 1995 ACM
SIGMETRICS Conf. Measuring and Modeling of Computer Systems,
pp. 291-300, May 1995.

[19] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and J.
Zelenka, “Informed Prefetching and Caching,” Proc. 15th Symp.
Operating System Principles, pp. 1-16, Dec. 1995.

[20] J.T. Robinson and N.V. Devarakonda, “Data Cache Management
Using Frequency-Based Replacement,” Proc. 1990 ACM SIG-
METRICS Conf. Measuring and Modeling of Computer Systems,
pp. 134-142, May 1990.

[21] C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,” Proc.
Usenix Winter 1993 Technical Conf., pp. 405-420, Jan. 1993.

[22] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and
Effective Adaptive Page Replacement,” Proc. 1999 ACM SIG-
METRICS Conf. Measuring and Modeling of Computer Systems,
pp. 122-133, May 1999.

[23] Y. Zhou, J.F. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” Proc. 2001 Ann.
USENIX Technical Conf., pp. 91-104, June 2001.

Song Jiang received the BS and MS degrees in
computer science from the University of Science
and Technology of China in 1993 and 1996,
respectively, and received the PhD degree in
computer science from the College of William
and Mary in 2004. He is a postdoctoral research
associate at the Los Alamos National Labora-
tory, developing next generation operating sys-
tems for high-end systems. He received the S.
Park Graduate Research Award from the Col-

lege of William and Mary in 2003. His research interests are in the areas
of operating systems, computer architecture, and distributed systems.

Xiaodong Zhang received the BS degree in
electrical engineering from Beijing Polytechnic
University in 1982 and the MS and PhD degrees
in computer science from the University of
Colorado at Boulder in 1985 and 1989, respec-
tively. He is the Lettie Pate Evans Professor of
computer science and the department chair at
the College of William and Mary. He was the
program director of Advanced Computational
Research at the US National Science Founda-

tion from 2001 to 2003. He is a past editorial board member of the IEEE
Transactions on Parallel and Distributed Systems and currently serves
as an editorial board member for the IEEE Transactions on Computers
and an associate editor of IEEE Micro. His research interests are in the
areas of parallel and distributed computing and systems and computer
architecture. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

952 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

Series ISSN: 1935-3235

ISBN: 978-1-59829-753-9

9 781598 297539

90000

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

M
ULTI-CORE CACHE HIERARCHIES

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, University of Utah

HP Labs
Naveen Muralimanohar, HP Labs

A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip
accesses. In addition, multi-core processors are expected to place ever higher bandwidth
demands on the memory system. All these issues make it important to avoid off-chip memory
access by improving the efficiency of the on-chip cache. Future multi-core processors will
have many large cache banks connected by a network and shared by many cores. Hence,
many important problems must be solved: cache resources must be allocated across many
cores, data must be placed in cache banks that are near the accessing core, and the most
important data must be identified for retention. Finally, difficulties in scaling existing
technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations
for multi-core processors. It is an excellent starting point for early-stage graduate students,
researchers, and practitioners who wish to understand the landscape of recent cache research.
The book is suitable as a reference for advanced computer architecture classes as well as for
experienced researchers and VLSI engineers.

Multi-Core Cache
Hierarchies

Rajeev Balasubramonian

Naveen Muralimanohar

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

Series ISSN: 1935-3235

ISBN: 978-1-59829-753-9

9 781598 297539

90000

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

M
ULTI-CORE CACHE HIERARCHIES

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, University of Utah

HP Labs
Naveen Muralimanohar, HP Labs

A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip
accesses. In addition, multi-core processors are expected to place ever higher bandwidth
demands on the memory system. All these issues make it important to avoid off-chip memory
access by improving the efficiency of the on-chip cache. Future multi-core processors will
have many large cache banks connected by a network and shared by many cores. Hence,
many important problems must be solved: cache resources must be allocated across many
cores, data must be placed in cache banks that are near the accessing core, and the most
important data must be identified for retention. Finally, difficulties in scaling existing
technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations
for multi-core processors. It is an excellent starting point for early-stage graduate students,
researchers, and practitioners who wish to understand the landscape of recent cache research.
The book is suitable as a reference for advanced computer architecture classes as well as for
experienced researchers and VLSI engineers.

Multi-Core Cache
Hierarchies

Rajeev Balasubramonian

Naveen Muralimanohar

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

Series ISSN: 1935-3235

ISBN: 978-1-59829-753-9

9 781598 297539

90000

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

M
ULTI-CORE CACHE HIERARCHIES

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, University of Utah

HP Labs
Naveen Muralimanohar, HP Labs

A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip
accesses. In addition, multi-core processors are expected to place ever higher bandwidth
demands on the memory system. All these issues make it important to avoid off-chip memory
access by improving the efficiency of the on-chip cache. Future multi-core processors will
have many large cache banks connected by a network and shared by many cores. Hence,
many important problems must be solved: cache resources must be allocated across many
cores, data must be placed in cache banks that are near the accessing core, and the most
important data must be identified for retention. Finally, difficulties in scaling existing
technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations
for multi-core processors. It is an excellent starting point for early-stage graduate students,
researchers, and practitioners who wish to understand the landscape of recent cache research.
The book is suitable as a reference for advanced computer architecture classes as well as for
experienced researchers and VLSI engineers.

Multi-Core Cache
Hierarchies

Rajeev Balasubramonian

Naveen Muralimanohar

Multi-Core Cache Hierarchies

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. The scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
2011

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

iii

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
free access
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

Copyright © 2011 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Multi-Core Cache Hierarchies

Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar

www.morganclaypool.com

ISBN: 9781598297539 paperback
ISBN: 9781598297546 ebook

DOI 10.2200/S00365ED1V01Y201105CAC017

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #17
Series Editor: Mark D. Hill, University of Wisconsin
Series ISSN
Synthesis Lectures on Computer Architecture
Print 1935-3235 Electronic 1935-3243

Multi-Core Cache Hierarchies

Rajeev Balasubramonian
University of Utah

Norman P. Jouppi
HP Labs

Naveen Muralimanohar
HP Labs

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #17

CM& cLaypoolMorgan publishers&

ABSTRACT
A key determinant of overall system performance and power dissipation is the cache hierarchy
since access to off-chip memory consumes many more cycles and energy than on-chip accesses.
In addition, multi-core processors are expected to place ever higher bandwidth demands on the
memory system. All these issues make it important to avoid off-chip memory access by improving
the efficiency of the on-chip cache. Future multi-core processors will have many large cache banks
connected by a network and shared by many cores. Hence, many important problems must be solved:
cache resources must be allocated across many cores, data must be placed in cache banks that are near
the accessing core, and the most important data must be identified for retention. Finally, difficulties
in scaling existing technologies require adapting to and exploiting new technology constraints.

The book attempts a synthesis of recent cache research that has focused on innovations for
multi-core processors. It is an excellent starting point for early-stage graduate students, researchers,
practitioners who wish to understand the landscape of recent cache research. The book is suitable
as a reference for advanced computer architecture classes as well as for experienced researchers and
VLSI engineers.

KEYWORDS
computer architecture, multi-core processors, cache hierarchies, shared and private
caches, non-uniform cache access (NUCA), quality-of-service, cache partitions, re-
placement policies, memory prefetch, on-chip networks, memory cells.

To our highly supportive families and colleagues.

ix

Contents
Preface . xi

Acknowledgments . xv

1 Basic Elements of Large Cache Design .1

1.1 Shared Vs. Private Caches . 1
1.1.1 Shared LLC . 2
1.1.2 Private LLC . 4
1.1.3 Workload Analysis . 6

1.2 Centralized Vs. Distributed Shared Caches . 7
1.3 Non-Uniform Cache Access . 10
1.4 Inclusion . 13

2 Organizing Data in CMP Last Level Caches . 15

2.1 Data Management for a Large Shared NUCA Cache . 15
2.1.1 Placement/Migration/Search Policies for D-NUCA 16
2.1.2 Replication Policies in Shared Caches . 23
2.1.3 OS-based Page Placement . 25

2.2 Data Management for a Collection of Private Caches . 34
2.3 Discussion . 40

3 Policies Impacting Cache Hit Rates . 41

3.1 Cache Partitioning for Throughput and Quality-of-Service 41
3.1.1 Introduction . 41
3.1.2 Throughput . 43
3.1.3 QoS Policies . 52

3.2 Selecting a Highly Useful Population for a Large Shared Cache 56
3.2.1 Replacement/Insertion Policies . 56
3.2.2 Novel Organizations for Associativity . 64
3.2.3 Block-Level Optimizations . 66

3.3 Summary . 76

x

4 Interconnection Networks within Large Caches . 79
4.1 Basic Large Cache Design . 79

4.1.1 Cache Array Design . 79
4.1.2 Cache Interconnects . 80
4.1.3 Packet-Switched Routed Networks . 81

4.2 The Impact of Interconnect Design on NUCA and UCA Caches 89
4.2.1 NUCA Caches . 89
4.2.2 UCA Caches . 92

4.3 Innovative Network Architectures for Large Caches . 94

5 Technology . 101
5.1 Static-RAM Limitations . 101
5.2 Parameter Variation . 102

5.2.1 Modeling Methodology . 103
5.2.2 Mitigating the Effects of Process Variation . 103

5.3 Tolerating Hard and Soft Errors . 106
5.4 Leveraging 3D Stacking to Resolve SRAM Problems . 108
5.5 Emerging Technologies . 110

5.5.1 3T1D RAM . 111
5.5.2 Embedded DRAM . 113
5.5.3 Non-Volatile Memories . 113

6 Concluding Remarks . 117

Bibliography . 119

Authors’ Biographies . 137

Preface
The multi-core revolution is well under-way. The first few mainstream multi-core processors

appeared around 2005. Today, it is nearly impossible to buy a desktop or laptop that has just a single
core in it. The trend is obvious; the number of cores on a chip will likely double every two or three
years. Such processor chips will be widely used in the high-performance computing domain: in
supercomputers, servers, and high-end desktops. Just as the volume of low-end devices (for example,
smartphones) is expected to increase, the volume of high-end devices (servers in datacenters) is also
expected to increase. The latter trend is likely because users will increasingly rely on the “cloud” for
data storage and computation.

For many decades, one of the key determinants of overall system performance has been the
memory hierarchy. Access to off-chip memory consumes many cycles and many units of energy.The
more data that can be accommodated and found in the caches of a processor chip, the higher the
performance and energy efficiency.This continues to be true in the multi-core era. In fact, multi-core
processors are expected to place even higher pressure on the memory system: the number of pins on
a chip is expected to remain largely constant while the number of cores that must be fed with data
is expected to rise sharply. This makes it even more important to minimize off-chip accesses.

Memory hierarchy efficiency is a strong function of the access latencies of on-chip caches
and their hit rates. Future last-level caches (LLCs) are expected to occupy half the processor chip’s
die area and accommodate many mega-bytes of data. The LLC will likely be composed of many
banks scattered across the chip. Access to data will require navigation of long wires and traversal
through multiple routing elements. Each access will therefore require many tens of cycles of latency
and many nanojoules of energy, depending on the distance that must be traveled. Cache resources
will have to be allocated across threads and parts of the LLC may be private to a thread while other
parts may be shared by multiple threads.

As a result, caching techniques will undergo evolution in the coming years because of new
challenges imposed by multi-core platforms and workloads. Cache policies must now worry about
interference among threads as well as large and non-uniform latencies and energy for data transmis-
sion between cache banks and cores. On-chip non-local wires continue to scale poorly, increasing
the role of the interconnect during cache access. It is therefore imperative that we (i) devise caching
policies that reduce long-range communication and (ii) create low-overhead networks to better han-
dle long-range communication when it is required. Several new technology phenomena will also
require innovation within the caches. These include the emergence of parameter variation, hard and
soft error rates, leakage energy in caches, and thermal constraints from 3D stacking.

Consider the following examples of the game-changing impact of multi-core on caching
policies. After years of reliance on LRU-like policies for cache replacement, several papers have

xii PREFACE

emerged in recent years that have shown that alternative approaches are much more effective for
replacement in multi-core LLCs. Likewise, the past decade has seen many papers that consider
variations of private and shared LLCs, attempting to combine the best of both worlds. Hence, the
past and upcoming decades are exciting times for cache research. In retrospect, it should have been
obvious that multi-core processors would be imminent; many papers in the 1990s had pointed to this
trend. Yet, overall, the community was a little slow to embrace multi-core research. As a result, the
pace of multi-core research saw an acceleration only after the arrival of the first commercial multi-
core processors. Much work remains, especially for the memory hierarchies of future many-core
processors.

Book Organization

The goal of this book is to synthesize much of the recent cache research that has focused on
innovations for multi-core processors. For any researcher or practitioner that wishes to understand
the landscape of recent cache work, we hope that the book will be an ideal starting point. We
also expect early-stage graduate students to benefit from such a synthesis lecture. The book should
also serve as a good reference book for advanced computer architecture classes. We expect that the
material here will be accessible to both computer scientists and VLSI engineers. The book is not
intended as a substitute to reading relevant full papers and chasing down older references. The book
will hopefully improve one’s breadth and awareness of a multitude of caching topics, while making
research on a specific topic more efficient.

Given the vastness of the memory hierarchy topic, we had to set some parameters for what
would be worthy of inclusion in this book. We have primarily focused on recent work (2004 and
after) that has a strong connection with the use of multiple cores. We have focused our coverage
on papers that appear at one of the four primary venues for architecture research: ISCA, MICRO,
ASPLOS, and HPCA. However, the book has several discussions of papers that have appeared at
other venues and that have made a clear impact within the community. In spite of our best efforts,
we have surely left out a few papers that deserve mention; we can hopefully correct some of our
oversights in subsequent versions. We encourage readers to contact us to point out our omissions.

The area of multi-core caching has a strong overlap with several other areas within computer
architecture. We have explicitly left some of these areas out of this book because they have been
covered by other synthesis lectures:

• Off-chip memory systems [10]

• On-chip network designs [11]

• Core memory components (load-store-queue, L1 cache) [12]

• Cache coherence and consistency models [13]

PREFACE xiii

• Phase change memory [14]

• Power optimizations [15]

The discussions in the book have attempted to highlight the key ideas in papers. We have
attempted to convey the novelty and the qualitative contribution of each paper. We have typically
not summarized the quantitative improvements of each idea. We realize that the mention of specific
numbers from papers may be misleading as each paper employs different benchmarks and simulation
infrastructure parameters.

The second chapter provides background and a taxonomy for multi-core cache hierarchies.
The third chapter then examines policies that bridge the gap between shared LLCs and private
LLCs. The papers in Chapter 2 typically assume that the LLC is made up of a collection of banks,
with varying latencies to reach each bank. The considered policies attempt to place data in these
banks so that access latency is minimal and hit rates can be maximized. Chapter 3 also focuses
on hit rate optimization, but it does so for a single cache bank. Instead of moving data between
banks, the considered policies improve hit rates with better replacement policies, better organizations
for associativity, and block-level optimizations (prefetch, dead block prediction, compression, etc.).
That chapter also examines how a single cache bank can be partitioned among multiple threads
for high throughput and quality-of-service. Since access to an LLC often requires navigation of an
on-chip network, Chapter 4 describes on-chip network innovations that have a strong interaction
with caching policies. Chapter 5 describes how modern technology trends are likely to impact the
design of future caches. It covers modern technology phenomena such as 3D die-stacking, parameter
variation, rising error rates, and emerging non-volatile memories. Chapter 6 concludes with some
thoughts on avenues for future work.

Figure 1 uses the same classification as above and shows the number of papers that have
appeared in each cache topic in the past seven years at the top four architecture conferences. Note
that there can be multiple ways to classify the topic of a paper, and the data should be viewed as
being approximate. The data serves as an indicator of hot topics within multi-core caching. Activity
appears to be highest in technology phenomena, block prefetch, and shared caches.

Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
May 2011

xiv PREFACE

0

5

10

15

20

25

N
U

M
BE

R
O

F
PA

PE
RS

2010
2009
2008
2007
2006
2005
2004

18

7

11 12

4

25

5 4

21

Figure 1: Number of papers in various cache topics in the last seven years at ISCA, MICRO, ASPLOS,
and HPCA.

Acknowledgments
We thank everyone that provided comments and feedback on early drafts of this synthesis

lecture, notably, Mark Hill, Aamer Jaleel, Gabriel Loh, Mike Morgan, and students in the Utah
Arch research group.

Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
May 2011

1

C H A P T E R 1

Basic Elements of Large Cache
Design

This chapter presents a landscape of cache hierarchy implementations commonly employed in re-
search/development and identifies their key distinguishing features. These features include the fol-
lowing: shared vs. private, centralized vs. distributed, and uniform vs. non-uniform access. There is
little consensus in the community about what constitutes an optimal cache hierarchy implemen-
tation. Some levels of the cache hierarchy employ private and uniform access caches, while other
levels employ shared and non-uniform access. We will point out the pros and cons of selecting each
feature, and it is perfectly reasonable for a research effort to pick any combination of features for their
baseline implementation. Much of the focus of this book is on the design of the on-chip Last-Level
Cache (LLC). In the past, most on-chip cache hierarchies have been comprised of two levels (L1
and L2), but it is becoming increasingly common to incorporate three levels in the cache hierarchy
(L1, L2, and an L3 LLC). As we explain in this chapter and the next, future LLCs have a better
chance of optimizing miss rates, latency, and complexity if they are implemented as shared caches.
This chapter also discusses other basics that are required to understand modern cache innovations.

Before getting started, a couple of terminology clarifications are in order. In a cache hierarchy,
a cache level close to the processor is considered an “upper-level” cache, while a cache level close to
main memory is considered a “lower-level” cache. We will also interchangeably use the terms “cache
line” and “cache block”, both intended to represent the smallest unit of data handled during cache
fetch and replacement.

1.1 SHARED VS. PRIVATE CACHES

Most modern high-performance processors incorporate multiple levels of the cache hierarchy within
a single chip. In a multi-core processor, each core typically has its own private L1 data and L1
instruction caches. Considering that every core must access the L1 caches in nearly every cycle, it is
not typical to have a single L1 cache (either data or instruction cache) shared by multiple cores. A
miss in the L1 cache initiates a request to the L2 cache. For most of the discussion, we will assume
that the L2 is the LLC. But the same arguments will also apply to an L3 LLC in a 3-level hierarchy,
where the L1 and L2 are private to each core. We first compare the properties of shared and private
LLCs.

2 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

1.1.1 SHARED LLC
A single large L2 LLC may be shared by multiple cores on a chip. Since the requests originating
from a core are filtered by its L1 caches, it is possible for a single-ported L2 cache to support the
needs of many cores. One example organization is shown in Figure 1.1. In this design, eight cores

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Shared L2 Cache

L2 Cache
Controller

Shared Bus

Figure 1.1: Multi-core cache organization with a large shared L2 cache and private L1 caches per core.
A snooping-based cache coherence protocol is implemented with a bus connecting the L1s and L2.

share a single large L2 cache. When a core fails to find data in its L1 caches, it places the request
on a bus shared by all cores. The L2 cache controller picks requests off this bus and performs the
necessary look-up. In such a large shared L2 cache, there are no duplicate copies of a memory block,
but a given block may be cached in multiple different L1 caches. Coherence must be maintained
among the L1s and the L2. In the bus-based example in Figure 1.1, coherence is maintained with
a snooping-based protocol. Assume that the L1 caches employ a write-back policy. When a core
places a request on the bus, every other core sees this request and looks up its L1 cache to see if it has a
copy of the requested block. If a core has a copy of the block in modified state, i.e., this copy happens
to be the most up-to-date version and the only valid copy of the block, the core must respond by
placing the requested data on the bus. If no core has the block in modified state, the L2 cache must
provide the requested data. The L2 cache controller figures out that it must respond by examining
a set of control signals that indicate that the cores have completed their snoops and do not have the
block in modified state. If the requesting core is performing a write, copies of that block in other
L1 caches are invalidated during the snoop operation. Of course, there can be many variations of
this basic snooping-based protocol [16, 17]. If a write-through policy is employed for the L1 caches,
an L1 miss is always serviced by the L2. A write-through policy can result in significant bus traffic
and energy dissipation; this overhead is not worthwhile in the common case. Similarly, write-update
cache coherence protocols are also more traffic intensive and not in common use. However, some of

1.1. SHARED VS. PRIVATE CACHES 3

these design guidelines are worth re-visiting in the context of modern single-chip multi-cores with
relatively cheap interconnects.

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Shared L2 Cache and Directory State

L2 Cache
Controller

Scalable Non-broadcast Interconnect

Figure 1.2: Multi-core cache organization with a large shared L2 cache and private L1 caches per core.
A scalable network connects the L1 caches and L2 and a directory-based cache coherence protocol is
employed. Each block in the L2 cache maintains directory state to keep track of copies cached in L1.

The above example primarily illustrates the interface required before accessing a shared cache.
In essence, a mechanism is required to ensure coherence between the shared L2 and multiple private
L1s. If the number of cores sharing an L2 is relatively small (16 or fewer), a shared bus and a snooping-
based coherence protocol will likely work well. For larger-scale systems, a scalable interconnect and
a directory-based coherence protocol are typically employed. As shown in Figure 1.2, the cores and
the L2 cache are connected with some scalable network and broadcasting a request is no longer an
option. The core sends its request to the L2 cache and each L2 block is associated with a directory
that keeps track of whether other L1 caches have valid copies of that block. If necessary, other caches
are individually contacted to either invalidate data or obtain the latest copy of data.

There are many advantages to employing a shared cache. First, the available storage space
can be dynamically allocated among multiple cores, leading to better utilization of the overall cache
space. Second, if data is shared by multiple cores, only a single copy is maintained in L2, again
leading to better space utilization and better cache hit rates.Third, if data is shared by multiple cores
and subject to many coherence misses, the cache hierarchy must be navigated until the coherence
interface and shared cache is encountered. The sooner a shared cache is encountered, the sooner
coherence misses can be resolved.

4 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

The primary disadvantages of a shared cache are as follows. The working sets of different
cores may interfere with each other and impact each other’s miss rates, possibly leading to poorer
quality-of-service. As explained above, access to a shared L2 requires navigation of the coherence
interface: this may impose overheads if the cores are mostly dealing with data that is not shared by
multiple cores. Finally, many papers cite that a single large shared L2 cache may have a relatively
long access time on average. Also, a core may experience many contention cycles when attempting
to access a resource shared by multiple cores. However, we will subsequently (Section 2.1) show that
both of these disadvantages can be easily alleviated.

It must be noted that many of our examples assume that the L2 cache is inclusive, i.e., if
a data block is present in L1, it is necessarily also present in L2. In Section 1.4, we will discuss
considerations in selecting inclusive and non-inclusive implementations.

1.1.2 PRIVATE LLC
A popular alternative to the single shared LLC is a collection of private last-level caches. Assuming
a two-level hierarchy, a core is now associated with private L1 instruction and data caches and a
private unified (handling data and instructions) L2 cache. A miss in L1 triggers a look-up of the
core’s private L2 cache. Some of the advantages/disadvantages of such an organization are already
apparent.

The working sets of threads executing on different cores will not cause interference in each
other’s L2 cache. Each private L2 cache is relatively small (relative to a single L2 cache that must be
shared by multiple cores), allowing smaller access times on average for L2 hits. The private L2 cache
can be accessed without navigating the coherence interface and without competition for a shared
resource, leading to performance benefits for threads that primarily deal with non-shared data.

A primary disadvantage of private L2 caches is that a data block shared by multiple threads
will be replicated in each thread’s private L2 cache. This replication of data blocks leads to a lower
effective combined L2 cache capacity, relative to a shared L2 cache of similar total area. In other
words, four private 256 KB L2 caches will accommodate less than 1 MB worth of data because of
duplicate copies of a block, while a 1 MB shared L2 cache can indeed accommodate 1 MB worth
of data. Another disadvantage of a private L2 cache organization is the static allocation of L2 cache
space among cores. In the above example, each core is allocated a 256 KB private L2 cache even
though some cores may require more or less. In a 1 MB shared L2 cache, it is possible for one core
to usurp (say) 512 KB of the total space if it has a much larger working set size than threads on the
other cores.

By employing private L2 caches, the coherence interface is pushed down to a lower level
of the cache hierarchy. First, consider a small-scale multi-core machine that employs a bus-based
snooping coherence protocol. On an L2 miss, the request is broadcast on the bus. Other private L2
caches perform snoop operations and place their responses on the bus. If it is determined that none
of the other private L2 caches can respond, a controller forwards this request to the next level of
the hierarchy (either an L3 cache or main memory). When accessing shared data, such a private L2

1.1. SHARED VS. PRIVATE CACHES 5

organization imposes greater latency overheads than a model with private L1s and a shared L2. The
key differentiating overheads are the following: (i) the private L2 cache is looked up before placing
the request on the bus, (ii) snoops take longer as a larger set of tags must be searched, and (iii) it
takes longer to read data out of another large private L2 data array (than another small private L1
cache).

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Replicated Tags of all
 L2 and L1 Caches

Controller that
handles L2 misses

Scalable Non-broadcast Interconnect

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

Off-chip access

Figure 1.3: Multi-core cache organization where each core has a private L2 cache and coherence is
maintained among the private L2 caches with a directory-based protocol across a scalable non-broadcast
interconnect.

The coherence interface is even more complex if a directory-based protocol is employed
(shown in Figure 1.3). On an L2 miss, the request cannot be broadcast to all cores, but it is sent to a
directory. This directory may be centralized or distributed, but in either case, long on-chip distances
may have to be traversed. This directory must keep track of all blocks that are cached on chip and
it essentially replicates the tags of all the private L2 caches. A highly-associative search is required
to detect if the requested address is in any of the private L2 caches. If each of the four 256 KB
private L2 caches is 4-way set-associative, the directory look-up will require 16 tag comparisons to
determine the state of the block. L1 tags need not be replicated by preserving inclusion between the
L1s and L2. If a block is detected in another private L2 cache, messages are exchanged between the
directory and cores to move the latest copy of data to the requesting core’s private cache. On the
other hand, the shared L2 cache simply associates the directory with the unique copy of the block in

6 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

L2, thus eliminating the need to replicate L2 tags. In short, assuming inclusion, the use of a shared
on-chip LLC makes it easier to detect if a cached copy exists on the chip.

Table 1.1: A comparison of the advantages and disadvantages of pri-
vate and shared cache organizations.

Shared L2 Cache Private L2 Caches
No replication of shared blocks Replication of shared blocks

(higher effective capacity) (lower effective capacity)
Dynamic allocation of space Design-time allocation

among threads/cores of space among cores
(higher effective capacity) (lower effective capacity)
Quick traversal through Slower traversal through

coherence interface coherence interface
(low latency for shared data) (high latency for shared data)

No L2 tag replication for Directory implementation
directory implementation requires replicated L2 tags
(low area requirements) (high area requirements)

Higher interference No interference
between threads between threads

(negatively impacts QoS) (positively impacts QoS)
Longer wire traversals on Short wire traversals on

average to detect an L2 hit average to detect an L2 hit
(high average hit latency1) (low average hit latency)

High contention when accessing No contention when
shared resource (bus and L2) accessing L2 cache

(high hit latency for private data) (low hit latency for private data)

The differences between private and shared L2 cache organizations are summarized in Ta-
ble 1.1. It is also worth noting that future processors may employ combinations of private and shared
caches. For example (Figure 1.4), in a 16-core processor, each cluster of four cores may share an
L2 cache, and there are four such L2 caches that are each private to their cluster of four cores.
Snooping-based coherence is first maintained among the four L1 data caches and L2 cache in one
cluster; snooping-based coherence is again maintained among the four private L2 caches.

1.1.3 WORKLOAD ANALYSIS
Some recent papers have focused on analyzing the impact of baseline shared and private LLCs
on various multi-threaded workloads. The work of Jaleel et al. [18] characterizes the behavior of
bioinformatics workloads. They show that more than half the cache blocks are shared, and a vast
majority of LLC accesses are to these shared blocks. Given this behavior, a shared LLC is a clear

1.2. CENTRALIZED VS. DISTRIBUTED SHARED CACHES 7

Core 0

L1
D$

L1
I$

Core 1

L1
D$

L1
I$

Core 2

L1
D$

L1
I$

Core 3

L1
D$

L1
I$

Private L2 cache shared by cores 0-3

Core 4

L1
D$

L1
I$

Core 5

L1
D$

L1
I$

Core 6

L1
D$

L1
I$

Core 7

L1
D$

L1
I$

Private L2 cache shared by cores 4-7

Core 8

L1
D$

L1
I$

Core 9

L1
D$

L1
I$

Core 10

L1
D$

L1
I$

Core 11

L1
D$

L1
I$

Private L2 cache shared by cores 8-11

Core 12

L1
D$

L1
I$

Core 13

L1
D$

L1
I$

Core 14

L1
D$

L1
I$

Core 15

L1
D$

L1
I$

Private L2 cache shared by cores 12-15

Snooping-based Coherence among private L2s

Figure 1.4: 16-core machine where each cluster of four cores has a private L2 cache that is shared by its
four cores. There are two hierarchical coherence interfaces here: one among the L1 data caches and L2
cache within a cluster and one among the four private L2 caches.

winner over an LLC that is composed of many private LLCs. Bienia et al. [19] show a workload
analysis of the SPLASH-2 and PARSEC benchmark suites, including cache miss rates and the extent
of data sharing among threads. Many other cache papers also report workload characterizations in
their analysis, most notably, the work of Beckmann et al. [20] and Hardavellas et al. [3].

1.2 CENTRALIZED VS. DISTRIBUTED SHARED CACHES
This section primarily discusses different implementations for a shared last level cache. At the end
of the section, we explain how some of these principles also apply to a collection of private caches.

We have already considered two shared L2 cache organizations in Figures 1.1 and 1.2. In
both of these examples, the L2 cache and its controller are represented as a single centralized entity.
When an L1 miss is generated, the centralized L2 cache controller receives this request either from
the bus (Figure 1.1) or from a link on the scalable network (Figure 1.2). It then proceeds to locate
the corresponding block within the L2 cache structure. If the L2 cache is large (as is usually the
case), it is itself partitioned into numerous banks, and some sort of interconnection network must be
navigated to access data within one of the banks (more details on this in later sections). Thus, some
form of network fabric may have to be navigated to simply reach the centralized L2 cache controller
and yet another fabric is navigated to reach the appropriate bank within the L2 cache. Depending

8 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

CPU15

D I

Directory

CPU 0
 D I

CPU 1
 D I

CPU 2
 D I

CPU 3

D I

CPU 4

D I

CPU 5
 D I

CPU 6
 D I

CPU 7
 D I

CPU14

D I
CPU13

D I

CPU12

D I

CPU11

D I
CPU10

D I
CPU 9

D I
CPU 8

D I

CPU15
D I

CPU 0
 D I

CPU 1
 D I

CPU 2
 D I

CPU 3

D I

CPU 4

D I

CPU 5
 D I

CPU 6
 D I

CPU 7
 D I

CPU14

D I
CPU13

D I
CPU12

D I
CPU11

D I
CPU10

D I
CPU 9

D I
CPU 8

D I

Figure 1.5: Shared L2 cache with a centralized layout (the L2 cache occupies a contiguous area in the
middle of the chip and is surrounded by cores). An on-chip network is required to connect the many
cache banks to each other and the cores. In all these cases, the functionality of the cache controller is
replicated in each of the banks to avoid having to go through a central entity.

on the types of fabrics employed, it may be possible to merge the two. In such a scenario, a single
fabric is navigated to directly send the request from a core to the L2 bank that stores the block. The
L2 bank will now need some logic to take care of the necessary coherence operations; in other words,
the functionality of the L2 cache controller is replicated in each of the banks to eliminate having to
go through a single centralized L2 cache controller.

Some example physical layouts of such centralized shared L2 caches are shown in Figure 1.5.
Each of these layouts has been employed in research evaluations (for example, [2, 7, 21, 22]). Even
though the cache is banked and the controller functionality is distributed across the banks, we
will refer to these designs as Centralized because the LLC occupies a contiguous area on the chip.
Such centralized cache structures attempt to provide a central pool of data that may be quickly
and efficiently accessed by cores surrounding it. By keeping the cache banks in close proximity to
each other, movement of data between banks (if required) is simplified. The interconnects required
between L2 cache banks and the next level of the hierarchy (say, the on-chip memory controller) are
simplified by aggregating all the cache banks together.The L2 cache also ends up being a centralized
structure if it is implemented on a separate die that is part of a 3D-stacked chip (assuming a single
die-to-die bus that communicates requests and responses between CPUs and a single L2 cache
controller).

An obvious extension to this model is the distributed shared L2 cache. Even though the L2
cache is logically a shared resource, it may be physically distributed on chip, such that one bank
of the L2 may be placed in close proximity to each core. The core, its L1 caches, and one bank
(or slice) of the L2 cache together constitute one tile. A single on-chip network is used to connect
all the tiles. When a core has an L1 miss, its request is routed via the on-chip network to the tile
that is expected to have the block in its L2 bank. Such a tiled and distributed cache organization
is desireable because it allows manufacturers to design a single tile and instantiate as many tiles as
allowed by the area budget. It therefore lends itself better to scalable design/verification cost, easy

1.2. CENTRALIZED VS. DISTRIBUTED SHARED CACHES 9

Core 0

L1
D$

L1
I$

 L2 $

Core 1

L1
D$

L1
I$

 L2 $

Core 2

L1
D$

L1
I$

 L2 $

Core 3

L1
D$

L1
I$

 L2 $

Core 4

L1
D$

L1
I$

 L2 $

Core 5

L1
D$

L1
I$

 L2 $

Core 6

L1
D$

L1
I$

 L2 $

Core 7

L1
D$

L1
I$

 L2 $

Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

I$

L2 $

The cache controller
forwards address requests
 to the appropriate L2 bank

and handles coherence
operations

Bottom die
with cores

and L1 caches

Core 0

L1
D$

L1
I$

L2 $

Core 1

L1
D$

L1
I$

L2 $

Core 2

L1
D$

L1
I$

L2 $

Core 3

L1
D$

L1
I$

L2 $

Memory controller for off-chip access

$ $ $ $

Top die with
L2 cache banks

Each core has

low-latency access
to one L2 bank

Figure 1.6: A shared L2 cache with a physically distributed layout. One bank (or “slice”) of L2 cache is
associated with each core. A “tile” is composed of a core, its L1 caches, and its associated L2 bank. The
figure on the right physically separates the L2 banks onto a separate die in a 3D stack, but it retains the
same logical organization as the figure on the left.

manufacture of families of processors with varying numbers of tiles, and simple upgrades to new
technology generations. Such distributed shared caches have also been implemented in recent Tilera
multi-core processors. Two examples of such a physical layout are shown in Figure 1.6. We will also
subsequently see how architectural mechanisms for data placement can take advantage of such a
physical organization. The primary disadvantage of this organization is the higher cost in moving
data/requests between L2 cache banks and the next level of the memory hierarchy.

While a centralized L2 cache structure may be a reasonable design choice for a processor
with a medium number of cores, it may prove inefficient for a many-core processor. Thermal and
interconnect (scalability and wire-length) limitations may prevent many cores from surrounding a
single large centralized L2 cache. It is therefore highly likely that many-core processors will employ
a distributed L2 cache where every core at least has very quick access to one bank of the shared L2
cache. Distributing the L2 cache also has favorable implications for power density and thermals.

Our definitions of Centralized and Distributed caches are only meant to serve as an informal
guideline when reasoning about the properties of caches. A centralized cache is defined as a cache
that occupies a contiguous area on the chip. A distributed cache is defined as a cache where each
bank is tightly coupled to a core or collection of cores. In Figure 1.6(a), if the layout of cores 4-7 was
a mirror image of the cores 0-3, the cache would be classified as both centralized and distributed,
which is admittedly odd.

When implementing a private L2 cache organization, it makes little sense to place the core’s
private L2 cache anywhere but in close proximity to the core. Hence, a private L2 cache organization
has a physical layout that closely resembles that of the distributed shared L2 cache just described.
In other words, for both organizations, a tile includes a bank of L2 cache; it is the logical policies
for placing and managing data within the many L2 banks that determines if the L2 cache space is
shared or private.

10 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

Figure 1.7: An example H-tree network for a uniform cache access (UCA) architecture with 16 arrays.

For the private L2 cache organization, if a core has a miss in its private L2 cache, the request
must be forwarded to the coherence interface. If we assume directory-based coherence, the request is
forwarded to the directory structure that could itself be centralized or distributed.The considerations
in implementing a centralized/distributed on-chip directory are very similar to those in implementing
a centralized/distributed shared L2 cache. The on-chip network is therefore employed primarily to
deal with coherence operations and accesses to the next level of the hierarchy. The on-chip network
for the distributed shared L2 cache is also heavily employed for servicing L2 hits.

1.3 NON-UNIFORM CACHE ACCESS

In most processors until very recently, a cache structure is designed to have a uniform access time
regardless of the block being accessed. In other words, the delay for the cache access is set to be
the worst-case delay for any block. Such Uniform Cache Access (UCA) architectures certainly simplify
any associated instruction scheduling logic, especially if the core pipeline must be aware of cache
hit latency. However, as caches become larger and get fragmented into numerous banks, there is a
clear inefficiency in requiring that every cache access incur the delay penalty of accessing the furthest
bank. Simple innovations to the network fabric can allow a cache to support non-uniform access
times; in fact, many of the banked cache organizations that we have discussed so far in this chapter
are examples of Non-Uniform Cache Access (NUCA) architectures.

A UCA banked cache design often adopts an H-tree topology for the interconnect fabric
connecting the banks to the cache controller. With an H-tree topology (example shown in Fig-
ure 1.7), every bank is equidistant from the cache controller, thus enabling uniform access times
to every bank. In their seminal paper [1], Kim et al. describe the innovations required to support

1.3. NON-UNIFORM CACHE ACCESS 11

a NUCA architecture and quantify its performance benefits. Firstly, variable access times for the
L2 are acceptable as the core pipeline does not schedule instructions based on expected L2 access
time. Secondly, instead of adopting an H-tree topology, a grid topology is employed to connect
banks to the cache controller. The latency for a bank is a function of its size and the number of
network hops required to route the request/data between the bank and the cache controller. It is
worth noting that messages on this grid network can have a somewhat irregular pattern, requiring
complex mechanisms at every hop to support routing and flow control. These mechanisms were not
required in the H-tree network, where requests simply radiated away from the cache controller in a
pipelined fashion. The complexity in the network is the single biggest price being paid by a NUCA
architecture to provide low-latency access to a fraction of cached data. It can be argued that most
future architectures will anyway require complex on-chip networks to handle somewhat arbitrary
messaging between the numerous cores and cache banks. Especially in tiled architectures such as
the ones shown in Figure 1.6, it is inevitable that the different cache banks incur variable access
latencies as a function of network distance.

In the next chapter,we will discuss innovations to NUCA architectures that attempt to cleverly
place data in an “optimal” cache bank. These innovations further drive home the point that traffic
patterns are somewhat arbitrary and require complex routing/flow control mechanisms. In Chapter 4,
we describe on-chip network innovations that are applicable to specific forms of NUCA designs. In
the rest of this section, we describe the basic NUCA designs put forth by Kim et al. in their paper [1].

L1 I L1 D Core

Cache controller

L2 cache
banks

connected
with an
on-chip
network

Figure 1.8: A NUCA L2 cache connected to a single core [1].

12 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

Physical Design
Kim et al. [1] consider a large L2 cache that has a single cache controller feeding one processor

core (see Figure 1.8). In terms of physical layout, they consider two implementations. The first
employs a dedicated channel between each of the many cache banks and the cache controller. While
private channels can provide low contention and low routing overheads for each access, the high
metal area requirements of these private channels are prohibitive. Such a design would also not
easily scale to multiple cache controllers or cores. The second layout employs a packet-switched
on-chip network with a grid topology. This ensures a tolerable metal area requirement while still
providing high bandwidth and relatively low contention. Multiple cache controllers (cores) can be
easily supported by linking them to routers on the periphery of the grid (or any router for that
matter). While Kim et al. [1] advocate the use of “lightweight” routers that support 1-cycle hops, it
is not yet clear if such routers can be designed while efficiently supporting the flow control needs
of the cache network (more on routers in Chapter 4). If such lightweight routers exist, Kim et al.
correctly point out that a highly-banked cache structure is desireable: it reduces access time within
a bank, reduces contention at banks and routers, supports higher overall bandwidth, and provides
finer-grain control of cache resources.
Logical Policies

Logical policies for data management must address the following three issues: (1) Mapping:
the possible locations for a data block, (2) Search: the mechanisms required to locate a data block,
and (3) Movement: the mechanisms required to change a block’s location.

The simplest mapping policy distributes the sets of the cache across banks while co-locating
all ways of a set in one bank. As a result, the block address and its corresponding cache index bits
are enough to locate the unique bank that houses that set. The request is routed to that bank, tag
comparison is performed for all ways in that set, and the appropriate data block is returned to the
cache controller. Since the mapping of a data block to a bank is unique, such an architecture is known
as Static-NUCA or S-NUCA.This design does not support movement of a block between banks and
does not require mechanisms to search for a block.

An alternative mapping policy distributes ways and sets across banks.The W ways of a set can
be distributed across W different banks. Policies must be defined to determine where a block is placed
upon fetch. Similarly, policies are required to move data blocks between ways in order to minimize
average access times. Because a block is allowed to move between banks, such an architecture is
referred to as Dynamic-NUCA or D-NUCA. Finally, a search mechanism is required to quickly
locate a block that may be in one of W different banks. Kim et al. consider several policies for each
of these and the salient ones are described here.

The search of a block can happen in an incremental manner, i.e., the closest or most likely bank
is first looked up, and if the block is not found there, the next likely bank is looked up. Alternatively,
a multicast search operation can be carried out where the request is sent to all candidate banks,
and they are searched simultaneously. The second approach will yield higher performance (unless
it introduces an inordinate amount of network contention) but also higher power. Combinations

1.4. INCLUSION 13

of the two are possible where, for example, multicast happens over the most likely banks, followed
by an incremental search over the remaining banks. Kim et al. propose a Smart Search mechanism
where a partial tag (six bits) for each block is stored at the cache controller. A look-up of this partial
tag structure helps identify a small subset of banks that likely have the requested data and only those
banks must now be searched. While such an approach is very effective for a single-core design where
all block replacements happen via the cache controller, this design does not scale as well to multi-core
designs where partial tags must be redundantly maintained at potentially many cache controllers.
The next chapter discusses alternative solutions proposed by Chishti et al. [23, 24]. To date, efficient
search in a D-NUCA cache remains an open problem.

To allow frequently accessed blocks to migrate to banks closer to the cache controller, Kim et
al. employ a Generational Promotion mechanism (and also consider several alternatives). On a cache
miss, the fetched block is placed in a way in the furthest bank. Upon every subsequent hit, the block
swaps locations with the block that resides in the adjacent bank (way) and edges closer to the cache
controller.
Summary

Kim et al. show that NUCA caches are a clear winner over similar sized UCA caches and
multi-level hierarchies (although, note that an N-way D-NUCA cache is similar in behavior to a
non-inclusive N-level cache hierarchy). D-NUCA policies offer a performance benefit in the 10%
range over S-NUCA and this benefit grows to 17% if a smart search mechanism is incorporated.
This argues for the use of “clever” data placement, but the feasibility of D-NUCA mechanisms
is somewhat questionable. Data movement is inherently complex; consider the example where a
block is being searched for while it is in the process of migrating and the mechanisms that must be
incorporated to handle such corner cases.The feasibility of smart search, especially in the multi-core
domain, is a major challenge. While the performance of D-NUCA is attractive and has sparked
much research, recent work shows that it may be possible to design cache architectures that combine
the hardware simplicity of S-NUCA and the high performance of D-NUCA. Chapter 2 will discuss
several of these related bodies of work.

1.4 INCLUSION
For much of the discussions in this book, we will assume inclusive cache hierarchies because they
are easier to reason about. However, many research evaluations and commercial processors employ
non-inclusive hierarchies as well. It is worth understanding the implications of this important design
choice. Unfortunately, research papers (including those by the authors of this book) often neglect to
mention assumptions on inclusion. Section 3.2.1 discusses a recent paper [25] that evaluates a few
considerations in defining the inclusion policy.

If the L1-L2 hierarchy is inclusive, it means that every block in L1 has a back-up copy in
L2. The following policy ensures inclusion: when a block is evicted from L2, its copy in the L1
cache is also evicted. If a single L2 cache is shared by multiple L1 caches, the copies in all L1s are
evicted. This is an operation very similar to L1 block invalidations in a cache coherence protocol.

14 1. BASIC ELEMENTS OF LARGE CACHE DESIGN

The primary advantage of an inclusive hierarchy in a multi-core is the ease in locating a data block
upon an L1 miss – either a copy of the block will be found in L2, or the L2 will point to a modified
version of the block in some L1, or an L2 miss will indicate that the request can be directly sent to
the next level of the hierarchy.The L2 cache is also a central point when handling coherence requests
from lower levels of the hierarchy (L3 or off-chip). The disadvantage of an inclusive hierarchy is the
wasted space because most L1 blocks have redundant copies in L2.

Some L1-L2 hierarchies are designed to be exclusive (a data block will be found in either an
L1 cache or the L2 cache, but not in both) or non-inclusive (there is no guarantee that an L1 block
has a back-up copy in L2). Data block search is more complex in this setting: on an L1 miss, other
L1 caches and the L2 will have to be looked up. If a snooping-based coherence protocol is employed
between the L1s and L2, this is not a major overhead as a broadcast and search happens over all L1s
on every L1 miss. This search of L1s must be done even when handling coherence requests from
lower levels of the hierarchy. However, just as with snooping-based protocols, the search operation
does not scale well as the number of L1 caches is increased. The advantage, of course, is the higher
overall cache capacity because there is little (or no) duplication of blocks.

Another basic implementation choice is the use of write-through or write-back policies.Either
is trivially compatible with an inclusive L1-L2 hierarchy, with write-through policies yielding higher
performance if supported by sufficiently high interconnect bandwidth and power budget. A write-
through policy ensures that shared blocks can be quickly found in the L2 cache without having to
look in the L1 cache of another core. A writeback cache is typically appropriate for a non-inclusive
hierarchy.

Optimal Collaborative Caching:
Theory and Applications

by

Xiaoming Gu

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Chen Ding

Department of Computer Science
Arts, Sciences & Engineering

Edmund A. Hajim School of Engineering & Applied Sciences

University of Rochester
Rochester, New York

2014

ii

Biographical Sketch

Xiaoming Gu was born in Handan, Hebei, China, in 1980. He started his study

in computer science at the University of Science and Technology of China in 1998

and received his B.S. degree there in 2003. In 2006, he received his first M.S.

degree at the Institute of Computing Technology, Chinese Academy of Sciences.

In 2008, he received his second M.S. degree at the University of Rochester. After

one-year of work at Intel Beijing, he continued his Ph.D. study at the University

of Rochester in 2009 under the direction of Professor Chen Ding. He did a summer

internship at AMD in 2011. Since the summer of 2012, he has been a full-time

software engineer at Azul Systems.

Much of this dissertation is from the following four workshops and conference

papers on optimal collaborative caching:

• P-OPT: Program-directed Optimal Cache Management, Xiaoming Gu, Tongxin

Bai, Yaoqing Gao, Chengliang Zhang, Roch Archambault, and Chen Ding, 21st

Workshop on Languages and Compilers for Parallel Computing (LCPC’08)

• On the Theory and Potential of LRU-MRU Collaborative Cache Management,

Xiaoming Gu and Chen Ding, 10th International Symposium on Memory Man-

agement (ISMM’11)

• A Generalized Theory of Collaborative Caching, Xiaoming Gu and Chen Ding,

11th International Symposium on Memory Management (ISMM’12)

iii

• Pacman: Program-Assisted Cache Management, Jacob Brock, Xiaoming Gu, Bin

Bao, and Chen Ding, 12th International Symposium on Memory Management

(ISMM’13)

Other than the findings described in this dissertation, the author has studied

several other areas:

• Reuse distance distribution for random access

Reuse Distance Distribution in Random Access (position abstract), Xiaoming Gu

and Chen Ding, 5th Workshop on Memory Systems Performance and Correctness

(MSPC’08)

• Spatial locality modeling for program tuning

A Component Model of Spatial Locality, Xiaoming Gu, Ian Christopher, Tongxin

Bai, Chengliang Zhang, and Chen Ding, 8th International Symposium on Memory

Management (ISMM’09)

• Software parallelization by hint

Continuous Speculative Program Parallelization in Software (poster paper), Chao

Zhang, Chen Ding, Xiaoming Gu, Kirk Kelsey, Tongxin Bai, and Chen Ding, 15th

Symposium on Principles and Practice of Parallel Programming (PPoPP’10)

• Resource-based memory management

Waste Not, Want not: Resource-based Garbage Collection in a Shared Environ-

ment, Matthew Hertz, Stephen Kane, Elizabeth Keudel, Tongxin Bai, Chen Ding,

Xiaoming Gu, and Jonathan Bard, 10th International Symposium on Memory

Management (ISMM’11)

iv

Acknowledgments

First of all, I would like to sincerely thank my advisor, Professor Chen Ding.

Without him, I cannot imagine that I would have been able to finish my Ph.D.

study. He is a role model for me in many ways.

Professor Hertz, Professor Ipek, and Professor Scott have sat patiently on my

thesis committee for years. I appreciate their insightful suggestions and invaluable

time investment very much.

I received help from all the people in the department. They made my study

much smoother. In particular, I would like to thank the students in the compiler

group: Chengliang Zhang, Kirk Kelsey, Tongxin Bai, Bin Bao, Xiaoya Xiang,

Hao Luo, and Jacob Brock. In this dissertation, Jacob Brock made a significant

contribution to the loop splitting part, and Bin Bao performed the tests on real

hardware. I greatly appreciate their invaluable e↵orts. I also received considerable

help from Hao Zhang, Arrvindh Shriraman, Xiao Zhang, Qi Ge, Daphne Liu, Amal

Fahad, Licheng Fang, Zhuan Chen, Li Lu, and Marzieh Bazrafshan.

Most of this dissertation comes from my previous publications. I would like

to thank Jorge Albericio, Roch Archambault, Luke K. Dalessandro, Sandhya

Dwarkadas, Yaoqing Gao, Li Shen, Xipeng Shen, Lingxiang Xiang, and the anony-

mous reviewers at LCPC’08, ISMM’11, ISMM’12, and ISMM’13. Special appre-

ciation goes to Kathryn McKinley, who suggested the idea of priority hints.

I would also like to give my sincerest thanks to my colleagues at Azul Systems.

They helped me a lot in my full-time job. I cannot imagine that I would have had

v

time for my dissertation without their help. I really enjoy working with them,

especially my manager Bean Anderson. I am proud of working with these great

people.

This dissertation is dedicated to my parents and sister. I o↵er them my thanks

for their unconditional love, which kept me warm. My final thanks belong to my

girlfriend Zhou Yi, who brings a great deal of fun into my life.

vi

Abstract

On most modern computers, most memory accesses happen in cache, and

its usage increasingly a↵ects the performance, stability, and energy consumption

of the whole system. The traditional solution divides the memory problem and

conquers the pieces separately: software to improve cache locality and hardware

to improve cache speed and capacity. A recent approach called collaborative

caching breaks the rigid division by allowing software to provide cache hints to

influence hardware cache management. In traditional caching, the hardware infers

the “importance” of data and manages cache based on the inferred priority. In

collaborative caching, software specifies the “importance” of data and changes the

priority in which the hardware manages the data.

The dissertation presents the theory and applications of optimal collaborative

caching. Through software-hardware collaboration, the goal is not to improve

existing solutions but to obtain the optimal solution. Toward this goal, I tackle

both theoretical and practical issues. I show in theory that e�cient hardware

similar to the existing cache is su�cient to produce optimal results. Based on

the theory, I describe practical techniques on the software side and evaluate the

combined solution on both simulated and real hardware.

vii

Contributors and Funding Sources

This work was supervised by a dissertation committee consisting of Professors

Chen Ding, Engin Ipek, and Michael Scott of the Department of Computer Science

at the University of Rochester and Professor Matthew Hertz of the Department of

Computer Science at Canisius College. Section 4.3 was conducted in part by Jacob

Brock and Bin Bao. All other work conducted for the dissertation was completed

by Xiaoming Gu independently. Graduate study was supported by NSF awards

CNS-0834566 and CCF-0963759, and by an IBM fellowship #TOR08003-12.

viii

Table of Contents

Biographical Sketch ii

Acknowledgments iv

Abstract vi

Contributors and Funding Sources vii

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 The Thesis . 1

1.2 Memory Hierarchy and Cache . 2

1.3 From LRU to Optimal . 4

1.3.1 Previous Solutions . 5

1.3.2 From OPT Cache to Collaborative Cache 6

1.3.3 The Belady Anomaly . 8

1.3.4 From One-Size to All-Size Optimization 8

1.4 Contributions and Organization 10

ix

2 Related Work 12

2.1 Collaborative Cache Hardware . 12

2.2 Collaborative Caching Software 13

2.2.1 Hint Insertion . 13

2.2.2 Cache Partitioning . 14

2.3 Non-collaborative Solutions . 15

2.3.1 Inclusion Property and Stack Distance 15

2.3.2 Program Analysis and Optimization 15

2.3.3 Non-LRU Cache . 16

2.3.4 Memory Management . 17

2.4 Optimal Caching . 17

3 Theoretical Properties of Collaborative Caching 19

3.1 Introduction . 19

3.2 Background on Non-collaborative Caching 22

3.3 LRU-MRU Cache . 26

3.3.1 Cache Design . 26

3.3.2 Optimal LRU-MRU Hints 28

3.3.3 Optimality . 30

3.3.4 Multi-size Optimality . 33

3.3.5 The OPT* Algorithm . 35

3.3.6 Inclusion Property . 36

3.3.7 LRU-MRU Stack Distance 38

3.4 Trespass LRU Cache . 46

3.4.1 Optimality . 47

x

3.4.2 Multi-size Optimality . 50

3.5 Priority LRU Cache . 52

3.5.1 Inclusion Property . 56

3.5.2 Non-uniform Inclusion . 62

3.5.3 Priority LRU Stack Distance 64

3.5.4 Optimality of Priority Hint for All Cache Sizes 74

3.6 Inclusive Cache Hierarchy . 75

3.7 Summary . 77

4 Pacman: Program-assisted Cache Management 78

4.1 Introduction . 78

4.2 Reference-based Pacman . 81

4.2.1 The Design . 81

4.2.2 Experiment Setup . 82

4.2.3 The LRU-OPT Gap . 84

4.2.4 The E↵ect of Reference Hints 85

4.2.5 The E↵ect of Program Input 87

4.2.6 The Impact of the MRU Ratio Threshold 89

4.2.7 A Closer Look at SOR . 90

4.2.8 The Miss Ratio Curves of LRU, OPT, and Pacman 95

4.3 Loop-based Pacman . 97

4.3.1 Forward OPT Distance Profiling 98

4.3.2 Pattern Recognition . 99

4.3.3 Loop Splitting and Hint Insertion 103

4.3.4 Cross-Input Pattern Prediction 105

xi

4.3.5 Evaluation Setup . 107

4.3.6 Optimal Caching of Group Spatial Reuse in SOR 107

4.3.7 Program-directed Cache Allocation in Swim 111

4.3.8 Six Other Programs . 113

4.3.9 Comparison to Dynamic Insertion Policy 117

4.3.10 Pacman on Real Hardware 119

4.4 Summary . 122

5 Conclusions and Future Work 124

Bibliography 127

xii

List of Figures

1.1 LRU & OPT miss ratios of a streaming application on power of 2

cache sizes from 64KB to 32MB. OPT may divide a large working

set for caching but LRU does not. 4

3.1 Normal LRU at a miss: w is placed at the top of the stack, evicting

Sm. 26

3.2 Normal LRU at hit: w, assuming at entry S3, is moved to the top

of the stack. 26

3.3 Bypass MRU at a miss: the bypass posits w at the bottom of the

stack, evicting Sm. 27

3.4 Bypass MRU at a hit: the bypass moves S3(w) to the bottom of

the stack. 27

3.5 An example of optimal LRU-MRU hint insertion. For each access,

the forward OPT distance is the OPT distance for the following

access to the same data element, and the optimal hint for each

access is LRU if and only if the forward OPT distance is equal to

or less than the cache size. 29

3.6 Comparing LRU, MRU, OPT, and LRU-MRU. LRU-MRU is opti-

mal for the targeted cache size. 30

xiii

3.7 ai is selected for bypass for a given cache size during an OPT cache

simulation. 31

3.8 Trespass MRU at a miss: the trespass posits w at the top of the

stack, evicting S1 . 47

3.9 Trespass MRU at a hit: the trespass raises S3(w) to the top of the

stack, evicting S1 . 47

3.10 Element ai is selected for trespass for a given cache size during an

OPT cache simulation . 47

3.11 Two cases of data hit in the priority cache when the data block w,

at position j in cache, is accessed with a priority i. 54

3.12 Two cases of data hit in the priority cache when the data block w,

at position j in cache, is accessed with a priority i. 55

3.13 Two cases of data miss in the priority cache when the data block

w, not in cache before the access, is accessed with priority i. . . . 56

3.14 An example of non-uniform inclusion. The Priority LRU observes

the inclusion principle but permits data to locate in di↵erent posi-

tions in the smaller cache than in the larger cache. In this example,

after time 8, A locates at a lower position in the size-5 cache than

in the size-6 cache. 63

3.15 For the same trace in Figure 3.14, the access at time 9 is a miss in

the size-4 cache. 65

3.16 An example of Priority LRU stack simulation. The trace has nine

accesses to four data elements. A data element may locate at di↵er-

ent stack positions depending on cache sizes. All possible positions

for each data element are tracked by its span list, shown in each

row. Cache sizes are shown by the header row. 66

xiv

3.17 The following five steps of the example of Priority LRU stack sim-

ulation appear in Figure 3.16. 67

3.18 The Inclusive Cache Hierarchy: Inclusive caches are organized in

a hierarchy based on the “implemented-by” relationship. Limited

collaborative caching of LRU-MRU in Section 3.3 subsumes non-

collaborative schemes of LRU, MRU and OPT [41]. Priority LRU

subsumes LRU-MRU and other prior collaborative caches. 76

4.1 An example of reference-based pacman hint insertion. 81

4.2 The miss curves of 189.lucas on fully associative caches 86

4.3 The miss curves of 434.zeusmp on fully associative caches 87

4.4 The miss curves of 171.swim on two di↵erent inputs. The curves

have an identical shape but cover di↵erent cache-size ranges: be-

tween 1KB and 4MB in the upper graph and between 1KB and

16MB in the lower graph. 89

4.5 The impact of the MRU ratio threshold for 173.applu at 512KB . 90

4.6 The miss curves of 173.applu on fully associative caches 91

4.7 The SOR kernel computation . 91

4.8 The gap between LRU and OPT in SOR 92

4.9 The SOR kernel loop in SSA form with Pacman transformation. M

= N = 512 and NUM STEPS = 10. 93

4.10 The MRU ratio curves of SOR on fully associative caches with cache

line size 64B . 94

4.11 The miss curves of SOR on fully associative caches with cache line

size 64B . 95

4.12 172.mgrid . 96

4.13 183.equake . 96

xv

4.14 410.bwaves . 96

4.15 433.milc . 97

4.16 437.leslie3d . 97

4.17 An example of loop-based Pacman hint insertion. 98

4.18 The OPT distances exhibited by a reference in an execution of Swim.101

4.19 The percent reduction in cache misses of SOR by Pacman and OPT

over LRU . 110

4.20 Pacman is tested on swim when the input size (b), array shape (c)

and both (d) change. The executions in (a,b) use the same loop

splitting points, so do the executions (c,d). 112

4.21 The improvements by Pacman and OPT over LRU 114

4.22 The improvements by Pacman and OPT over LRU 115

4.23 One of the representative OPT distance patterns in applu. The two

graphs show the same reference with the same series of the OPT

distances as the y coordinate but with di↵erent x coordinates as

the iteration count in two of the five enclosing loops. 116

4.24 An OpenMP example: the inner loop updates the array element by

element; the outer loop corresponds to the time step. 119

4.25 The performance comparison on Intel Xeon E5520 with hardware

prefetching . 120

4.26 The performance comparison on Intel Xeon E5520 without hard-

ware prefetching . 121

xvi

List of Tables

3.1 An example for LRU cache . 23

3.2 An example for MRU cache . 25

3.3 An example for OPT cache . 25

3.4 An example showing optimal LRU-MRU with cache size 2 31

3.5 An example of LRU-MRU with cache size 3. The memory trace

is the same one used in Table 3.4. The two examples together

show that multi-size optimal LRU-MRU does not have the inclusion

property. 34

3.6 Example one-pass simulation of LRU-MRU cache 42

3.7 Two examples showing Trespass LRU can be optimal and multi-size

optimal Trespass LRU holds inclusion property (unlike multi-size

optimal LRU-MRU) . 48

3.8 The nine cases for the next access xt+1 to d0 with a priority p0. . . 57

3.9 In the six subcases of Case I in Table 3.8, the access xt+1 is a hit in

both C1 and C2. A hit can be one of the cases shown in Figure 3.11

and 3.12 except the bypass case. 57

3.10 In the three subcases of case II in Table 3.8, the access xt+1 misses

in C1 but hits in C2. The hit and miss cases are shown in Fig-

ures 3.11, 3.12 and 3.13. 59

xvii

3.11 The three subcases of xt+1 of case V 60

3.12 The measured overhead of Algorithm 3.2 when computing the Pri-

ority LRU stack distance over a random-access trace with 10 mil-

lion accesses to 1024 data elements with random priorities. The

maximal priority number ranges from 1 to 1 million. The space is

measured by the number of being stored spans. The time is mea-

sured by the number of calls to a span update. In most columns,

the time and space costs are close to LRU stack simulation. The

highest cost is incurred when the priority is up to 1024, but the

worst cost is still far smaller than the theoretical upper bound. . . 73

4.1 The 10 test programs . 83

4.2 The LRU-OPT gap and the Pacman improvement. The average

improvement is the arithmetic mean of the improvement for all

cache sizes between 1KB and data size. 85

4.3 The statistics of the 8 workloads 108

4.4 Pacman makes full utilization of cache space and gradually reduces

the miss ratio as the cache size increases 110

1

1 Introduction

1.1 The Thesis

Since the late 1990s, an increasing number of hardware systems have been built

or proposed to provide a cache hint interface for software to influence cache man-

agement. Examples include cache hints on Intel Itanium [11], bypassing and non-

temporal accesses on IBM Power series [50], evict-me bit [57], and non-temporal

stores on Intel x86 processors. Wang et al. called a combined software-hardware

solution collaborative caching [57].

As a form of memory, cache only sees the past and present data accesses.

The traditional, non-collaborative management is inherently limited by what it

has seen. Collaborative caching allows a program to provide hints about its data

usage so that hardware can improve the cache utilization by keeping the most

active program data in cache. It exploits the synergy between the hardware

considering past behavior and the software supplying the information about the

future.

The techniques of collaborative caching were pioneered by a pair of studies.

Wang et al. used the dependence information to label “evict-me” bits for data

sets too large to fit in cache [57]. Beyls and D’Hollander placed data into di↵erent

2

levels of the cache based on their reuse distances [11]. In these and many other

studies, the goal is to improve the existing cache management. The e↵ect of past

work depends on specific designs and design parameters. It is unclear what the

ultimate potential of collaborative caching is. While significant improvements

have been made, it is not clear how much of potential remains.

It is the author’s belief that collaborative caching holds the key to solving

the long-standing problem of optimal cache management. Toward this goal, this

dissertation studies optimal collaborative caching.

Thesis Statement. Optimal cache management can be done e�ciently through

software-hardware collaboration. Collaborative hardware can be as simple and ef-

ficient as existing cache and as robust against incorrect software control. Collab-

orative software can be general and optimized for all cache sizes.

1.2 Memory Hierarchy and Cache

In computing, there is a fundamental conflict between computing speed and data

capacity.1 A signal cannot travel faster than the speed of light; consequently, the

faster the data access is, the smaller the amount of data it can reach. The solution

is to trade space for speed. The data is stored in a memory hierarchy. At each

level, the capacity increases while the access speed decreases.

There are two other ways for modern computers to trade space for speed.

Firstly, computer cache uses a special structure called the SRAM, which is ten

times faster than DRAM, the structure used for main memory, at the cost of

storing only one fourth or one sixth as much data. Secondly, to store data more

densely, it is not a good idea to run a wire to each memory or cache cell, so the

bandwidth of data access is limited in exchange for a higher data capacity.

1The characterization in the first two paragraphs is based primarily on Peter Sanders in
Section 1.1 in [43].

3

Memory hierarchy provides fast access to active data. Data is active if it

is being used by a running program. Denning defined the set of data that a

program uses frequently as the working set [18,19]. Depending on di↵erent levels

of frequencies, there are multiple levels or multiple working sets.

It is an unavoidable problem for any computing system to find ways to manage

active data in a limited space. There are two basic sub-problems: data placement

and data replacement. When a piece of data is needed, it has to be brought in.

If the available space is full, some resident data must be selected and evicted.

Computer cache is a level of memory hierarchy where hardware manages the

data. It improves programmability because the decisions of data placement and

replacement are done in hardware. Software sees only a uniform memory. There

is not need to change a program when the program is run on a machine with a

larger cache.

The cache interface represents a fundamental division of labor: the consump-

tion of data in software and the management by hardware. To remove the inter-

dependence, the division is ”air tight”; that is, software has no direct control over

data management. So far, the devision is e↵ective and pervasive. The problems

of cache implementation are well encapsulated, and computer industry has found

highly optimized solutions.

The dominant solution is based on the management policy called Least Re-

cently Used (LRU). At eviction, the data that is least recently used (remains

unused the longest) is replaced. On the software side, LRU keeps the most re-

cently used data and favors the working set of a program. It supports programs

with good locality. The currently used data or their neighbors are likely reused in

the near future. On the hardware side, LRU is simple and can be implemented

e�ciently. Set associativity has a fraction of the cost of the full LRU but can have

the same e↵ect once the associativity is reasonably high [12]. Pseudo-LRU takes

only N � 1 bits per N -way cache set instead of log2N ! bits in LRU [53].

4

Research on collaborative caching breaks through this long accepted limitation

and opens new channels of control for software over hardware. Before making the

move, we must have compelling reasons and must have a good understanding of

the di�culties that are involved.

1.3 From LRU to Optimal

LRU has a well-known thrashing problem. If the working set of a program is too

large to cache, no cache can provide reuse for the whole data. The problem with

LRU is that it may not provide reuse for any data.

64K 256K 1M 4M 16M 64M
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

cache sizes (byte)

m
is

s
ra

tio

LRU
OPT

Figure 1.1: LRU & OPT miss ratios of a streaming application on power of 2
cache sizes from 64KB to 32MB. OPT may divide a large working set for caching
but LRU does not.

Consider a streaming program that repeatedly traverses a 5MB array 1000

times. Figure 1.1 shows the miss ratio curves for cache sizes at all power-of-two

numbers between 64KB and 32MB. The first is LRU cache, 16-way set associative

with 64-byte cache blocks. When the cache size is smaller than 5MB, LRU has no

e↵ective cache reuse. It has the same high miss ratio at the 4MB size as it is at

5

the 64KB size. The reason is thrashing. The previous data is constantly evicted

by the new data. Only when the cache size exceeds 5MB does the miss ratio drop

to zero. The sharp knee of the miss ratio curve shows the size of the working set.

A better solution is to keep a portion of the working set in cache. If the cache

size is 4MB, we can store 4MB of the 5MB in cache and leave the remaining 1MB

outside. This cannot be done by LRU, which has to store the 1MB portion when

it is accessed. The second curve shows another replacement policy called OPT,

which stores a part of the working set that fits in cache. The miss ratio drops

proportionally with the increase in cache size.

The example shows that software may better manage cache memory by tar-

geting specific parts of working sets. Despite the theorized performance bounds

between LRU and optimal, this is an example showing that LRU can be arbitrarily

inferior to what is obtainable by incorporating software knowledge.

1.3.1 Previous Solutions

The thrashing problem in LRU has been extensively studied. Well-established so-

lutions in program optimization include cache blocking, loop fusion, many other

loop nest transformations and structure splitting, and many other cache conscious

data and code layout techniques [6,21,70]. In hardware cache design, the solutions

include dead-block predictor, forward time distance predictor, adaptive cache in-

sertion, less reuse filter, virtual victim cache, and globalized placement.

While compiler optimization is purely software, the non-LRU cache design

is purely hardware. A software solution can change the data usage but not the

management policy in hardware. A hardware solution can change the management

policy but not the data usage pattern in software. They are fundamentally limited

by the rigid software-hardware border in the traditional cache interface.

6

An increasing number of modern machines have augmented the traditional

cache interface to permit software control. Examples include the non-temporal

MOVNTQ SSE instruction on x86 in 1999, the MOVNTPD instruction for non-

temporal writes in SSE2 in 2001, the placement hints on Intel Itanium processors

since 2001, and bypass memory instructions on IBM machines since Power 5 in

2005. These instructions are called cache hints.

A number of techniques have been developed using these hints. They in-

clude the pioneering work in collaborative caching as a compiler optimization in

2002 [10, 11, 57] and more recently specialized uses in re-initializing memory in a

garbage collector [66] and in string processing [47] in 2011. These studies had the

goal of improving the LRU management with program knowledge and were e↵ec-

tive in doing so. However, the significance is more profound than the practical

improvements. By implicating software, cache management is no longer limited

by the traditional software-hardware division. Inspired by and complementary

to these earlier studies, this dissertation explores the limit of this synergy—the

range of possibilities that arise when combining software flexibility and hardware

e�ciency.

1.3.2 From OPT Cache to Collaborative Cache

This work aims not to improve LRU but to optimize cache management. The

goal is not a better solution but the best possible solution. There are challenges

in theory and in practice.

First, we need a theory of optimal collaborative caching. The past work makes

incremental improvement over LRU. The claim of improvement can be demon-

strated by comparing these improvements against one or more baseline designs.

The claim of optimality, however, must be accompanied by a proof that no other

cache management can do better.

7

Secondly, for a theory to matter in practice, there must be a way to realize it.

Consider the OPT replacement policy, which is to replace the data whose next use

is the furthest in time. OPT is known to be optimal since 1960s. No OPT cache

has ever been built nor will it be because OPT is impractical.

There are three main obstacles for hardware OPT. First, OPT requires clair-

voyance. It needs to know the future of data accesses. Second, assuming clair-

voyance, OPT is time and space ine�cient to implement. Each data item has to

remember its next access time, and each access triggers a comparison of access

times. In comparison, LRU wastes no space in storing any time tags and naturally

no operations in comparing them. Considering how cache must be optimized for

space and speed, it is questionable whether we can add these overheads and still

produce performance competitive to the ultra-optimized and dense LRU. Third,

beside the complexity of management inside the cache, another problem is the

cost of communication between software and hardware, if we use collaborative

caching. Conveying the access time requires the encoding it and adding extra bits

to every memory access.

Now we consider the three problems of OPT cache can be solved by collab-

orative cache. In collaborative caching, the burden of clairvoyance is moved to

software. The problem is actually easier. While a hardware solution would have

to look through possibly billions of data accesses to find the next reuse, a compiler

can derive the information from the program code. If the code is complex and not

amenable to program analysis, program behavior analysis can infer the data usage

patterns in large executions by analyzing the traces of smaller training runs.

The next two problems are the internal complexity and the interface com-

plexity of the collaborative cache. We will show that collaborative cache can use

simple variations of LRU in the place of OPT, using the software hints to elimi-

nate the need for storing access times or performing comparison logic. The cache

interface can use just one extra bit for each memory access. Chapter 3 gives the

8

formal proofs of the optimality of the collaborative cache.

1.3.3 The Belady Anomaly

The Belady anomaly happens if a larger cache incurs more misses than a smaller

cache does [7]. It is easy to see that optimal cache management rules out the

Belady anomaly. A larger cache can at least be used as a smaller cache, so the

best solution is at least as good as before.

We will review the background of traditional, non-collaborative cache in Sec-

tion 3.2 and show that LRU does not have this anomaly either. When there is

more cache space, the performance of LRU cache increases or stays the same but

does not decrease.

In collaborative cache, the Belady anomaly would mean that the collaboration

on one cache size becomes counter productive in other sizes in that the collabora-

tive cache cannot utilize the additional space. Worse, the addition of space causes

it to manage the existing space less e�ciently.

Intuitively, the anomaly should not happen. In LRU, the hardware infers

the “importance” of data and manages cache based on the inferred priority. In

collaborative cache, software specifies the “importance” of data and changes the

priority in which the hardware manages the data. As the cache size increases, the

data important at the smaller cache remains important. The collaborative cache

should be able to cache them at least as well. Indeed, Chapter 3 will prove that

this is indeed the case for the majority of collaborative cache designs, where the

Belady anomaly cannot happen.

1.3.4 From One-Size to All-Size Optimization

An inherent limitation in optimal collaborative cache is the size dependence of the

optimization. For e�ciency, we insist on a single bit per access in communicat-

9

ing between software and hardware. As a result, the collaborative cache cannot

optimize for all cache sizes based on this single bit of information. The same

hinted execution may be the best one-size solution. Ideally, we want a program

be optimized by an all-size solution.

Section 3.5.4 gives a solution where hardware transforms multi-bit priority

hints into a single-bit cache hints and enables the use of the same hints to optimize

for all cache sizes. Still, it is desirable to solve the all-size optimization problem

using only single-bit hints between software and hardware. Chapter 4 presents a

practical implementation called Pacman to solve this problem.

Pacman uses o↵-line profiling analysis. It analyzes the patten of optimal cache

management for all cache sizes. Chapter 4 describes two techniques. The first

chooses the hint for each memory reference. It is generally applicable but treats

all accesses of the same reference in the same way. The second technique targets

loops. It transforms a loop to create di↵erential treatment of its memory accesses

based on the iteration counter. The loop-based Pacman automatically changes

the software hints for di↵erent size caches.

There are many factors a↵ecting a practical implementation. Cache blocks

contain multiple data items. Loop analysis must consider both spatial and tem-

poral data reuse in cache management. The cache is set associative, not fully

associative. Even within a single set, modern cache is not exactly LRU. We have

to evaluate through experimentation. The experiments should compare cache

performance for not just a single cache size but as many sizes as possible. The

memory usage of a program changes with its input. Pacman should optimize for

di↵erent inputs or at least provide a robust performance across all inputs. Finally,

better caching does not necessarily mean faster running speed. Performance test-

ing on a real machine will consider all factors, including the cost incurred when

using special memory instructions. Chapter 4 will address these issues.

10

1.4 Contributions and Organization

This dissertation makes the following contributions:

1. It lays down the theoretical foundation for collaborative caching:

• Optimality—LRU-MRU caching can be optimal, and the optimal cache

hints can be independent of cache size.

• LRU-MRU stack distance—LRU-MRU caching is proved as a stack

algorithm holding inclusion property. A new stack distance algorithm

is devised for it.

• Generalization—Cache hints are extended to a generalized form from

1-bit for LRU-MRU. Priority LRU, a new stack algorithm based on the

generalized priority hint, is discovered holding inclusion property but

in a nonuniform way. A new stack distance algorithm is devised for

Priority LRU. Generalized cache hints can be used to achieve optimal

caching for all cache sizes.

2. It explores the applications of collaborative caching:

• Reference hints—A heuristic-based solution called Pacman is presented

to use optimal trace-level hints to decide program-level reference hints

in a binary executable.

• Refinement by loop splitting—A refined Pacman with loop splitting is

proposed to separate run-time accesses with di↵erent hints at program

level. The cache-size dependent limitation for optimal caching is also

removed by using priority hint.

This dissertation is organized as follows. Chapter 2 presents related work.

Chapter 3 shows in theory how collaborative caching can use e�cient hardware

11

and still be able to optimize cache management. Chapter 4 presents the Pacman

system, which enables a program to determine, e�ciently at run time for each

memory access, whether the accessed data should be cached or not and to e�-

ciently communicate this decision to hardware at run time at each access. The

hints are made robust across input and cache sizes, and there is no trace analysis

or code generation at run time. The last chapter is the conclusions and future

work.

12

2 Related Work

2.1 Collaborative Cache Hardware

The ISA of Intel Itanium extends the interface of the memory instruction to pro-

vide source and target hints [5]. The source hint suggests where data is expected,

and the target hint suggests which level cache the data should be kept. The target

hint changes the cache replacement decisions in hardware. IBM Power processors

support bypass memory accesses that do not keep the accessed data in cache [50].

Wang et al. proposed an interface to tag cache data with evict-me bits [57].

Another way for software control is cache partitioning. Ding et al. developed a

system called ULCC (User Level Cache Control), which uses virtual-to-physical

page mapping to partition the cache to separately store high locality and low

locality data [23].

The goal in these studies was to allow software control to improve cache man-

agement. They do not explore the limit of collaborative caching, i.e. whether

the cache can be optimal. This dissertation will show what type of collaborative

cache can attain optimal management.

13

2.2 Collaborative Caching Software

2.2.1 Hint Insertion

Collaborative caching was pioneered by Wang et al. [57] and Beyls and D’Hollander [10,

11]. The studies were based on a common idea, which is to evict data whose for-

ward reuse distance is larger than the cache size. Wang et al. used compiler

analysis to identify self and group reuse in loops [42, 57, 58] and select array ref-

erences to tag with the evict-me bit. They showed that collaborative caching can

be combined with prefetching to further improve performance.

Beyls and D’Hollander used profiling analysis to measure the reuse distance

distribution for each program reference. They added cache hint specifiers on Intel

Itanium and improved average performance by 10% for scientific code and 4%

for integer code [10]. Profiling analysis is input specific. Fang et al. showed a

technique that accurately predicts how the reuse distances of a memory reference

change across inputs [26]. Beyls and D’Hollander later developed a static analysis

called reuse-distance equations and obtained similar improvements without pro-

filing [11]. Compiler analysis of reuse distance was also studied by Cascaval and

Padua for scientific code [14] and Chauhan and Shei for Matlab programs [15].

The prior methods used reuse distance to identify data in small-size working

sets for caching. It was unclear whether and how much cache utilization could

be further improved. The goal of this work is optimal collaborative caching. The

practical solution, Pacman, uses the OPT distance instead of the reuse distance

for caching analysis. In the case when a larger working set is too large, the

accesses have the same reuse distance but di↵erent OPT distances. By analyzing

the di↵erence, Pacman can partition the large working set, choose a partial set to

cache and hence utilize the available cache space fully.

Two recent papers show the benefits of collaborative caching on current x86

14

processors. Yang et al. used non-temporal writes for zero initialization in JVM to

reduce cache pollution [66]. Rus et al. used non-temporal prefetches and writes to

specialize string operations like memcpy(), based on the data reuse information in

certain static program contexts [47]. They showed that significant improvements

are already possible by exploiting collaborative caching on current hardware.

2.2.2 Cache Partitioning

Cache partitioning as done by ULCC provides practical improvements through

software-hardware collaboration [23, 39]. It does not need access hints. Hence

there is no additional overhead in memory access or cache management. When

we used ULCC to cache 5MB working set in 4MB cache (by assigning the first

3.5MB to use 3.8MB cache and the other 1.5MB to just 128KB cache), we observed

a 37% reduction in the execution time. Despite of the large improvement in this

case, cache partitioning may not obtain optimal cache management in general.

OPT, for example, does not partition the cache for exclusive use. The full cache

space is available to all data at all times. Based on the OPT distance, Pacman

may choose to cache a piece of data at one time and then choose to keep the same

data out of the cache at another time.

Cache partitioning is data based. Collaborative caching is access based. As an

allocation scheme, the latter is a form of prioritization rather than partitioning.

Rather than allocating cache explicitly between data, Pacman designates some

data to be of higher priority than other data. Taking an analogy in operating

systems, Pacman is more like CPU scheduling than virtual memory management.

When the priority is wrong, the cache space is still utilized. If we partition the

cache, an incorrect partition can lead to unutilized space.

15

2.3 Non-collaborative Solutions

2.3.1 Inclusion Property and Stack Distance

Mattson et al. established the inclusion property and the metrics of stack dis-

tance [41]. The miss ratio of inclusive cache is monotonically non-increasing as

the cache gets larger (whereas the Belady anomaly [8], more misses in larger cache,

is impossible). Stack distance can be used to compute the miss ratio for cache

of all sizes. They presented a collection of algorithms based on a priority list.

The LRU stack distance, i.e. reuse distance in short, can be computed asymptot-

ically faster (in near linear time for a guaranteed precision) using a (compression)

tree [70]. The cost can be further reduced by statistical modeling [24, 25, 35, 49],

sampling [9,13,48,55,69], footprint-based conversion [20,64], and parallelization on

MPI [44] and GPU [16,28]. Recent work has adapted the reuse distance analysis

to model the locality in multi-threaded programs [22,35,48, 60–62].

Reuse distance and other stack distances cannot be used to analyze the col-

laborative cache. In fact, it was unknown before this work whether some form

of stack distance exists for collaborative cache. This dissertation will prove the

inclusion property for two types of collaborative cache and give the algorithms

to measure their stack distances. Two new stack distances will be studied. In

addition, the thesis will show a new type of inclusion property that gives rise to

a new category of caching algorithms.

2.3.2 Program Analysis and Optimization

Much research has been done on improving program locality. Locality was initially

defined qualitatively. The textbook concepts of temporal and spatial locality refer

to the tendency for the currently accessed data or its neighbors to be accessed

in the near future. To measure locality quantitatively, we often use the reuse

16

distance. A data access is a capacity miss if its reuse distance is greater than the

cache size, so the distribution of reuse distances gives the probability of a miss at

each access, i.e. the miss ratio, for a fully associative LRU cache.

Locality depends on cache management. Reuse distance assumes that the

cache is managed by replacing the least recently used data (LRU). Under this

policy, every data element loaded between a pair of data reuses would stay in the

cache if the reused data element does. The intermediate data all contribute to the

reuse distance. Under optimal cache management (OPT), the intermediate data

may or may not be kept in the cache, so the OPT locality can improve over the

LRU locality.

OPT locality has often been used to study the potential of caching. In this

work, we use OPT distance to direct cache management — to choose which data

to cache at what time and to allocate the available cache among di↵erent data.

With collaborative caching, a program can still have good (OPT) locality even it

cannot have good LRU locality (because of the dependence or other di�culties).

2.3.3 Non-LRU Cache

The idea of evicting dead data or least reused data early has been extensively

studied in hardware cache design, including dead block predictor [38], forward

time distance predictor [27], adaptive cache insertion [46], less reuse filter [63],

virtual victim cache [37], and globalized placement [67]. These techniques do

not require program changes but they could only collect program information by

passive observation. Hardware cache by nature only sees the past and present

data access and is inherently limited by what it has seen. Like non-LRU cache,

collaborative cache uses non-LRU data management. However, the control is by

software. Previous work was aimed to improve the cache not optimize it. For

example, Qureshi et al. described a “dueling” strategy to choose the better policy

17

between MRU and LRU. This work aims at optimal caching, which is to find the

best policy and must require software collaboration.

2.3.4 Memory Management

Garbage collectors may benefit from the knowledge of application working set size

and the a�nity between memory objects. Reuse distance has been used by virtual

machine systems to estimate the working set size [65] and to group simultaneously

used objects [68]. There have been much research in operating systems to improve

beyond LRU. A number of techniques used last reuse distance instead of last

access time in virtual memory management [34, 52, 71] and file caching [33]. If

collaborative caching is e↵ective for hardware cache, similar solutions may help

to improve memory management as well.

2.4 Optimal Caching

The problem of optimal caching has been studied mainly in three forms. The

first is the hardware question of optimal cache management : For a given program

execution, i.e. a fixed instruction sequence and data layout, how to minimize the

number of misses. Here the program is fixed, and the cache is to be optimized. If

we fix the cache, we have the software question of program optimization. Given a

given cache memory, i.e. a fixed management scheme, how to reorganize a program

to minimize the number of misses. In the second problem, the cache is fixed, the

program, its computation and data layout, is to be optimized. If we consider both

optimization in software organization and hardware management, the ultimate

problem is known as minimal I/O complexity. Given a computation with data D

stored on disk and loaded into memory of size M (M < D) when being computed,

how to minimize the number of communication between the memory and the disk.

18

The three problems are increasingly di�cult. Cache management is the only

one that is known to be solvable in polynomial time. Before this work, the optimal

solution is theoretical. The optimal cache would need the future information that

the hardware does not have and require complex and costly operations that the

hardware cannot a↵ord to do. This dissertation shows how to solve these two

problems using optimal collaborative caching. We will show how software can

work with simple hardware to obtain the optimal goal in theory and approach

this goal in practice.

Program optimization is more complex because of the dependences that must

be preserved in a program execution. Kennedy and McKinley [36] and Ding

and Kennedy [21] showed that optimal loop fusion is NP hard. Surprisingly for

data layout where there is no constraint on data ordering, Petrank and Rawitz

showed that given the order of data access and cache management, the problem of

optimal data layout is intractable unless P=NP [45]. From these results, it is easy

to deduce that the I/O complexity problem is NP-hard. The I/O lower-bound has

been solved for specific problems by Hong and Kung for matrix-vector and matrix-

matrix multiplication, FFT, and odd-even transposition sort [31] and by Vitter for

permutation [56]. An extensive overview of the algorithmic issues and solutions

can be found in Meyer et al. [43] Given the intractability of program optimization

and I/O minimization, optimal cache management is the best possible in theory.

This dissertation will establish the theory and explore its applications.

19

3 Theoretical Properties of

Collaborative Caching

This chapter presents three types of collaborative cache and establishes three

theoretical properties: optimality, inclusion property, and generality.

3.1 Introduction

In cache as well as memory management, the least recently used replacement

policy (LRU) is a common starting point. In theory, Sleator and Tarjan showed

that LRU is within a bounded factor of optimal [51]. In practice, all modern

microprocessors use some variation of LRU.

For collaborative cache, we use LRU as the basis. To be able to revise the

default LRU policy, we add non-LRU access to the cache interface. A program

can then use a mix of non-LRU accesses and the default LRU accesses to change

the cache management. Cache management becomes collaborative: the default

LRU still considers the past history, and the non-LRU variation enables software

control based on future information. The non-LRU access is called a software

hint.1

1LRU accesses are also hints since collaborative caching selects both types of accesses, and
the optimal management comes out of the combined e↵ect.

20

There are two questions with this approach: how much the collaboration via

non-LRU accesses can improve over traditional cache and how these special ac-

cesses may a↵ect the formal properties of cache, whether they are used judiciously

or not.

The chapter studies three designs of collaborative cache, each with a di↵erent

type of non-LRU access.

• LRU-MRU cache. The cache is bipartite where the data blocks accessed

normally are managed by LRU, and the data blocks accessed by non-LRU

are managed by MRU (which replaces the most recently accessed data upon

eviction). The MRU access is a bypass in that the data block will not stay

in cache (if the cache size is smaller than the data size).

• Trespass LRU cache. The non-LRU access is a trespass in that it causes the

cache to evict the most recently accessed data block rather than the least

recently accessed data block as in the default policy.

• Priority LRU cache. The accessed data block is associated with a numerical

priority for hardware to prioritize its cache management.

The first two types are intended for practical implementation. They change

the default LRU design only peripherally. The third type is a generalization that

can implement all known inclusive caching algorithms, collaborative or not.

For each type, the chapter examines two formal properties. The first is opti-

mality. We will show that they can all be used to e↵ect optimal cache management.

Bypass and trespass hints are specific to a given cache size while the same priority

hints can be used to optimize for all cache sizes.

The second is inclusion property. The inclusion property was first characterized

by Mattson et al. in their seminal paper in 1970 [41]. The property states that

21

a larger cache always contains the content of a smaller cache. The property is

important for at least three reasons.

i) In inclusive caches, the miss ratio is a monotone function of the cache size.

There can be no Belady anomaly [8].

ii) The miss ratio of an execution can be simulated in one pass for all cache sizes,

known as the stack simulation (Section 3.2).

iii) Most importantly for software analysis, there exists a distance metric known

as stack distances (Section 3.2). An access misses in cache if and only if its

stack distance exceeds the cache size. For example, the LRU stack distance

has been called the reuse distance and used extensively in software and system

optimization.

In this chapter, we show that the inclusion property holds for collaborative

cache. As an interface, the non-LRU access may be used in arbitrary ways, some-

times optimal but probably suboptimal most times and even counter productive.

The inclusion property holds regardless of the usage. The chapter also gives the

algorithms to compute the stack distance for collaborative cache: the LRU-MRU

distance and the Priority LRU distance.

Being the most general, Priority LRU shows a new type of inclusion which is

not uniform. Non-uniform inclusion gives rise to a completely new category of

cache not known before this study. It also necessitates a significantly di↵erent

algorithm to measure its stack distance.

The theoretical findings are the foundation for the application in the next

chapter. While in pure theory, we are not concerned with any measure of empirical

e�ciency, i.e. analysis time and specific cache miss ratio, and will leave these

practical considerations for the next chapter.

22

3.2 Background on Non-collaborative Caching

Mattson’s algorithms use a stack to do the simulation and hence are called stack

algorithms [41].

Stack simulation provides a metric called stack distance. Stack distance is

useful for program analysis because it is independent of specific cache sizes.

An inclusive cache can be viewed as a stack or a priority list. Data elements

at the top c stack positions are the ones in a cache of size c.2 The stack position

defines the importance of the stored data. Stack simulation is to simulate cache

of an infinite size. Stack distance gives the minimal cache size to make an access

a cache hit [41]. A stack distance is defined for each type of inclusive cache and

computed by simulating that type of cache in an infinite size.

The following are examples of inclusive cache.

Least Recently Used (LRU)

The priority used in LRU cache is the most recent access time. The data element

with the least recent access time has the lowest priority (highest position number)

and is evicted when a replacement happens. Most hardware implements pseudo-

LRU for e�ciency [53]. The LRU stack distance is called reuse distance for short.

It measures the amount of data accessed between two consecutive uses of the

same data element. Reuse distance can be measured in near constant time by

organizing the priority list as a dynamically compressed tree [70].

Table 3.1 is an example for LRU cache. The priority list shows the cache

content snapshots after each access. For example, the content of a cache of size 3

is the data elements sitting at the top three positions in the priority list. If the

data element visited by the next access is in the current top three positions, then

2The newly discovered Priority LRU is an exception and will be presented in Section 3.5.

23

the next access is a hit. Otherwise, it is a miss. For the example trace, there are

only three hits with an LRU cache in size 3: access 5, 6, and 7.

The reuse distances are shown at the lowest row in Table 3.1. For example, the

reuse distance of No.7 access to data element b is 3 because there are 3 di↵erent

data elements accessed between the two consecutive accesses to b: No.2 and No.7

accesses. This type of reuse distance is called backward reuse distance because the

distance looks back from the last access of a reuse pair. On the contrary, forward

reuse distance looks forward from the first access of a reuse pair. There are only

three reuse distances are no greater than 3—only three hits with an LRU cache

of size 3.

access time 1 2 3 4 5 6 7 8 9 10 11 12
accessed data a b c d d c b a d c b a

priority 1 a:1 b:2 c:3 d:4 d:5 c:6 b:7 a:8 d:9 c:10 b:11 a:12
list 2 a:1 b:2 c:3 c:3 d:5 c:6 b:7 a:8 d:9 c:10 b:11

3 a:1 b:2 b:2 b:2 d:5 c:6 b:7 a:8 d:9 c:10
(data-priority) 4 a:1 a:1 a:1 a:1 d:5 c:6 b:7 a:8 d:9

reuse distance 1 1 1 1 1 2 3 4 4 4 4 4

Table 3.1: An example for LRU cache

The General Rules for Priority List Adjustment

The priority list in the above LRU example is easy to understand because the

priority list is ordered. However, LRU is a special case, and a priority list is not

necessarily ordered by the used priorities. Two examples of MRU and OPT in

Table 3.2 and Table 3.3 shows unordered priority lists.

The general rules for priority list adjustment were first devised by Matterson

et al. in their seminal paper [41]. st(i) and vt(i) denote the priority at position

i and the victim priority for a cache of size i after No.t access respectively. pt

denotes the priority for No.t access. The general rules for No.t access are:

st(1) = pt (3.1)

24

vt(1) = st�1(1) (3.2)

st(i) = MAX or MIN(vt(i � 1), st�1(i)) (2 i K) (3.3)

vt(i) = MAX or MIN(vt(i � 1), st�1(i)) (2 i K � 1) (3.4)

Equations 3.1 and 3.2 make sure that the data element visited by the current

access is brought into the cache for all cache sizes. Equations 3.3 and 3.4 make

adjustment from No.2 position to No.K position cooperatively. No.K position

is the place where the data element visited by the current access sits before the

current access happens. All the data elements in the priority list are adjusted if

the current access is a compulsory miss—an access to a new data element [29].

MAX or MIN is MAX or MIN , which depends on the cache replacement al-

gorithm. The one used in Equation 3.4 is the opposite of the one in Equation 3.3.

For LRU, MAX is the one used in Equation 3.3 but MIN in Equation 3.4.

The above equations do not cover the case when pt = st�1(1). That case is

trivial and no adjustment is needed for the priority list.

Most Recently Used (MRU)

The priorities used in MRU are the same as the ones used in LRU—the most

recent access time. Unlike LRU, MIN is the one used in Equation 3.3 and MAX

in Equation 3.4.

The priority list for MRU is not necessarily ordered. An example is in Fig-

ure 3.2. For the same memory trace, there are five hits with an MRU cache of

size 3: access 5, 7, 8, 10, and 11. The stack distance row shows backward MRU

25

access time 1 2 3 4 5 6 7 8 9 10 11 12
accessed data a b c d d c b a d c b a

priority 1 a:1 b:2 c:3 d:4 d:5 c:6 b:7 a:8 d:9 c:10 b:11 a:12
list 2 a:1 a:1 a:1 a:1 a:1 a:1 b:7 c:6 d:9 d:9 d:9

(data- 3 b:2 b:2 b:2 b:2 c:6 c:6 b:7 b:7 c:10 c:10
priority) 4 c:3 c:3 d:5 d:5 d:5 a:8 a:8 a:8 b:11

MRU stack
distance 1 1 1 1 1 4 3 2 4 3 3 4

Table 3.2: An example for MRU cache

stack distances. There are five distances no greater than 3; five hits with an MRU

cache of size 3.

Optimal (OPT)

The priorities used in OPT are the next access time. MAX is the one used in

Equation 3.3 and MIN in Equation 3.4. The setup guarantees the in-cache data

element with the furthest reuse is the victim if an eviction is needed. OPT is

impractical because it requires future knowledge. It serves as the upper bound of

cache performance. The fastest method for calculating the OPT stack distance is

the one-pass algorithm by Sugumar and Abraham [54].

access time 1 2 3 4 5 6 7 8 9 10 11 12
accessed data a b c d d c b a d c b a

next
access time 8 7 6 5 9 10 11 12 1 1 1 1
priority 1 a:8 b:7 c:6 d:5 d:9 c:10 b:11 a:12 d:1 c:1 b:1 a:1
list 2 a:8 b:7 c:6 c:6 d:9 d:9 d:9 a:12 a:12 a:12 b:1

(data- 3 a:8 b:7 b:7 b:7 c:10 c:10 c:10 d:1 c:1 c:1
priority) 4 a:8 a:8 a:8 a:8 b:11 b:11 b:11 d:1 d:1
OPT stack
distance 1 1 1 1 1 2 3 4 2 3 4 2

Table 3.3: An example for OPT cache

The priority list for OPT is not necessarily ordered. An example is shown in

Figure 3.3. For the same memory trace, there are six hits with an OPT cache

of size 3: access 5, 6, 7, 9, 10, and 12. Because OPT is optimal, the maximal

26

number of hits for the example trace running with a cache of size 3 is six. The

stack distance row shows backward OPT stack distances. There are six distances

no greater than 3; that is, six hits with an OPT cache of size 3.

3.3 LRU-MRU Cache

3.3.1 Cache Design

In LRU-MRU, an access can be normal LRU or bypass MRU, which are illustrated

in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4.

• Normal LRU access uses the most recently used position for placement and

the least recently used position for replacement

Sm

Sm�1

...

S3

S2

S1

w

=)

Sm�1

Sm�2

...

S2

S1

w

Sm

Figure 3.1: Normal LRU at a miss: w is
placed at the top of the stack, evicting
Sm.

Sm

Sm�1

...

S3(w)

S2

S1

=)

Sm

Sm�1

...

S2

S1

S3(w)

Figure 3.2: Normal LRU at hit: w, as-
suming at entry S3, is moved to the top
of the stack.

– Miss: Evict the data element Sm at the LRU position (bottom of the

stack) if the cache is full, shift other data elements down by one posi-

tion, and place w, the visited element, in the MRU position (top of the

stack). See Figure 3.1.

– Hit: Find w in cache, shift the elements over w down by one position,

and re-insert w at the MRU position. See Figure 3.2. Note that search

27

cost is constant in associative cache where hardware checks all entries

in parallel.

• Bypass MRU access uses the LRU position for placement and the same

position for replacement. It is similar to the bypass instruction in IA64 [5]

except that its bypass demotes the visited element to LRU position when

hit.

Sm

Sm�1

...

S3

S2

S1

w

=)

w

Sm�1

...

S3

S2

S1

Sm

Figure 3.3: Bypass MRU at a miss: the
bypass posits w at the bottom of the
stack, evicting Sm.

Sm

Sm�1

...

S3(w)

S2

S1

=)

S3(w)

Sm

...

S4

S2

S1

Figure 3.4: Bypass MRU at a hit: the
bypass moves S3(w) to the bottom of
the stack.

– Miss: Evict Sm at the LRU position if the LRU position is taken and

insert w into the LRU position. See Figure 3.3.

– Hit: Find w, lift the elements under w by one position, and place w in

the LRU position. See Figure 3.4.

LRU-MRU cache di↵ers from conventional cache in three ways:

• LRU-MRU content. The cache stack is divided into two parts: the upper

part for LRU data and the lower part for MRU data. Either part may be

missing, and the cache is entirely LRU or MRU.

• Capacity-dependent placement. The MRU data is placed at the bottom.

The location depends on the size of the cache.

28

• Hybrid priority. The LRU part is prioritized by the LRU order; that is, the

last accessed is last replaced. The MRU part is by the MRU order; that is,

the last accessed is first replaced.

In comparison, conventional non-collaborative cache manages data using a

single priority order, for example, LRU by the last access time and OPT by the

next access time. The placement depends on the priority order and not on cache

size. The single priority naturally gives rise to the inclusion property and its

practical benefits.

In LRU-MRU cache, an access could be either a normal LRU or a bypass MRU.

A 1-bit cache hint indicates whether an access is LRU or MRU. As an interface, it

may be used in arbitrary ways, sometimes optimal as shown in Section 3.3.2 and

proved in Section 3.3.3 but probably suboptimal in most times and even counter

productive. OPT*, a faster implementation of the original OPT, is presented in

Section 3.3.5 for the training pass to find optimal hints.

It is known that both LRU and MRU are stack algorithms holding the inclusion

property. In Section 3.3.6, it is proved that the inclusion property holds even in

an LRU-MRU cache. To calculate the LRU-MRU stack distance, a hybrid priority

scheme is devised in Section 3.3.7.

3.3.2 Optimal LRU-MRU Hints

Given an execution trace and an LRU-MRU collaborative cache of size c, the

optimal hint for each access is LRU if the forward OPT distance is equal to or

less than c; otherwise, it is MRU. For each access, the forward OPT distance is

the OPT distance of the following access to the same data element. The OPT

distance is infinite if there is no follow up reuse.

As an example, consider the data access trace in Figure 3.5. To make it

interesting, the trace has mixed locality: two blocks xy are reused frequently,

29

having high locality; while the other seven blocks abcdefg (highlighted in red)

have a streaming pattern and low locality, as shown in the first row. The second

and third rows show the OPT and the forward OPT distances. Assuming a cache

size c = 5, the optimal LRU-MRU hints are given in the last row.

trace xyaxybxycxydxyexyfxygxyaxybxycxydxye

OPT distance ---23-23-23-23-23-23-234235236237238

forward OPT distance 234235236237238239234235236237238239

optimal hint (c=5) LLLLLLLLMLLMLLMLLMLLLLLLLLMLLMLLMLLM

Figure 3.5: An example of optimal LRU-MRU hint insertion. For each access,
the forward OPT distance is the OPT distance for the following access to the
same data element, and the optimal hint for each access is LRU if and only if the
forward OPT distance is equal to or less than the cache size.

When the cache size is 5, the optimal management chooses to store high-

locality data, that is, xy, in cache, as indicated by the small (forward) OPT

distances 2 and 3. It stores two of the low-locality streaming blocks, which have

OPT distances of 4 and 5 in the remaining space. The rest is not stored in cache.

The hints replicates the behavior of the optimal cache on the LRU-MRU cache.

High-locality xy are accessed by LRU and so are two of the low-locality blocks to

utilize the residual space. The rest are by MRU. Through the hints, the simple

LRU-MRU cache imitates the optimal cache and stores as much data in the cache

as can benefit from it.

As a comparison, Figure 3.6 gives the stack distances for LRU (that is, the

reuse distance), MRU, OPT, and LRU-MRU. From the distances we can compute

the number of capacity misses for all cache sizes. An access is a miss under a

management policy if the distance exceeds the cache size (miss i↵ dis > c).

The distances explain the inner workings of the cache management. The high

distances in LRU show its inability to cache any low-locality data. The high

distances in MRU show its problem with caching high-locality data. Both OPT

and LRU-MRU treat the two working sets separately and always have low dis-

30

trace xyaxybxycxydxyexyfxygxyaxybxycxydxye #miss (c=5)

LRU distance ---33-33-33-33-33-33-119119119119119 5
MRU distance ---23-34-45-56-67-78-892924345456567 10
OPT distance ---23-23-23-23-23-23-234235236237238 3

LRU-MRU distance ---33-33-32-32-32-32-325334336327328 3

Figure 3.6: Comparing LRU, MRU, OPT, and LRU-MRU. LRU-MRU is optimal
for the targeted cache size.

tances for high-locality data and linearly increasing distances for low-locality data.

The varying distances are e↵ectively priorities through which these policies select

program data to cache.

When the cache size is 5, the miss counts are 5 and 10 for LRU and MRU

but just 3 for OPT and LRU-MRU. In fact, for the trace shown above, the hints

give the optimal performance for any LRU-MRU cache of size 3 or higher. When

the size is 2, the LRU-MRU cache has 3 more misses than OPT. To see this,

observe that the collection of LRU-MRU distances di↵ers from the collection of

OPT distances only in the number of 2s and 3s. The frequency of the occurrences

of other distances is the same. There is one 4 and one 5 in both LRU-MRU and

OPT but in a di↵erent order. This shows that the optimal cache management is

not unique. LRU-MRU is optimal but does not always make identical replacement

decisions as OPT.

At the trace level, LRU-MRU must be optimal for the targeted cache size,

but the same hints may not be optimal for all cache sizes. At program level,

however, we may use program transformation to change the LRU-MRU hints to

automatically optimize for all cache sizes, which is discussed in Chapter 4.

3.3.3 Optimality

The type of each access is determined in the OPT training. The details to obtain

the optimal cache hints are shown in Figure 3.7. We run an o✏ine OPT simulation

31

on a trace from a1 to an with a given cache size. At aj, we find out that the data

element X is evicted. Then ai, the most recent access to X, is selected to use

bypass. After training, the unselected accesses still use normal LRU. The training

result is specific to the cache size being used.

a1, a2, ..., ai,, aj, ..., an

no access to X
in betweenselected to use

bypass MRU

X accessed X evicted

Thursday, June 13, 13

Figure 3.7: ai is selected for bypass for a given cache size during an OPT cache
simulation.

An example of optimal LRU-MRU is shown in Table 3.4 to demonstrate that

optimal LRU-MRU has the same result as OPT.

accessed time 1 2 3 4 5 6 7 8 9 10 11
accessed data a b c d d c e b e c d

OPT a b c d d c e b e c d
cache a b c c d c e b b b
misses X X X X X X X X

bypasses X X X X X X
optimal c d c d e b b b d

LRU-MRU cache a b c d c d e e c b
misses X X X X X X X X

Table 3.4: An example showing optimal LRU-MRU with cache size 2

We next prove the optimality for all traces.

32

Lemma 3.1. If the bottom element in the optimal LRU-MRU stack is most re-

cently visited by a normal access, then all cache elements are most recently visited

by some normal accesses.

Proof. If some data elements are most recently visited by bypass accesses, then

they appear only at the bottom of the stack. They can occupy multiple positions

but cannot be lifted up over an element most recently visited by a normal access.

Therefore, if the bottom element is most recently visited by a normal access, all

elements in the cache must also be.

Theorem 3.1. Optimal LRU-MRU generates no more misses than OPT. In par-

ticular, optimal LRU-MRU has a miss only if OPT has a miss.

Proof. We show that there is no access that is a cache hit in OPT but a miss in

optimal LRU-MRU. Suppose the contrary were true. Let z0 be the first access in

the trace that hits in OPT but misses in optimal LRU-MRU. Let d be the element

accessed by z0, z be the most recent access to d before z0, and the reference trace

between them be (z, ..., z0). The access z can be one of the two cases:

• z is a normal access. For z0 to miss in optimal LRU-MRU, there should be a

miss y in (z, ..., z0) that evicts d. From the assumption that z0 is the earliest

access that is a miss in optimal LRU-MRU but a hit in OPT, y must be a

miss in OPT. Consider the two possible cases of y:

– y occurs when the OPT cache is partially full. Because the OPT cache

is always full after the loading of the first M elements, where M is the

cache size, this case can happen only at the beginning. However, when

the cache is not full, OPT will not evict any element. Hence this case

is impossible.

– y occurs when the OPT cache is full. The element d is at the LRU

position before the access of y. According to Lemma 3.1, the optimal

33

LRU-MRU cache is full, and the most recent accesses of all data ele-

ments in cache are normal accesses. Let the set of elements in cache

be T for optimal LRU-MRU and T ⇤ for OPT. At this time (before y),

the two sets must be identical. The reason is a bit tricky. If there is an

element d0 in the optimal LRU-MRU cache but not in the OPT cache,

d0 must be replaced by OPT before y. However, by the construction

of the algorithm, the previous access of d0 before y should be labeled

a bypass access. This contradicts to the lemma, which says the most

recent access of d0 (and all other elements in T) is normal. Since both

caches are full, they must be identical; as a result, we have T = T ⇤.

Finally, y, in the case of OPT, must evict some element. However,

evicting any element other than d would violate our lemma. Hence,

such a y cannot exist and this case is impossible.

• z is a bypass access in optimal LRU-MRU. There must be an access y 2
(z, ..., z0) in the case of OPT that evicts d; otherwise z cannot be designated

as a bypass. However, in this case, the next access to d, z0 cannot be a cache

hit in OPT, contradicting the assumption that z0 is a cache hit in OPT.

Considering both cases, it is impossible for the same access to be a hit in OPT

but a miss in optimal LRU-MRU.

3.3.4 Multi-size Optimality

If we find LRU-MRU for each cache size, we have the optimal LRU-MRU for all

sizes. It has to use di↵erent hints for di↵erent cache sizes. If we view multi-size

optimal LRU-MRU as a single policy, it does not have the inclusion property,

which is shown using a counter example. By comparing the two examples of

optimal LRU-MRU in Table 3.4 and Table 3.5, we see that at the first access to

34

e, the stack content, given in bold letters, is (e,d) in the smaller cache and (e, c,

b) in the larger cache. Hence the inclusion property does not hold [41].

accessed time 1 2 3 4 5 6 7 8 9 10 11
accessed data a b c d d c e b e c d

OPT a b c d d c e b e c d
a b c c d c e b e e

cache a b b b b c c b b
misses X X X X X X

bypasses X X X
optimal b c d c c e b e e d

LRU-MRU b c b b c e b b e
cache a b d d b c c c b
misses X X X X X X

Table 3.5: An example of LRU-MRU with cache size 3. The memory trace is
the same one used in Table 3.4. The two examples together show that multi-size
optimal LRU-MRU does not have the inclusion property.

Because OPT is optimal, we have the immediate corollary that multi-size op-

timal LRU-MRU has the same number of misses as OPT and is therefore optimal.

In fact, the misses happen for the same accesses in multi-size optimal LRU-MRU

and in OPT. Lastly, we show that multi-size optimal LRU-MRU has a peculiar

feature.

Corollary 3.1. Multi-size optimal LRU-MRU does not have the inclusion prop-

erty, but it does not su↵er from Belady anomaly [8], in which the number of misses

sometimes increases when the cache size becomes larger.

Proof. OPT is a stack algorithm since the stack content for a smaller cache is a

subset of the stack content for a larger cache [41]. The number of misses of an

access trace does not increase with the cache size. Because multi-size optimal

LRU-MRU has the same number of misses as OPT, it has the same number of

misses as OPT and does not su↵er from Belady anomaly.

35

3.3.5 The OPT* Algorithm

A faster implementation of OPT called OPT* is designed to do the OPT training.

OPT* is asymptotically faster than the original OPT.

Given a memory access sequence, the original OPT algorithm has two passes [41]:

• First pass: Compute the forward reuse distance for each access through a

backward scan of the trace.

• Second pass: Incrementally maintain a priority list based on the forward

reuse distance of the cache elements. The pass has two steps. First, if the

visited element is not in cache, find its place in the sorted list based on its

forward reuse distance. Second, after each access, update the forward reuse

distance of each cache element.

The update operation is costly and unnecessary. To maintain the priority list,

it is su�cient to use the next access time instead of the forward reuse distance.

At each point p in the trace, the next access time of data x is the logical time

of the next access of x after p. Because the next access time of data x changes

only at each access of x, OPT* stores a single next access time at each access

in the trace, which is the next access time of the element being accessed. OPT*

collects next access times through a single pass traversal of the trace. The revised

algorithm OPT* is as follows.

• First pass: Store the next reuse time for each access through a backward

scan of the trace.

• Second pass: Maintaining the priority list based on the next reuse time. It

has a single step. If the visited element is not in cache, find its place in the

sorted list based on its next access time.

36

The cost per operation is O(log M) for cache of size M , if the priority list

is maintained as a heap. It is asymptotically more e�cient than the O(M) per

access cost of OPT. The di↵erence is computationally significant when the cache

is large. While OPT* is still costly, it is used only for pre-processing and adds no

burden to on-line cache management.

OPT* is an enhanced implementation of the original OPT. In the following

discussion, we still use OPT to name the training pass since any OPT implemen-

tation works.

3.3.6 Inclusion Property

If the collaborative cache is used optimally, the performance is the same as OPT

shown in Section 3.3.3. In general, however, the cache may not be used optimally.

The selection of MRU accesses may be arbitrary. The following proof is for all uses

of LRU-MRU cache, including the extreme cases (when all accesses are normal, i.e.

LRU caching, and when all accesses are special, i.e. MRU caching), the optimal

use, and everything in between. In a sense, the proof subsumes the individual

conclusions for LRU, MRU, and OPT [41].

We prove that for any sequence of LRU and MRU accesses, the LRU-MRU

cache obeys the inclusion principle.

Lemma 3.2. If the bottom element in the LRU-MRU cache stack is most recently

accessed by a normal LRU access, then all elements in cache are most recently

accessed by normal LRU accesses.

The Lemma 3.2 follows from the fact that MRU data are placed at the bottom

of the stack and only replaced by LRU data (never pushed up except by other

MRU data). The formal proof is in Lemma 3.1 on page 31. Next we prove the

inclusion property.

37

Theorem 3.2. A trace P is being executed on two LRU-MRU caches of sizes |C1|
and |C2| (|C1| < |C2|). At every access, the content of cache C1 is always a subset

of the content of cache C2.

Proof. Let the access trace be P = (x1, x2, ..., xn). Let C1(t) and C2(t) be the set

of elements in cache C1 and C2 after access xt. The data element visited by xt is

d(xt). The initial cache contents are C1(0) = C2(0) = ;. The inclusion property

holds. We now prove the theorem by induction on t.

Assume C1(t) ✓ C2(t) (0 t n � 1). It is easy to see that if xt+1 is a hit

in C2 (xt+1 2 C2(t)), the inclusion property holds. We now consider the case that

xt+1 is a miss in C2. Since C1 is included in C2, xt+1 is also a miss in C1.

Let the evicted elements be most recently accessed at xp in C1 and xq in

C2. After the cache miss, we have C1(t + 1) = C1(t) � d(xp) + d(xt+1) and

C2(t + 1) = C2(t) � d(xq) + d(xt+1). Since C1(t) ✓ C2(t), the only possibility for

C1(t + 1) 6✓ C2(t + 1) is that C2 evicts d(xq), and C1 has d(xq) but does not evict

it, so d(xq) 2 C1(t + 1) but d(xq) /2 C2(t + 1).

First, we assume d(xp) exists (a cache miss does not mean a cache eviction.

see the next case). The eviction in C1 happens at the LRU position regardless of

whether xp is a LRU or MRU access. So, d(xp) is at the bottom in C1 before access

xt+1. At the same time, d(xq) is at the bottom in C2. To violate the inclusion

property, we must have d(xq) 2 C1(t) in a position over d(xp). From the inductive

assumption, d(xp) 2 C2(t), and it is in a position over d(xq). Therefore, both C1

and C2 contain d(xp) and d(xq) but in an opposite order.

The two accesses, xp and xq, may be LRU or MRU accesses. There are four

cases:

I. xp and xq are both LRU accesses. Because d(xq) is at a higher position than

d(xp) in C1, we have p < q. Similar reasoning from C2 requires q < p, which

makes this case impossible.

38

II. xp is an LRU access but xq is an MRU access. Using Lemma 3.2 on C1, we

see that this case is impossible—xq has to be an LRU access because d(xq)

resides over d(xp) that is most recently accessed by an LRU access in C1.

III. xp is an MRU access but xq is an LRU access. Using Lemma 3.2 on C2, we

see that this case is impossible—xp has to be an LRU access because d(xp)

resides over d(xq) that is most recently accessed by an LRU access in C2.

IV. xp and xq are both MRU accesses. Because d(xq) is at a higher position than

d(xp) in C1, we have p > q. Similar reasoning from C2 requires q > p, which

makes the last case impossible.

There is no eviction in C1 if the bottom cache line is unoccupied when xt+1 is

accessed, and d(xq) is at the bottom of C2. Regardless of whether xq is LRU or

MRU, C2 is filled. Because |C2| > |C1|, there must have been enough data access

to fill C1, making it impossible for its bottom spot to remain unoccupied. Hence,

by induction, the inclusion property holds for every access in the trace.

The inclusion property holds for any access trace with mixed LRU and MRU

accesses, regardless of how these two types of accesses are interleaved.

3.3.7 LRU-MRU Stack Distance

The inclusion property implies the existence of the LRU-MRU stack distance. An

access has a distance k if it is a cache hit in caches of sizes k and up and a miss

in caches of size k � 1 and down. Given a program trace with mixed LRU-MRU

accesses, Algorithm 3.1 computes the stack distance for each access. E↵ectively,

the algorithm simulates LRU-MRU caches of all sizes—top C elements in the

priority list are always the content of a cache with size C. We call the algorithm

bi-sim in short for LRU-MRU cache simulation.

39

Algorithm 3.1: Bi-sim: computing the stack distance of LRU-MRU cache

Input: x is accessed at time t with flag f = {LRU, MRU}. The cache is
organized as a priority list, with data di and priority pi,
i = 1, . . . , m. No two priorities are the same, that is, 8i and j,
pi 6= pj if i 6= j. The list may not have been sorted.

Output: It returns the LRU-MRU stack distance and updates the priority
px of x (first adding it to the priority list if it was not included).
The priority px is unique.

1 bi sim(x,t,f)
2 begin
3 if f == LRU then
4 px = t
5 else
6 px = �t
7 end
8 /* adjust the priority list */

9 if x /2 {di : i = 1, . . . , m} then
10 /* x is a miss */

11 for i = 1; i < M ; i++ do
12 if pi < pi+1 then
13 Swap di and di+1

14 end
15 end
16 /* dm is at the bottom of the cache */

17 if pm < 0 then
18 Remove dm from the list
19 end
20 Insert x at the front of the list
21 Return 1
22 else
23 /* x is a hit */

24 Find out dk = x
25 for i = 1; i < k; i++ do
26 if pi < pi+1 then
27 Swap di and di+1

28 end
29 end
30 Move x to the front of the list
31 Return k

32 end
33 end

40

For access x at time t, Algorithm 3.1 computes the stack distance and updates

the priority list. The algorithm has three parts:

• The first part, lines 3 to 7, sets the priority for x to be t or �t depending

on whether x is LRU or MRU. The purpose is to handle mixed priority. By

negating t, the priority of MRU data is reversed to the access order. The

MRU in the access order becomes LRU in the priority order. In addition,

the negative priority means that all MRU data has a lower priority than all

LRU data. Finally, all priority numbers remain distinct. As a result, all

data in the cache are prioritized with no ties.

• The second part, lines 11 to 21, handles cache replacement at a miss when

x is not in the priority list. The element with the lowest priority is shifted

down to the bottom. It is removed if its priority is negative (an MRU data

element). Element x is inserted to become the new head of the list.

• The third part, lines 24 to 31, handles a hit at location k, that is, dk = x.

The element of the lowest priority in d1, . . . , dk is shifted down to replace

dk. Element x is moved to the front of the list as in the second part.

The update process, swapping and then inserting, is similar to Mattson et el. [41]

but with two notable qualities. First, the priority list of bi-sim is not completely

sorted. In comparison, the priority list in LRU simulation is always totally sorted.

Second, bi-sim may remove an element from the priority list (line 16), even if it

is simulating a cache of an infinite size. The stack simulation of previous caching

methods such as LRU and OPT never removes elements when simulating for all

cache sizes.

An example An example depicting bi-sim in action is given in Table 3.6. The

access trace and the access types are listed in the second and third columns. The

41

priority list (after each access) is shown in the next column. The last column

is the stack distance returned by Algorithm 3.1: 1 always means a miss, and k

means a cache hit if cache size C � k and a miss otherwise. The priority lists in

the table show only the priority numbers px. A reader can find the data element

from the pxth row of the table (the pxth access in the trace).

The example shows two notable characteristics of the bi-sim algorithm. The

priority list is not completely sorted because of the negative priority numbers of

MRU accesses. An MRU element may be removed from cache even when there is

space, as happens at access 3. These are necessary to measure the miss ratios of

all cache sizes in a single pass.

The cost and its reduction The asymptotic cost of Algorithm 3.1 is O(M) in

time and space for each access, where M is the number of distinct data elements

in the input trace. The main time overhead comes from the two swap loops at

lines 11-15 and 25-29. To improve performance, we divide the priority list into

partially sorted groups. For example, there are 4 groups at the 25th access in the

example in Table 3.6: [26], [22, -23], [20, -24], and [17, 14, 11, 1]3. The swap loops

are changed to iterate over the groups. The minimal element of a group is simply

the last element. Grouping in priority lists was first invented by Sugumar and

Abraham for simulating OPT [54]. A di↵erence between OPT and bi-sim is that

the accessed data element can be in the middle of a group in bi-sim. For OPT,

the accessed data element always stays at the front of a group.

The Equivalence Proof

So far we have presented the LRU-MRU cache and its simulation. We now show

that the simulation algorithm is correct; that is, the elements of the priority list

d1, d2, . . . , dC in the algorithm are indeed the content of an LRU-MRU cache of

3For convenience, the top element is always put into a separate window.

42

access access LRU or the priority list stack
no. trace MRU (top ! bottom) distance

1 h L 1 1
2 f M -2 1 1
3 i L 3 1 1
4 i M -4 1 1
5 c L 5 1 1
6 b L 6 5 1 1
7 b M -7 5 1 1
8 e M -8 5 1 1
9 d M -9 5 1 1
10 b L 10 5 1 1
11 g L 11 10 5 1 1
12 b L 12 11 5 1 2
13 e L 13 12 11 5 1 1
14 d L 14 13 12 11 5 1 1
15 a L 15 14 13 12 11 5 1 1
16 c L 16 15 14 13 12 11 1 6
17 e L 17 16 15 14 12 11 1 4
18 a L 18 17 16 14 12 11 1 3
19 c L 19 18 17 14 12 11 1 3
20 i L 20 19 18 17 14 12 11 1 1
21 f L 21 20 19 18 17 14 12 11 1 1
22 b L 22 21 20 19 18 17 14 11 1 7
23 a M -23 22 21 20 19 17 14 11 1 5
24 f M -24 22 -23 20 19 17 14 11 1 3
25 c M -25 22 -23 20 -24 17 14 11 1 5
26 c L 26 22 -23 20 -24 17 14 11 1 1
27 e M -27 26 22 20 -23 -24 14 11 1 6
28 i M -28 26 22 -27 -23 -24 14 11 1 4
29 c L 29 -28 22 -27 -23 -24 14 11 1 2
30 f L 30 29 22 -27 -23 -28 14 11 1 6

Table 3.6: Example one-pass simulation of LRU-MRU cache

43

size C. We show the equivalence in two steps. First, we show that the algorithm

observes the inclusion property. Then we show that the two are equivalent at each

cache size.

Proving the inclusion property is easier for the algorithm than for LRU-MRU

cache because we can use its algorithmic design directly. We first define a property

in cache replacement. Let two caches of size s, s + 1 be Cs, Cs+1, which are also

the data sets in cache. Assume that Cs, Cs+1 are filled with data, and z is the

element in Cs+1 but not in Cs. At a cache miss, Cs evicts element ys, and Cs+1

evicts ys+1. The eviction invariance is a property that requires

ys+1 = ys _ ys+1 = z

Mattson et al. [41] showed the following result:

Lemma 3.3. Eviction invariance is a necessary and su�cient condition for main-

taining the inclusion property.

Proof. First, we show the necessity. If ys+1 6= ys^ys+1 6= z, ys+1 must be in Cs. Its

eviction would mean that Cs * Cs+1 and would break the inclusion property. The

property is also su�cient. At each eviction, if ys+1 = ys, we have Cs+1 = Cs + z;

otherwise, we have ys+1 = z and Cs+1 = Cs + ys. In both cases, Cs ✓ Cs+1.

The simulation algorithm observes the eviction invariance. The “stack” is

embodied in a priority list. Each element has a numerical priority distinct from

others. Therefore, the caches it simulates have the inclusion property.

Lemma 3.4. Algorithm 3.1 observes the eviction invariance and is therefore a

stack algorithm.

Proof. Algorithm 3.1 identifies a victim for replacement using one of the two swap

loops at lines 11-15 and 25-29. Consider two caches Cs, Cs+1 of sizes s, s + 1. Let

44

z be the element in Cs+1 but not in Cs. Let y be the element in Cs that has

the lowest priority. When a cache replacement is needed in Cs+1, the swap loops

would choose as the victim y if py < pz and z otherwise. The eviction invariance

is therefore observed.

Intuitively, the simulation is a stack algorithm because the simulated caches

of all sizes share a single priority list. It is obvious that sharing a priority list

implies eviction invariance. Next we show that Algorithm 3.1 computes the right

stack distance. First we have the following lemma. We omit the proof, which is

straightforward based on the handling of LRU and MRU accesses.

Lemma 3.5. At a miss in LRU-MRU cache, the victim is always the data element

with the lowest priority.

Theorem 3.3. Given an execution on LRU-MRU cache of size C, an access is a

cache hit if and only if the stack distance returned by Algorithm 3.1 is no greater

than C.

Proof. The case for infinite distances is easy to verify; we only prove the case when

the distance is of a finite value. Specifically, Algorithm 3.1 always stores the data

in the priority list such that a cache of size C would contain and only contain the

first C elements in the list, d1, d2, · · · , dC . This is equivalent to showing that for

each data di, we have di 2 Ci and di /2 Ci�1, where i > 0 and Ci, Ci�1 are the sets

of data in caches of sizes i, i � 1, respectively.

Let the memory trace be (x1, x2, · · · , xn). We prove by induction on xj.

I. After accessing x1, x1 becomes d1 in the priority list. The base case holds

since d1 2 C1 and d1 /2 C0.

II. Assume the theorem holds after accessing xj (1 j n � 1). Let the data

element at position i be di(j) and the data sets of caches of size i � 1 and i

45

be Ci�1(j) and Ci(j). From the inductive hypothesis, we have di(j) 2 Ci(j)

and di(j) /2 Ci�1(j). There are two cases after accessing xj+1:

(a) xj+1 is a (compulsory) miss. Each data element of the priority list is

updated from di(j) to di(j + 1) (1 i m or 1 i m + 1).

i. d1(j + 1) = xj+1 and satisfies d1(j + 1) 2 C1(j + 1) and d1(j + 1) /2
C0(j + 1).

ii. For di(j + 1) (2 i m), the swap loop (lines 11-15) moves the

data element dh(j) (1 h i) with the lowest priority in Ci(j) out

of the priority list. According to Lemma 3.5, after evicting dh(j)

from Ci(j), the top i elements in the priority list are still in Ci(j+1),

so di(j+1) 2 Ci(j+1). In the same way, we can show that di(j+1)

is either di(j) or the victim of Ci�1(j), so di(j + 1) /2 Ci�1(j + 1).

iii. If dm(j) has a positive priority, dm+1(j + 1) is at the new bottom

and must be the victim of Ci(j), so dm+1(j + 1) /2 Cm(j + 1).

dm+1(j + 1) 2 Cm+1(j + 1) follows from Lemma 3.2.

iv. If dm(j) has a negative priority, the stack distance would be infinite.

It is a miss in all finite-size LRU-MRU cache.

(b) xj+1 is a hit. Let the hit location be k (dk(j) = xj+1). Each data element

of the priority list is updated from di(j) to di(j + 1) (1 i m).

i. Consider di(j + 1) (1 i k � 1). The access is a miss in caches

C1(j), · · · , Ck�1(j), so the inference of the previous miss case can

be reused here. The swap loop in lines 25-29 is identical to the

swap loop in lines 11-15.

ii. Consider dk(j + 1). Because Ck(j) = Ck(j + 1), we have dk(j +

1) 2 Ck(j + 1). From the inference of the miss case, dk(j + 1) /2
Ck�1(j + 1).

46

iii. Finally, consider di(j + 1) (k + 1 i m), di(j + 1) = di(j)

because there is no change made by the algorithm. From xj+1 =

dk(j) 2 Ck(j), we have xj+1 is a cache hit in Ci(j) (i � k + 1)

and Ci(j) = Ci(j + 1) (k + 1 i m). From the induction

assumption, we have di(j+1) 2 Ci(j+1) and di(j+1) /2 Ci�1(j+1)

(k + 1 i m).

For all accesses, the cache of size C would contain and only contain the first C

elements in the priority list, d1, d2, · · · , dC . Hence the relationship is established

between the stack distance and the cache hit/miss as stated in the theorem.

3.4 Trespass LRU Cache

Trespass LRU is very similar to optimal LRU-MRU. In Trespass LRU, an ac-

cess can be normal LRU or trespass MRU, which are illustrated in Figure 3.1,

Figure 3.2, Figure 3.8, and Figure 3.9.

• Trespass MRU access uses the most recently used position for placement

and the same position for replacement. It di↵ers from all cache replacement

policies that we are aware of in that an eviction may happen even for a cache

hit.

– Miss: Evict the data element S1 at the MRU position if the MRU is

taken and insert w in the MRU position. See Figure 3.8.

– Hit: If w is in the MRU position, then do nothing. Otherwise, evict

the data element S1 at the MRU position, insert w there, and shift the

elements under the old w spot up by one position. See Figure 3.9.

Trespass LRU is proved optimal in Section 3.4.1. Section 3.4.2 shows that

multi-size optimal Trespass LRU holds the inclusion property.

Lecture Notes in Computer Science 2625
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Ulrich Meyer Peter Sanders Jop Sibeyn (Eds.)

Algorithms for
Memory Hierarchies

Advanced Lectures

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Ulrich Meyer
Peter Sanders
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
E-mail: {umeyer,sanders}@mpi-sb.mpg.de
Jop Sibeyn
Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik
Von-Seckendorff-Platz 1, 06120 Halle, Germany
E-mail:jopsi@informatik.uni-halle.de

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek.
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F.2, E.5, E.1, E.2, D.2, D.4, C.2, G.2, H.2, I.2, I.3.5

ISSN 0302-9743
ISBN 3-540-00883-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10873015 06/3142 5 4 3 2 1 0

Preface

Algorithms that process large data sets have to take into account that the
cost of memory accesses depends on where the accessed data is stored. Tradi-
tional algorithm design is based on the von Neumann model which assumes
uniform memory access costs. Actual machines increasingly deviate from this
model. While waiting for a memory access, modern microprocessors can exe-
cute 1000 additions of registers. For hard disk accesses this factor can reach
seven orders of magnitude. The 16 chapters of this volume introduce and
survey algorithmic techniques used to achieve high performance on memory
hierarchies. The focus is on methods that are interesting both from a practical
and from a theoretical point of view.

This volume is the result of a GI-Dagstuhl Research Seminar. The Ge-
sellschaft für Informatik (GI) has organized such seminars since 1997. They
can be described as “self-taught” summer schools where graduate students
in cooperation with a few more experienced researchers have an opportunity
to acquire knowledge about a current topic of computer science. The seminar
was organized as Dagstuhl Seminar 02112 from March 10, 2002 to March
14, 2002 in the International Conference and Research Center for Computer
Science at Schloss Dagstuhl.

Chapter 1 gives a more detailed motivation for the importance of al-
gorithm design for memory hierarchies and introduces the models used in
this volume. Interestingly, the simplest model variant — two levels of mem-
ory with a single processor — is sufficient for most algorithms in this book.
Chapters 1–7 represent much of the algorithmic core of external memory
algorithms and almost exclusively rely on this simple model. Among these,
Chaps. 1–3 lay the foundations by describing techniques used in more spe-
cific applications. Rasmus Pagh discusses data structures like search trees,
hash tables, and priority queues in Chap. 2. Anil Maheshwari and Norbert
Zeh explain generic algorithmic approaches in Chap. 3. Many of these tech-
niques such as time-forward processing, Euler tours, or list ranking can be
formulated in terms of graph theoretic concepts. Together with Chaps. 4 and
5 this offers a comprehensive review of external graph algorithms. Irit Ka-
triel and Ulrich Meyer discuss fundamental algorithms for graph traversal,
shortest paths, and spanning trees that work for many types of graphs. Since
even simple graph problems can be difficult to solve in external memory, it

VI Preface

Special Graphs
Geometry
Text Indexes
Caches
Cache−Oblivious
Numerics
AI
Storage Networks
File Systems
Databases
Parallel Models
Parallel Sorting

B
as

ic
s

C
ac

he
s

Sy
st

em
s

G
ra

ph
s

Pa
ra

lle
lis

m

m
ainly tutorial character

Models

Graphs

A
lg

or
ith

m
s

A
pp

lic
at

io
ns

Data Structures
Techniques

makes sense to look for better algorithms for frequently occurring special
types of graphs. Laura Toma and Norbert Zeh present a number of aston-
ishing techniques that work well for planar graphs and graphs with bounded
tree width.

In Chap. 6 Christian Breimann and Jan Vahrenhold give a comprehensive
overview of algorithms and data structures handling geometric objects like
points and lines — an area that is at least as rich as graph algorithms. A
third area of again quite different algorithmic techniques are string problems
discussed by Juha Kärkäinen and Srinivasa Rao in Chap. 7.

Chapters 8–10 then turn to more detailed models with particular empha-
sis on the complications introduced by hardware caches. Beyond this common
motivation, these chapters are quite diverse. Naila Rahman uses sorting as an
example for these issues in Chap. 8 and puts particular emphasis on the of-
ten neglected issue of TLB misses. Piyush Kumar introduces cache-oblivious
algorithms in Chap. 9 that promise to grasp multilevel hierarchies within a
very simple model. Markus Kowarschik and Christian Weiß give a practical
introduction into cache-efficient programs using numerical algorithms as an
example. Numerical applications are particularly important because they al-
low significant instruction-level parallelism so that slow memory accesses can
dramatically slow down processing.

Stefan Edelkamp introduces an application area of very different char-
acter in Chap. 11. In artificial intelligence, search programs have to handle
huge state spaces that require sophisticated techniques for representing and
traversing them.

Chapters 12–14 give a system-oriented view of advanced memory hierar-
chies. On the lowest level we have storage networks connecting a large num-
ber of inhomogeneous disks. Kay Salzwedel discusses this area with particular

Preface VII

emphasis on the aspect of inhomogeneity. File systems give a more abstract
view of these devices on the operating system level. Florin Isaila explains the
organization of modern file systems in Chap. 13. An even higher level view is
offered by relational database systems. Josep Larriba-Pey explains their or-
ganization in Chap. 14. Both in file systems and databases, basic algorithmic
techniques like sorting and search trees turn out to be relevant.

Finally, Chaps. 15 and 16 give a glimpse on memory hierarchies with
multiple processors. Massimo Coppola and Martin Schmollinger introduce
abstract and concrete programming models like BSP and MPI in Chap. 15.
Dani Jimenez, Josep-L. Larriba, and Juan J. Navarro present a concrete case
study of sorting algorithms on shared memory machines in Chap. 16. He
studies programming techniques that avoid pitfalls like true and false sharing
of cache contents.

Most chapters in this volume have partly tutorial character and are partly
more dense overviews. At a minimum Chaps. 1, 2, 3, 4, 9, 10, 14, and 16
are tutorial chapters suitable for beginning graduate-level students. They are
sufficiently self-contained to be used for the core of a course on external mem-
ory algorithms. Augmented with the other chapters and additional papers it
should be possible to shape various advanced courses. Chapters 1–3 lay the
basis for the remaining chapters that are largely independent.

We are indebted to many people and institutions. We name a few in al-
phabetical order. Ulrik Brandes helped with sources from a tutorial volume
on graph drawing that was our model in several aspects. The International
Conference and Research Center for Computer Science in Dagstuhl provided
its affordable conference facilities and its unique atmosphere. Springer-Verlag,
and in particular Alfred Hofmann, made it possible to smoothly publish the
volume in the LNCS series. Kurt Mehlhorn’s group at MPI Informatik pro-
vided funding for several (also external) participants. Dorothea Wagner came
up with the idea for the seminar and advised us in many ways. This volume
was also partially supported by the Future and Emerging Technologies pro-
gramme of the EU under contract number IST-1999-14186 (ALCOM-FT).

January 2003 Ulrich Meyer
Peter Sanders

Jop Sibeyn

Table of Contents

1. Memory Hierarchies — Models and Lower Bounds
Peter Sanders . 1

1.1 Why Memory Hierarchies . 1
1.2 Current Technology . 2
1.3 Modeling . 5
1.4 Issues in External Memory Algorithm Design 9
1.5 Lower Bounds . 10

2. Basic External Memory Data Structures
Rasmus Pagh . 14

2.1 Elementary Data Structures . 15
2.2 Dictionaries . 17
2.3 B-trees . 19
2.4 Hashing Based Dictionaries . 27
2.5 Dynamization Techniques . 33
2.6 Summary . 35

3. A Survey of Techniques for Designing I/O-Efficient
Algorithms
Anil Maheshwari and Norbert Zeh . 36

3.1 Introduction . 36
3.2 Basic Techniques . 37
3.3 Simulation of Parallel Algorithms in External Memory 44
3.4 Time-Forward Processing . 46
3.5 Greedy Graph Algorithms . 48
3.6 List Ranking and the Euler Tour Technique 50
3.7 Graph Blocking . 54
3.8 Remarks . 61

4. Elementary Graph Algorithms in External Memory
Irit Katriel and Ulrich Meyer . 62

4.1 Introduction . 62
4.2 Graph-Traversal Problems: BFS, DFS, SSSP 63

X Table of Contents

4.3 Undirected Breadth-First Search . 66
4.4 I/O-Efficient Tournament Trees . 70
4.5 Undirected SSSP with Tournament Trees 73
4.6 Graph-Traversal in Directed Graphs . 74
4.7 Conclusions and Open Problems for Graph Traversal 76
4.8 Graph Connectivity: Undirected CC, BCC, and MSF 77
4.9 Connected Components . 78
4.10 Minimum Spanning Forest . 80
4.11 Randomized CC and MSF . 81
4.12 Biconnected Components . 83
4.13 Conclusion for Graph Connectivity . 84

5. I/O-Efficient Algorithms for Sparse Graphs
Laura Toma and Norbert Zeh . 85

5.1 Introduction . 85
5.2 Definitions and Graph Classes . 87
5.3 Techniques . 89
5.4 Connectivity Problems . 91
5.5 Breadth-First Search and Single Source Shortest Paths 93
5.6 Depth-First Search . 98
5.7 Graph Partitions . 101
5.8 Gathering Structural Information . 105
5.9 Conclusions and Open Problems . 109

6. External Memory Computational Geometry Revisited
Christian Breimann and Jan Vahrenhold . 110

6.1 Introduction . 110
6.2 General Methods for Solving Geometric Problems 112
6.3 Problems Involving Sets of Points . 119
6.4 Problems Involving Sets of Line Segments 131
6.5 Problems Involving Set of Polygonal Objects 144
6.6 Conclusions . 148

7. Full-Text Indexes in External Memory
Juha Kärkkäinen and S. Srinivasa Rao . 149

7.1 Introduction . 149
7.2 Preliminaries . 150
7.3 Basic Techniques . 151
7.4 I/O-efficient Queries . 155
7.5 External Construction . 161
7.6 Concluding Remarks . 170

Table of Contents XI

8. Algorithms for Hardware Caches and TLB
Naila Rahman . 171

8.1 Introduction . 171
8.2 Caches and TLB . 173
8.3 Memory Models . 176
8.4 Algorithms for Internal Memory . 181
8.5 Cache Misses and Power Consumption . 185
8.6 Exploiting Other Memory Models: Advantages and

Limitations . 186
8.7 Sorting Integers in Internal Memory . 189

9. Cache Oblivious Algorithms
Piyush Kumar . 193

9.1 Introduction . 193
9.2 The Model . 195
9.3 Algorithm Design Tools . 197
9.4 Matrix Transposition . 199
9.5 Matrix Multiplication . 201
9.6 Searching Using Van Emde Boas Layout 203
9.7 Sorting . 205
9.8 Is the Model an Oversimplification? . 209
9.9 Other Results . 211
9.10 Open Problems . 211
9.11 Acknowledgements . 212

10. An Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms
Markus Kowarschik and Christian Weiß . 213

10.1 Introduction . 213
10.2 Architecture and Performance Evaluation of Caches 214
10.3 Basic Techniques for Improving Cache Efficiency 217
10.4 Cache-Aware Algorithms of Numerical Linear Algebra 225
10.5 Conclusions . 232

11. Memory Limitations in Artificial Intelligence
Stefan Edelkamp . 233

11.1 Introduction . 233
11.2 Hierarchical Memory . 234
11.3 Single-Agent Search . 235
11.4 Action Planning . 241
11.5 Game Playing . 246
11.6 Other AI Areas . 248
11.7 Conclusions . 249

XII Table of Contents

12. Algorithmic Approaches for Storage Networks
Kay A. Salzwedel . 251

12.1 Introduction . 251
12.2 Model . 254
12.3 Space and Access Balance . 256
12.4 Availability . 258
12.5 Heterogeneity . 260
12.6 Adaptivity . 269
12.7 Conclusions . 272

13. An Overview of File System Architectures
Florin Isaila . 273

13.1 Introduction . 273
13.2 File Access Patterns . 274
13.3 File System Duties . 276
13.4 Distributed File Systems . 280
13.5 Summary . 289

14. Exploitation of the Memory Hierarchy in Relational
DBMSs
Josep-L. Larriba-Pey . 290

14.1 Introduction . 290
14.2 What to Expect and What Is Assumed 291
14.3 DBMS Engine Structure . 293
14.4 Evidences of Locality in Database Workloads 297
14.5 Basic Techniques for Locality Exploitation 298
14.6 Exploitation of Locality by the Executor 300
14.7 Access Methods . 307
14.8 Exploitation of Locality by the Buffer Pool Manager 311
14.9 Hardware Related Issues . 317
14.10 Compilation for Locality Exploitation . 318
14.11 Summary . 318

15. Hierarchical Models and Software Tools for Parallel
Programming
Massimo Coppola and Martin Schmollinger . 320

15.1 Introduction . 320
15.2 Architectural Background . 321
15.3 Parallel Computational Models . 327
15.4 Parallel Bridging Models . 328
15.5 Software Tools . 338
15.6 Conclusions . 352

Table of Contents XIII

16. Case Study: Memory Conscious Parallel Sorting
Dani Jiménez-González, Josep-L. Larriba-Pey, and
Juan J. Navarro . 355

16.1 Introduction . 355
16.2 Architectural Aspects . 358
16.3 Sequential and Straight Forward Radix Sort Algorithms 361
16.4 Memory Conscious Algorithms . 371
16.5 Conclusions . 376
16.6 Acknowledgments . 377

Bibliography . 379

Index . 421

List of Contributors

Editors

Ulrich Meyer
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
uli@uli-meyer.de

Peter Sanders
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
sanders@mpi-sb.mpg.de

Jop F. Sibeyn
Martin-Luther Universität
Halle-Wittenberg
Institut für Informatik
Von-Seckendorff-Platz 1
06120 Halle, Germany
jopsi@informatik.uni-halle.de

Authors

Christian Breimann
Westfälische Wilhelms-Universität
Institut für Informatik
Einsteinstr. 62
48149 Münster, Germany
chr@math.uni-muenster.de

Massimo Coppola
University of Pisa
Department of Computer Science
Via F. Buonarroti 2
56127 Pisa, Italy
coppola@di.unipi.it

Stefan Edelkamp
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Georges-Köhler-Allee, Gebäude 51
79110 Freiburg, Germany
edelkamp@informatik.uni-freiburg.de

Florin Isaila
University of Karlsruhe
Department of Computer Science
PO-Box 6980
76128 Karlsruhe, Germany
florin@ipd.uni-karlsruhe.de

XVI List of Contributors

Dani Jiménez-González
Universitat Politècnica de Catalunya
Computer Architecture Department
Jordi Girona 1-3, Campus Nord-UPC
E-08034 Barcelona, Spain
djimenez@ac.upc.es

Irit Katriel
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
irit@mpi-sb.mpg.de

Juha Kärkkäinen
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
juha@mpi-sb.mpg.de

Markus Kowarschik
Friedrich–Alexander–Universität
Erlangen–Nürnberg
Lehrstuhl für Informatik 10
Cauerstraße 6,
91058 Erlangen, Germany
Markus.Kowarschik@cs.fau.de

Piyush Kumar
State University of New York
at Stony Brook
Department of Computer Science
Stony Brook, NY 11790, USA
piyush@acm.org

Josep-L. Larriba-Pey
Universitat Politècnica de Catalunya
Computer Architecture Department
Jordi Girona 1-3, Campus Nord-UPC
E-08034 Barcelona, Spain
larri@ac.upc.es

Anil Maheshwari
Carleton University
School of Computer Science
1125 Colonel By Drive
Ottawa, Ontario, K1S 5B6, Canada
maheshwa@scs.carleton.ca

Ulrich Meyer
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
uli@uli-meyer.de

Juan J. Navarro
Universitat Politècnica de Catalunya
Computer Architecture Department
Jordi Girona 1-3, Campus Nord-UPC
E-08034 Barcelona, Spain
juanjo@ac.upc.es

Rasmus Pagh
The IT University of Copenhagen
Glentevej 67
2400 København NV, Denmark
pagh@it-c.dk

Naila Rahman
University of Leicester
Department of Mathematics
and Computer Science
University Road
Leicester, LE1 7RH, U. K.
naila@mcs.le.ac.uk

S. Srinivasa Rao
University of Waterloo
School of Computer Science
200 University Avenue West
Waterloo, Ontario, N2L 3G1, Canada
ssrao@monod.uwaterloo.ca

List of Contributors XVII

Kay A. Salzwedel
Universität Paderborn
Heinz Nixdorf Institut
Fürstenallee 11
33102 Paderborn, Germany
nkz@upb.de

Peter Sanders
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
sanders@mpi-sb.mpg.de

Martin Schmollinger
Universität Tübingen
Wilhelm-Schickard Institut
für Informatik, Sand 14
72076 Tübingen, Germany
martin.schmollinger
@informatik.uni-tuebingen.de

Laura Toma
Duke University
Department of Computer Science
Durham, NC 27708, USA
laura@cs.duke.edu

Jan Vahrenhold
Westfälische Wilhelms-Universität
Institut für Informatik
Einsteinstr. 62
48149 Münster, Germany
jan@math.uni-muenster.de

Christian Weiß
Technische Universität München
Lehrstuhl für Rechnertechnik und
Rechnerorganisation
Boltzmannstr. 3
85748 München, Germany
weissc@in.tum.de

Norbert Zeh
Duke University
Department of Computer Science
Durham, NC 27708, USA
nzeh@cs.duke.edu

1. Memory Hierarchies —
Models and Lower Bounds

Peter Sanders∗

The purpose of this introductory chapter is twofold. On the one hand, it serves
the rather prosaic purpose of introducing the basic models and notations used
in the subsequent chapters. On the other hand, it explains why these simple
abstract models can be used to develop better algorithms for complex real
world hardware.

Section 1.1 starts with a basic motivation for memory hierarchies and
Section 1.2 gives a glimpse on their current and future technological realiza-
tions. More theoretically inclined readers can skip or skim this section and
directly proceed to the introduction of the much simpler abstract models in
Section 1.3. Then we have all the terminology in place to explain the guiding
principles behind algorithm design for memory hierarchies in Section 1.4. A
further issue permeating most external memory algorithms is the existence of
fundamental lower bounds on I/O complexity described in Section 1.5. Less
theoretically inclined readers can skip the proofs but might want to remember
these bounds because they show up again and again in later chapters.

Parallelism is another important approach to high performance comput-
ing that has many interactions with memory hierarchy issues. We describe
parallelism issues in subsections that can be skipped by readers only inter-
ested in sequential memory hierarchies.

1.1 Why Memory Hierarchies

There is a wide spectrum of computer applications that can make use of
arbitrarily large amounts of memory. For example, consider geographic infor-
mation systems. NASA measures the data volumes from satellite images in
petabytes (1015 bytes). Similar figures are given by climate research centers
and particle physicists [555].

Although it is unlikely that all these informations will be needed in a single
application, we can easily come to huge data sets. For example, consider a
map of the world that associates 32 bits with each square meter of a continent
— something technologically quite feasible with modern satellite imagery. We
would get a data set of about 600 terabytes.

Other examples of huge data sets are data warehouses of large compa-
nies that keep track of every single transaction, digital libraries for books,
images, and movies (a single image frame of high quality movie takes several
∗ Partially supported by the Future and Emerging Technologies programme of the

EU under contract number IST-1999-14186 (ALCOM-FT).

U. Meyer et al. (Eds.): Algorithms for Memory Hierarchies, LNCS 2625, pp. 1-13, 2003.
 Springer-Verlag Berlin Heidelberg 2003

2 Peter Sanders

megabytes), or large scale numerical simulations. Even if the input and output
of an application are small, it might be necessary to store huge intermediate
data structures. For example, some of the state space search algorithms in
Chapter 11 are of this type.

How should a machine for processing such large inputs look? Data should
be cheap to store but we also want fast processing. Unfortunately, there are
fundamental reasons why we cannot get memory that is at the same time
cheap, compact, and fast. For example, no signal can propagate faster than
light. Hence, given a storage technology and a desired access latency, there is
only a finite amount of data reachable within this time limit. Furthermore, in
a cheap and compact storage technology there is no room for wires reaching
every single memory cell. It is more economical to use a small number of
devices that can be moved to access a given bit.

There are several approaches to escape this so called memory wall prob-
lem. The simplest and most widely used compromise is a memory hierarchy.
There are several categories of memory in a computer ranging from small and
fast to large, cheap, and slow. Even in a memory hierarchy, we can process
huge data sets efficiently. The reason is that although access latencies to the
huge data sets are large, we can still achieve large bandwidths by accessing
many close-by bits together and by using several memory units in parallel.
Both approaches can be modeled using the same abstract view: Access to
large blocks of memory is almost as fast as access to a single bit. The algo-
rithmic challenge following from this principle is to design algorithms that
perform well on systems with blocked memory access. This is the main sub-
ject of this volume.

1.2 Current Technology

Although we view memory hierarchies as something fundamental, it is in-
structive to look at the way memory hierarchies are currently designed and
how they are expected to change in the near future. More details and ex-
planations can be found in the still reasonably up to date textbook [392]. A
valuable and up-to-date introductory source is the web page on PC Technol-
ogy http://www.pctechguide.com/.

Currently, a high performance microprocessor has a file of registers that
have multiple ports so that several accesses can be made in parallel. For
example, twelve parallel accesses must be supported by a superscalar machine
that executes up to four instructions per clock cycle each of which addresses
three registers.

Since multiple ports require too much chip area per bit, the first level (L1)
cache supports only one or two accesses per clock. Each such access already
incurs a delay of a few clock cycles since additional stages of the instruction
processing pipelines have to be traversed. L1 cache is usually only a few
kilobytes large because a larger area would incur longer connections and

1. Memory Hierarchies — Models and Lower Bounds 3

hence even larger access latencies [399]. Often there are separate L1 caches
for instructions and data.

The second level (L2) cache is on the same chip as the first level cache but
it has quite different properties. The L2 cache is as large as the technology
allows because applications that fit most of their data into this cache can
execute very fast. The L2 cache has access latencies around ten clock cycles.
Communication between L1 and L2 cache uses block sizes of 16–32 bytes. For
accessing off-chip data, larger blocks are used. For example, the Pentium 4
uses 128 byte blocks [399].

Some processors have a third level (L3) cache that is on a separate set of
chips. This cache is made out of fast static1 RAM cells. The L3 cache can
be very large in principle, but this is not always cost effective because static
RAMs are rather expensive.

The main memory is made out of high density cheap dynamic RAM
cells. Since the access speeds of dynamic RAMs have lagged behind processor
speeds, dynamic RAMs have developed into devices optimized for block ac-
cess. For example, RAMBUS RDRAM2 chips allow blocks of up to 16 bytes
to be accessed in only twice the time to access a single byte.

The programmer is not required to know about the details of the hierarchy
between caches and main memory. The hardware cuts the main memory into
blocks of fixed size and automatically maps a subset of the memory blocks
to L3 cache. Furthermore, it automatically maps a subset of the blocks in L3
cache to L2 cache and from L2 cache to L1 cache. Although this automatic
cache administration is convenient and often works well, one is up to un-
pleasant surprises. In Chapter 8 we will see that sometimes a careful manual
mapping of data to the memory hierarchy would work much better.

The backbone of current data storage are magnetic hard disks because
they offer cheap non volatile memory [643]. In the last years, extremely high
densities have been achieved for magnetic surfaces that allow several giga-
bytes to be stored on the area of a postage stamp. The data is accessed by
tiny magnetic devices that hover as low as 20 nm over the surface of the
rotating disk. It takes very long to move the access head to a particular track
of the disk and to wait until the disk rotates into the correct position. With
up to 10 ms, disk access can be 107 times slower than an access to a register.
However, once the head starts reading or writing, data can be transferred at
a rate of about 50 megabytes per second. Hence, accessing hundreds of KB
takes only about twice as long as accessing a single byte. Clearly, it makes
sense to process data in large chunks.

Hard disks are also used as a way to virtually enlarge the main mem-
ory. Logical blocks that are currently not in use are swapped to disk. This
mechanism is partially supported by the processor hardware that is able to
1 Static RAM needs six transistors per bit which makes it more area consuming

but faster than dynamic RAM that needs only one transistor per bit.
2 http://www.rambus.com

4 Peter Sanders

automatically translate between logical memory addresses and physical mem-
ory addresses. This translation uses yet another small cache, the translation
lookaside buffer (TLB)

There is a final level of memory hierarchy used for backups and archiving
of data. Magnetic tapes and optical disks allow even cheaper storage of data
but have a very high access latency ranging from seconds to minutes because
the media have to be retrieved from a shelf and mounted on some access
device.

Current and Future Developments

There are too many possible developments to explain or even perceive all of
them in detail but a few basic trends should be noted. The memory hierarchy
might become even deeper. Third level caches will become more common.
Intel has even integrated it on the Itanium 2 processor. In such a system,
an off-chip 4th level cache makes sense. There is also a growing gap between
the access latencies and capacities of disks and main memory. Therefore,
magnetic storage devices with smaller capacity but also lower access latency
have been proposed [669].

While storage density in CMOS-RAMs and magnetic disks will keep in-
creasing for quite some time, it is conceivable that different technologies will
get their chance in a longer time frame. There are some ideas available that
would allow memory cells consisting of single molecules [780]. Furthermore,
even with current densities, astronomically large amounts of data could be
stored using three-dimensional storage devices. The main difficulty is how to
write and read such memories. One approach uses holographic images stor-
ing large blocks of data in small three-dimensional regions of a transparent
material [716].

Regardless of the technology, it seems likely that block-wise access and
the use of parallelism will remain necessary to achieve high performance
processing of large volumes of data.

Parallelism

A more radical change in the model is explicit parallel processing. Although
this idea is not so new, there are several reasons why it might have increased
impact in the near future. Microprocessors like the Intel Xeon first delivered
in 2002 have multiple register sets and are able to execute a corresponding
number of threads of activity in parallel. These threads share the same ex-
ecution pipeline. Their accumulated performance can be significantly higher
than the performance of a single thread with exclusive access to the pro-
cessing resources. One main reason is that while one thread is waiting for a
memory access to finish, another thread can use the processor. Parallelism
spreads in many other respects. Several processors on the same chip can share

1. Memory Hierarchies — Models and Lower Bounds 5

a main memory and a second level cache. The IBM Power 4 processor already
implements this technology. Several processors on different chips can share
main memory. Several processor boards can share the same network of disks.
Servers usually have many disk drives. In such systems, it becomes more and
more important that memory devices on all levels of the memory hierarchy
can work on multiple memory accesses in parallel.

On parallel machines, some levels of the memory hierarchy may be shared
whereas others are distributed between the processors. Local caches may hold
copies of shared or remote data. Thus, a read access to shared data may be
as fast as a local access. However, writing shared data invalidates all the
copies that are not in the cache of the writing processor. This can cause
severe overhead for sending the invalidations and for reloading the data at
subsequent remote accesses.

1.3 Modeling

We have seen that real memory hierarchies are very complex. We have mul-
tiple levels, all with their own idiosyncrasies. Hardware caches have replace-
ment strategies that vary between simplistic and strange [294], disks have
position dependent access delays, etc. It might seem that the best models are
those that are as accurate as possible. However, for algorithm design, this
leads the wrong way. Complicated models make algorithms difficult to design
and analyze. Even if we overcome these differences, it would be very difficult
to interpret the results because complicated models have a lot of parameters
that vary from machine to machine.

Attractive models for algorithm design are very simple, so that it is easy to
develop algorithms. They have few parameters so that it is easy to compare
the performance of algorithms. The main issue in model design is to find
simple models that grasp the essence of the real situation so that algorithms
that are good in the model are also good in reality.

In this volume, we build on the most widely used nonhierarchical model.
In the random access machine (RAM) model or von Neumann model [579],
we have a “sufficiently” large uniform memory storing words of size O(log n)
bits where n is the size of our input. Accessing any word in memory takes con-
stant time. Arithmetics and bitwise operations with words can be performed
in constant time. For numerical and geometric algorithms, it is sometimes
also assumed that words can represent real numbers accurately. Storage con-
sumption is measured in words if not otherwise mentioned.

Most chapters of this volume use a minimalistic extension that we will
simply call the external memory model. We use the notation introduced by
Aggarwal, Vitter, and Shriver [17, 755]. Processing works almost as in the
RAM model, except that there are only M words of internal memory that
can be accessed quickly. The remaining memory can only be accessed using
I/Os that move B contiguous words between internal and external memory.

6 Peter Sanders

CPU

Large Memory

Fast Memory

B
M

Fig. 1.1. The external memory model.

Figure 1.1 depicts this arrangement. To analyze an external memory algo-
rithm, we count the number of I/Os needed in addition to the time that
would be needed on a RAM machine.

Why is such a simple model adequate to describe something as complex as
memory hierarchies? The easiest justification would be to lean on authority.
Hundreds of papers using this model have been published, many of them in
top conferences and journals. Many external memory algorithms developed
are successfully used in practice. Vitter [754] gives an extensive overview.
But why is this model so successful? Although the word “I/O” suggests that
external memory should be identified with disk memory, we are free to choose
any two levels of the memory hierarchy for internal and external memory in
the model. Inaccuracies of the model are usually limited by reasonable con-
stant factors. This claim needs further explanation. The main problem with
hardware caches is that they use a fixed simplistic strategy for deciding which
blocks are kept whereas the external memory model gives the programmer
full control over the content of internal memory. Although this difference can
have devastating effects, it rarely happens in practice. Mehlhorn and Sanders
[543] give an explanation of this effect for a large class of cache access pat-
terns. Sen and Chatterjee [685] and Frigo et al. [321] have observed that in
principle we can even circumvent hardware replacement schemes and take
explicit control of cache content.

Hard disks are even more complicated than caches [643] but again inac-
curacies of the external memory model are not as big as one might think:
Disks have their own local caches. But these are so small that for algorithms
that process really large data sets they do not make a big difference. Roughly
speaking, the disk access time consists of a latency needed to move the disk
head to the appropriate position and a transfer time that is proportional
to the amount of data transmitted. We are more or less free to choose this
amount of data and hence it is not accurate to only count the number of
accesses. However, if we fix the block size so that the transfer time is about
the same as the latency, we only make a small error. Let us explain this for
the (oversimplified) case that time t0+B is needed to access B words of data.

1. Memory Hierarchies — Models and Lower Bounds 7

Then a good choice of the block size is B = t0. When we access less data
we are at most a factor two off by accessing an entire block of size B. When
we access L > B words, we are at most a factor two off by counting !L/B"
block I/Os.

In reality, the access latency depends on the current position of the disk
mechanism and on the position of the block to be accessed on the disk.
Although exploiting this effect can make a big difference, programs that op-
timize access latencies are rare since the details depend on the actual disk
used and are usually not published by the disk vendors. If other applications
or the operating system make additional unpredictable accesses to the same
disk, even sophisticated optimizations can be in vain. In summary, by picking
an appropriate block size, we can model the most important aspects of disk
drives.

Parallelism

Although we mostly use the sequential variant of the external memory model,
it also has an option to express parallelism. External memory is partitioned
into D parts (e.g. disks) so that in each I/O step, one block can be accessed
on each of the parts.

With respect to parallel disks, the model of Vitter and Shriver [755] de-
viates from an earlier model by Aggarwal and Vitter [17] where D arbitrary
blocks can be accessed in parallel. A hardware realization could have D read-
ing/writing devices that access a single disk or a D-ported memory. This
model is more powerful because algorithms need not care about the map-
ping of data to disks. However, there are efficient (randomized) algorithms
for emulating the Aggarwal-Vitter model on the Vitter-Shriver model [656].
Hence, one approach to developing parallel disk external memory algorithms
is to start with an algorithm for the Aggarwal-Vitter model and then add an
appropriate load balancing algorithm (also called declustering).

Vitter and Shriver also make provisions for parallel processing. There are
P identical processors that can work in parallel. Each has fast memory M/P
and is equipped with D/P disks. In the external memory model there are
no additional parameters expressing the communication capabilities of the
processors. Although this is an oversimplification, this is already enough to
distinguish many algorithms with respect to their ability to be executed on
parallel machines. The model seems suitable for parallel machines with shared
memory.

For discussing parallel external memory on machines with distributed
memory we need a model for communication cost. The BSP model [742] that
is widely accepted for parallel (internal) processing fits well here: The P pro-
cessors work in supersteps . During a superstep, the processors can perform
local communications and post messages to other processors to the commu-
nication subsystem. At the end of a superstep, all processors synchronize and
exchange all the messages that have been posted during the superstep. This

8 Peter Sanders

synchronous communication takes time ! + gh where ! is the latency, g the
gap and h the maximum number of words a processor sends or receives in
this communication phase. The parameter ! models the overhead for syn-
chronizing the processors and the latency of messages traveling through the
network. If we assume our unit of time to be the time needed to execute one
instruction, the parameter g is the ratio between communication speed and
computation speed.

1.3.1 More Models

In Chapter 8 we will see more refined models for the fastest levels of the
memory hierarchy, including replacements strategies used by the hardware
and the role of the TLB. Chapter 10 contributes additional practical examples
from numeric computing. Chapter 15 will explain parallel models in more
detail. In particular, we will see models that take multiple levels of hierarchy
into account.

There are also alternative models for the simple sequential memory hier-
archy. For example, instead of counting block I/Os with respect to a block
size B, we could allow variable block sizes and count the number of I/Os
k and the total I/O volume h. The total I/O cost could then be accounted
as !I/Ok + gI/Ov where — in analogy to the BSP model — !I/O stands for
the I/O latency and gI/O for the ratio between I/O speed and computation
speed. This model is largely equivalent to the block based model but it might
be more elegant when used together with the BSP model and it is more ad-
equate to explain differences between algorithms with regular and irregular
access patterns [227].

Another interesting variant is the cache oblivious model discussed in
Chapter 9. This model is identical to the external memory model except
that the algorithm is not told the values of B and M . The consequence of
this seemingly innocent variant is that an I/O efficient cache oblivious al-
gorithm works well not only on any machine but also on all levels of the
memory hierarchy at the same time. Cache oblivious algorithms can be very
simple, i.e., we do not need to know B and M to scan an array. But even
cache oblivious sorting is quite difficult.

Finally, there are interesting approaches to eliminate memory hierarchies.
Blocked access is only one way to hide access latency. Another approach is
pipelining where many independent accesses are executed in parallel. This
approach is more powerful but also more difficult to support in hardware.
Vector computers such as the NEC SX-6 support pipelined memory access
even to nonadjacent cells at full memory bandwidth. Several experimental
machines [2, 38] use massive pipelined memory access by the hardware to
run many parallel threads on a single processor. While one thread waits for
a memory access, the other threads can do useful work. Modern mainstream
processors also support pipelined memory access to a certain extend [399].

1. Memory Hierarchies — Models and Lower Bounds 9

1.4 Issues in External Memory Algorithm Design

Before we look at particular algorithms in the rest of this volume, let us
first discuss the goals we should achieve by an external memory algorithm.
Ideally, the user should not notice the difference between external memory
and internal memory at all, i.e., the program should run as fast as if all the
memory would be internal memory. The following principles help:

Internal efficiency: The internal work done by the algorithm should be com-
parable to the best internal memory algorithms.

Spatial locality: When a block is accessed, it should contain as much useful
data as possible.

Temporal locality: Once data is in the internal memory, as much useful work
as possible should be done on it before it is written back to external
memory.

Which of these criteria is most important, depends a lot on the applica-
tion and on the hardware used. As usual in computer science, the overall
performance is mostly determined by the weakest link. Let us consider a pro-
totypical scenario. Assume we have a good internal memory algorithm for
some application. Now it turns out that we want to run it on much larger
inputs and internal memory will not suffice any more. The first try could be
to ignore this problem and see how the virtual memory capability of the op-
erating system deals with it. When this works, we are exceptionally lucky. If
we see very bad performance, this usually means that the existing algorithm
has poor locality. We may then apply the algorithmic techniques developed
in this volume to improve locality.

Several outcomes are possible. It may be that despite our effort, locality
remains the limiting factor. When discussing further improvements we will
then focus on locality and might even accept an increase of internal work.

But we should keep in mind that many algorithms do some useful work for
every word accessed, i.e., locality is quite good. If the application nevertheless
remains I/O-bound , this means that the I/O bandwidth of our system is low.
This is a common observation when researchers run their external memory
algorithms on workstations with a single disk and I/O interfaces not build for
high performance I/O. However, we should expect that serious applications of
external memory algorithms will run on hardware and software build for high
I/O performance. Let us consider a machine recently configured by Roman
Dementiev and the author as an example. The parts for this system cost
about 3000 Euro in July 2002, i.e., the price is in the range of an ordinary
workstation. The STREAM3 benchmark achieves a main memory bandwidth
of 1445MB/s on one of two 2.0 GHz Intel Xeon processors. Using eight disks
and four IDE controllers, we achieve an I/O bandwidth of up to 375 MB/s,
i.e., the bandwidth gap between main memory and disks is not very large.
3 http://www.streambench.org/

10 Peter Sanders

For example, our first implementation of external memory sorting on this
machine used internal quicksort as a subroutine. For more than two disks
this internal sorting was the main bottleneck. Hence, internal efficiency is a
really important aspect of good external memory algorithms.

Parallelism

In parallel models, internal efficiency and locality is as important as in the
sequential case. In particular, temporal and spatial locality with respect to
the local memory of a processor is an issue.

An new issue is load balancing or declustering . All disks should access
useful data in most parallel I/O steps. All processors should have about the
same amount of work during a superstep in the BSP model, and no processor
should have to send or receive too much data at the end of a superstep.

When programming shared memory machines, the caching policies de-
scribed above must be taken into account. True sharing occurs when several
processors write to the same memory location. Such writes are expensive
since they amount to invalidation and reloading of entire cache blocks by
all other processors reading this location. Hence, parallel algorithms should
avoid frequent write accesses to shared data. Moreover, even write accesses
to different memory cells might lead to the same sharing effect if the cells
are located on the same block of memory. This phenomenon is called false
sharing. Chapter 16 studies true and false sharing in detail using sorting as
an example.

1.5 Lower Bounds

A large number of external memory algorithms can be assembled from
the three ingredients scanning, sorting, and searching. There are essentially
matching upper and lower bounds for the number of I/Os needed to perform
these operations:
Scanning: Look at the input once in the order it is stored. If N is the amount
of data to be inspected, we obviously need

scan(N) = Θ(N/B) I/Os. (1.1)

Permuting and Sorting: Too often, the data is not arranged in a way that
scanning helps. Then we can rearrange the data into an order where scanning
is useful. When we already know where to place each elements, this means
permuting the data. When the permutation is defined implicitly via a total
ordering “<” of the elements, we have to sort with respect to “<”. Chapter 3
gives an upper bound of

sort(N) = Θ

(
N

B
logM/B

N

B

)
I/Os (1.2)

1. Memory Hierarchies — Models and Lower Bounds 11

for sorting. In Section 1.5.1, we will see an almost identical lower bound for
permuting that is also a lower bound for the more difficult problem of sorting.
Searching: Any pointer based data structure indexing N elements needs
access time

search(N) = Ω (logB N/M) I/Os. (1.3)

This lower bound is explained in Section 1.5.2. In Chapter 2 we see a matching
upper bound for the simple case of a linear order. High dimensional problems
such as the geometric data structures explained in Chapter 6 can be more
difficult.

Arge and Bro Miltersen [59] give a more detailed account of lower bounds
for external memory algorithms.

1.5.1 Permuting and Sorting

We analyse the following problem. How many I/O operations are necessary
to generate a permutation of the input? A lower bound on permuting implies
a lower bound for sorting because for every permutation of a set of elements,
there is a set of keys that forces sorting to produce this permutation. The
lower bound was established in a seminal paper by Aggarwal and Vitter
[17]. Here we report a simplified proof based on unpublished lecture notes by
Albers, Crauser, and Mehlhorn [24].

To establish a lower bound, we need to specify precisely what a permuta-
tion algorithm can do. We make some restrictions but most of them can be
lifted without changing the lower bound significantly. We view the internal
memory as a bag being able to hold up to M elements. External memory is
an array of elements. Reading and writing external memory is always aligned
to block boundaries, i.e., if the cells of external memory are numbered, ac-
cess is always to cells i, . . . , i + B − 1 such that i is a multiple of B. At the
beginning, the first N/B blocks of external memory contain the input. The
internal memory and the remaining external memory contain no elements. At
the end, the output is again in the first N/B blocks of the external memory.
We view our elements as abstract objects, i.e., the only operation available on
them is to move them around. They cannot be duplicated, split, or modified
in any way. A read step moves B elements from a block of external memory to
internal memory. A write step moves any B elements from internal memory
into a block of external memory. In this model, the following theorem holds:

Theorem 1.1. Permuting N elements takes at least

t ≥ 2
N

B
· log(N/eB)
log(eM/B) + 2 log(N/B)/B

I/Os.

For N = O
(
(eM/B)B/2

)
the term log(eM/B) dominates the denominator

and we get a lower bound for sorting of

12 Peter Sanders

2
N

B
· log(N/eB)
O(log(eM/B))

= Ω

(
N

B
logM/B

N

B

)
.

which is the same as the upper bound from Chapter 3.
The basic approach for establishing Theorem 1.1 is simple. We find an

upper bound ct for the number of different permutations generated after t
I/O steps looking at all possible sequences of t I/O steps. Since there are
N ! possible permutations of N elements, t must be large enough such that
ct ≥ N ! because otherwise there are permutations that cannot be generated
using t I/Os. Solving for t yields the desired lower bound.

A state of the algorithm can be described abstractly as follows:

1. the set of elements in the main memory;
2. the set of elements in each nonempty block of external memory;
3. the permutation in which the elements in each nonempty block of external

memory are stored.

We call two states equivalent if they agree in the first two components (they
may differ in the third).

In the final state, the elements are stored in N/B blocks of B elements
each. Each equivalence class of final states therefore consists of (B!)N/B

states. Hence, it suffices for our lower bound to find out when the num-
ber of equivalence classes of final states Ct reachable after t I/Os exceeds
N !/(B!)N/B.

We estimate Ct inductively. Clearly C0 = 1 .

Lemma 1.2. Ct+1 ≤
{

CtN/B if the I/O-operation is a read
CtN/B ·

(M
B

)
if the I/O-operation is a write.

Proof. A read specifies which out of N/B nonempty blocks is to be read. A
write additionally specifies which elements are to be written and in which
permutation. If i elements are written, there are

(M
i

)
≤

(M
B

)
choices for the

elements to be written and their permutation is irrelevant as far as equivalence
of states is concerned. The inequality

(
M
i

)
≤

(
M
B

)
assumes that B ≤ M/2.

Lemma 1.3. In any algorithm that produces a permutation in our model,
the number of reads equals the number of writes.

Proof. A read increments the number of empty blocks. A write decrements
the number of empty blocks. At the beginning and at the end there are exactly
N/B nonempty blocks. Hence, the number of increases equals the number of
decreases.

Combining Lemmas 1.2 and 1.3 we see that for even t,

N !
(B!)N/B

≤ Ct ≤
(

N

B

)t

·
(

M

B

)t/2

(1.4)

1. Memory Hierarchies — Models and Lower Bounds 13

We can simplify this relation using the the well-known bounds (m/e)m ≤
m! ≤ mm. We get

(M
B

)
≤ MB/B! ≤ (eM/B)B and N !/(B!)N/B ≥

(N/e)N/BN . Relation 1.4 therefore implies

(
N

B

)t

·
(

eM

B

)Bt/2

≥
(

N

eB

)N

,

or, after taking logarithms and solving for t,

t ·
(

2 log
(

N

B

)
+ B log

(
eM

B

))
≥ 2N log

(
N

eB

)
or

t ≥ 2
N

B
· log(N/eB)
log(eM/B) + 2 log(N/B)/B

.

1.5.2 Pointer Based Searching

...

B

...

B

...

M

...

...

Fig. 1.2. Pointer based searching.

Consider a data structure storing a set of N elements in external memory.
Access to blocks of external memory is pointer based, i.e., we are only allowed
to access a block i if its address is actually stored somewhere. We play a
similar game as for the sorting bound and count the number of different
blocks Ct that can be accessed after i I/O operations. This count has to
exceed N/B to make all elements accessible. Initially, the fast memory could
be full of pointers so that we have C0 = M . Each additional block read gives
us a factor B more possibilities. Hence, Ct = MBt. Figure 1.2 illustrates this
situation. Solving Ct ≥ N/B yields N ≥ logB

N
MB since we need an additional

access for actually retrieving an element we get a lower bound of logB N/M
I/Os for being able to reach each of the N elements.

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-956-8

9 781608 459568

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

SCOTT
SHARED-M

EM
ORY SYNCHRONIZATION

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Shared-Memory Synchronization
Michael L. Scott, University of Rochester
Since the advent of time sharing in the 1960s, designers of concurrent and parallel systems have
needed to synchronize the activities of threads of control that share data structures in memory. In
recent years, the study of synchronization has gained new urgency with the proliferation of multicore
processors, on which even relatively simple user-level programs must frequently run in parallel.

This lecture offers a comprehensive survey of shared-memory synchronization, with an emphasis
on “systems-level” issues. It includes sufficient coverage of architectural details to understand
correctness and performance on modern multicore machines, and sufficient coverage of higher-level
issues to understand how synchronization is embedded in modern programming languages.

The primary intended audience is “systems programmers”—the authors of operating systems,
library packages, language run-time systems, concurrent data structures, and server and utility
programs. Much of the discussion should also be of interest to application programmers who want
to make good use of the synchronization mechanisms available to them, and to computer architects
who want to understand the ramifications of their design decisions on systems-level code.

Shared-Memory
Synchronization

Michael L. Scott

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-956-8

9 781608 459568

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

SCOTT
SHARED-M

EM
ORY SYNCHRONIZATION

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Shared-Memory Synchronization
Michael L. Scott, University of Rochester
Since the advent of time sharing in the 1960s, designers of concurrent and parallel systems have
needed to synchronize the activities of threads of control that share data structures in memory. In
recent years, the study of synchronization has gained new urgency with the proliferation of multicore
processors, on which even relatively simple user-level programs must frequently run in parallel.

This lecture offers a comprehensive survey of shared-memory synchronization, with an emphasis
on “systems-level” issues. It includes sufficient coverage of architectural details to understand
correctness and performance on modern multicore machines, and sufficient coverage of higher-level
issues to understand how synchronization is embedded in modern programming languages.

The primary intended audience is “systems programmers”—the authors of operating systems,
library packages, language run-time systems, concurrent data structures, and server and utility
programs. Much of the discussion should also be of interest to application programmers who want
to make good use of the synchronization mechanisms available to them, and to computer architects
who want to understand the ramifications of their design decisions on systems-level code.

Shared-Memory
Synchronization

Michael L. Scott

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-956-8

9 781608 459568

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

SCOTT
SHARED-M

EM
ORY SYNCHRONIZATION

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Shared-Memory Synchronization
Michael L. Scott, University of Rochester
Since the advent of time sharing in the 1960s, designers of concurrent and parallel systems have
needed to synchronize the activities of threads of control that share data structures in memory. In
recent years, the study of synchronization has gained new urgency with the proliferation of multicore
processors, on which even relatively simple user-level programs must frequently run in parallel.

This lecture offers a comprehensive survey of shared-memory synchronization, with an emphasis
on “systems-level” issues. It includes sufficient coverage of architectural details to understand
correctness and performance on modern multicore machines, and sufficient coverage of higher-level
issues to understand how synchronization is embedded in modern programming languages.

The primary intended audience is “systems programmers”—the authors of operating systems,
library packages, language run-time systems, concurrent data structures, and server and utility
programs. Much of the discussion should also be of interest to application programmers who want
to make good use of the synchronization mechanisms available to them, and to computer architects
who want to understand the ramifications of their design decisions on systems-level code.

Shared-Memory
Synchronization

Michael L. Scott

C
M
&

cLaypoolMorgan publishers&

E1 E2 E3

Ei

Ei!1 EiC1 fEig
fFig Ei

Ei!1 fFig

!6
3

"
D

20

T2 T1

T1 T2

n

i j

!

: :

B

A B

A

:

:

L

Q

P S 8SŒP.S/!

8SŒP.S/ ! 9T ŒQ.T /!!

T S Q

L

T

T L

L T

T

L

...

...

... ...

...

... ...

...

L1

L2

L3

Processor 1 Processor n

Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank m

...

...

... ...

...

... ...

...

L1

L2

L3

Processor 1 Processor n

Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank n

l

l

l2 l1

l1 l2 l2
l1

k

x

x

k

k
k

// finally i == j == 0

// initially x == y == 0

thread 1:
 x := 1
 i := y

thread 2:
 y := 1
 j := x

1:
2:

1:
2:?

// finally y2 == x3 == 0 and x2 == y3 == 1

// initially x == y == 0

thread 1:
 x := 1

thread 4:
 y := 11: 1:

thread 2:
 x2 := x
 y2 := y
1:
2:

thread 3:
 y3 := y
 x3 := x
1:
2:?

k
" k

k

k

k k

ˆ

k

k k k

k k k

k k

k
k

k

ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

ˆ ˆ

ˆ

B C

A B C

(c)

(b)

(a) A

top

C

!
!

h i

h i
!

h i h i

h i

!
h i h i

:

?

A f .v/ v

A

A f .v/

O

O

A

A

B

A B

A B

8 2 T

2 T

T

X Y

T 3 T 4 X Y

T1 T 2 T 3 T 4

X Y X Y X Y X Y

T1

T 2

T 3

T 3

T1

T 4

T 4

T 2

Y X T 3

X T 4

X T

X

T

X

T X T

O

O

T 3 T 4

T

A A

B B

B

A

B A

B

! !

! !
! !

!
!

!
!

A

A C D

D K

K

A B

A B

ˆ

A B

A B

C C C C
C C C C
! C ! C
! ! C C
! C ! !

M

M M

8 2 T

:

:

k

:

ˆ

!

?

?

k k

1

Language
semantics

Language
implementation

Required
correspondence

Source program
and input

(Set of) abstract
executions

(Set of) concrete
executions

ˆ

k ˆ

APC: A Performance Metric of Memory Systems

Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA 60616

sun@iit.edu

Dawei Wang
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA 60616

dwang31@iit.edu

ABSTRACT
Due to the infamous “memory wall” problem and a drastic
increase in the number of data intensive applications, memory
rather than processor has become the leading performance
bottleneck of modern computing systems. Evaluating and
understanding memory system performance is increasingly
becoming the core of high-end computing. Conventional memory
metrics, such as miss ratio, average miss latency, average memory
access time, etc., are designed to measure a given memory
performance parameter, and do not reflect the overall performance
of a memory system. On the other hand, widely used system
measurement metrics, such as IPC and Flops are designed to
measure CPU performance, and do not directly reflect memory
performance. In this paper, we proposed a novel memory metric,
Access Per Cycle (APC), to measure overall memory performance
with consideration of the complexity of modern memory systems.
A unique contribution of APC is its separation of memory
evaluation from CPU evaluation; therefore, it provides a
quantitative measurement of the “data-intensiveness” of an
application. The concept of APC is introduced; a constructive
investigation counting the number of data accesses and access
cycles at differing levels of the memory hierarchy is conducted;
finally some important usages of APC are presented. Simulation
results show that APC is significantly more appropriate than the
existing memory metrics in evaluating modern memory systems.

Keywords
Memory Performance Measurement, Memory Metric,
Measurement Methodology

1. INTRODUCTION
The rapid advances of semiconductor technology have driven
large increases in processor performance over the past thirty
years. However, memory performance has not experienced a gain
as dramatic as that of processors; leaving memory performance
lagging far behind CPU performance. This enlarging performance
gap between processor and memory is referred to as the “memory
wall” [1] [2]. The “memory wall” problem exists not only in main
memory but also in the on-die caches. For example, in the Intel
Nehalem architecture CPU, each L1 data cache has a 4-cycle hit
latency; and each L2 cache has a 10-cycle hit latency [3].
Additionally, the IBM Power6 has a 4-cycle L1 cache hit latency,
and an L2 cache hit latency of 24 cycles [4]. These large
performance gaps between the processor and memory hierarchy
make the memory system the dominant performance factor in
high-end computing. Intensive research has recently been
conducted to improve the performance of memory systems.

However, understanding the performance of modern hierarchical
memory systems remains elusive for researchers and practitioners.

Because hierarchical memory systems are a bottleneck of
performance, measuring and evaluating memory systems has
become an important issue facing the high performance
computing community. Conventionally used performance metrics,
such as IPC (Instruction Per Cycle) and Flops (Floating point
operations per second) are designed from a computing-centric
point-of-view, and measure the overall computing performance.
They are comprehensive and affected by a multitude of factors
such as instruction sets, CPU micro-architecture, memory
hierarchy, compiler technologies, etc. and as such are not
appropriate measurements of the performance of a memory
system. On the other hand, existing memory performance metrics,
such as miss rate, bandwidth, and average memory access time
(AMAT), only measure a particular component of a memory
system. They are useful in optimization and evaluation of a given
component, but cannot accurately characterize the performance of
the memory system as a whole. In general, a component
improvement does not necessarily lead to an improvement in
terms of overall computing performance.

There are several reasons that traditional memory performance
metrics cannot directly characterize the overall performance of a
memory system. First, modern CPUs exploit several ILP
(Instruction Level Parallelism) technologies to overlap ALU
instruction executions and memory accesses. Out-of-order
executions overlap CPU execution time and memory access delay,
allowing an application to hide the miss penalty of an L1 data
cache miss that hits the L2 cache. Multithreading technology,
such as SMT [5] or fine-grained multithreading [6] could tolerate
even longer misses through main memory by executing another
thread. Speculation mechanisms are used to overcome control
dependencies, which help to avoid CPU stalls. Speculation could
also activate memory access instructions that are not committed to
the CPU registers due to miss predictions. Incorrect speculations
can aggravate the burden of data access, but the effect of miss
speculations is hard to predict. An incorrect prediction is not
always useless. If a wrongly predicted data load accesses the same
cache block as the next data load, then the incorrect speculation
can be seen as an effective data prefetch, and it benefits the
memory performance. Additionally, modern memory systems use
a large number of advanced caching technologies to decrease
average access latency. Some widely used cache optimization
methods, such as non-blocking cache [7], pipelined cache [8], and
multibanked cache [9], allow cache accesses to overlap with each
other. These technologies make the relationship between memory
access and processor performance even more complicated, since
the processor could continue accessing memory under multiple
cache misses. Thus, the influence of the improvement of one
particular component in a memory system becomes increasingly

 Copyright is held by author/owner(s).

Performance Evaluation Review, Vol. 40, No. 2, September 2012 125

Chen Ding

tangled and elusive. Evaluating memory systems from a single
memory access or on a single component does not reflect the
complexity of modern memory systems. Advanced memory
technologies make the behavior of memory access similar to
instruction dispatch, because they both execute several operations
concurrently. As with the measurement of instruction executions,
memory system evaluations should consider all the underlying
parallelism and optimizations to measure the overall performance
of a memory system.

A new metric for overall memory system performance, which is
separate from CPU performance but at the same time correlates
with CPU performance, is needed. In the other words, it should
correlate with IPC but measure data access only. The notion of
correlating with IPC is important due to the fact that memory
performance is a determining factor of the overall performance of
modern computing systems. The requirement of separating
computing from data access is to provide a better understanding of
memory systems, a better understanding of the capacity of a
memory system to handle the so-call data-intensive applications,
and a better understanding of the match between computing
power and memory system performance. To reach this goal, the
Access Per Cycle (APC) metric is proposed following the design
philosophy of Instructions Per Cycle (IPC). A series of simulation
experiments are conducted to confirm that APC is significantly
more appropriate than the existing memory metrics. The statistical
variable correlation coefficient is used to demonstrate that APC
has a 0.97 correlation coefficient value with the overall computing
performance in terms of IPC, whereas conventional metrics only
have a 0.67 correlation in the best scenarios.

2. INTRODUCTION TO APC
In this section, the formal definition of APC is provided and
investigation is carried out on the measurement of memory access
cycles of APC in advanced non-blocking memory structures.

2.1 APC Definition
IPC reflects overall performance in terms of the number of
executed instructions per cycle. After more than thirty years
development, the ILP and memory optimization technologies have
many key features in common. Table 1 lists a comparison of some
common technologies adopted by them.

Table 1. ILP and memory optimization comparison
ILP Tech. Memory Tech. Key feature in common

Pipelined stage in
CPU data path

Pipelined Cache Micro-operation overlapping

Multiple Function
Unit

Multiport/Multibanked
Cache

Simultaneous operation
dispatching

Out-of-order
execution

Non-blocking Cache Do not stall ready operations

Branch prediction/
Speculation/
Runahead[10]

Data Prefetching Pattern recognizing and only
successful with certain
possibility

Based on the similarity between processors and memory systems,
and inspired by the success of IPC, APC (Access Per Cycle) is
proposed to evaluate memory system performance. Generally
speaking, APC is measured as the number of memory accesses
per cycle. Also, the APC metric can be used to evaluate the
memory performance at each level of a memory hierarchy. More
specifically, APC is the number of memory accesses requested at
a certain memory level (e.g.: L1, L2, L3, or Main Memory)
divided by the number of memory access cycles at that level. Let
M denote the total data access (load/store) at a certain memory
level, and T denote the total cycles consumed by these accesses.
According to the definition of APC,

!"#!$%"""""""""""""""""""#$%.
The definition is simple enough. However, because modern
memory systems adopt many advanced optimizations, such as
pipelined cache, non-blocking cache, and multibanked cache, etc.
several outstanding memory accesses may co-exist in the memory
system at the same time. Counting cycle T is not as simple as it
may seem. In the APC definition, it is defined as the total cycle T
to be measured based on the overlapping mode, which means
when there are several memory accesses co-existing during the
same cycle, T only increases by one. For memory accesses, the
non-overlapping mode is adopted. That is all the memory accesses
issued are counted, including all successful or non-successful
speculations and including all concurrent accesses. For example,
if two L1 cache load requests exist at the same time, M will
increase by two.
According to the APC definition, each memory level has its own
APC value. This paper focuses on APC for L1 cache and includes
discussions of the main memory APC. The APC of L1 reflects the
overall performance of the memory system, while the main
memory’s APC is important since it has the longest access latency
in the memory hierarchy without considering I/O and file systems.
The study of these two should be sufficient in illustrating the APC
concept and demonstrating its effectiveness. To avoid confusion,
the term APCD is used for L1 data cache, APCI is used for L1
instruction cache, which is the number of L1 data or instruction
cache accesses divided by the number of overall cache access
cycles of their own. Main memory APC is denoted as APCM,
which is the number of off-chip accesses divided by the number
of overall main memory access cycles.

2.2 APC Measurement Methodology
As an important cache technology, non-blocking cache can
continue supplying data under a certain number of cache misses
by adopting Miss Status Holding Register (MSHR) [7].
Calculating an accurate number of overall memory access cycles
in a non-blocking cache is not simple. There are two reasons.
First, unlike IPC, not every clock cycle has memory access;
therefore, we need some form of access detection. Secondly,
many different memory accesses can be overlapped. Only one
cycle should be counted in the total access cycles even if there are
several different memory accesses occurring at the same time. In
practice, there could be many different ways to measure the clock
cycles under the overlapping mode. In this study, we propose an
APC measurement logic, as illustrated in Fig. 1 that supports the
overlapping mode to test the potential of APC.

Figure 1. APC Measurement Structure

To avoid overlapping memory accesses from being counted
multiple times in an access cycle, the APC Measurement Logic
(AML) simultaneously detects memory access activities from
CPU, cache and MSHR. If at least one memory access activity
exists in the CPU/Cache interface bus or inside the cache, or if
outstanding cache miss/misses are registered in the MSHR, this
clock cycle is counted as one memory access cycle. Additionally,
the AML will count the number of CPU load/store accesses by

126 Performance Evaluation Review, Vol. 40, No. 2, September 2012

Chen Ding

detecting CPU/Cache bus requests. If there are several memory
requests at the same time from the bus, all are counted. Through
this counting, the number of total accesses M and the total
memory access cycle T can be obtained, then the APC can be
calculated for this level of cache. The pseudocode of memory
access counting logic for on-chip caches including L1, L2, or even
L3 caches, is shown in Table 2. For L2 and L3 caches, while the
logic is the same, multiple buses between upper level caches and
itself may be detected simultaneously.

Table 2. Pseudo Code for Memory Access Cycle Counting Logic
If(MSHR table is not empty) //Having pending cache miss/misses

 Mem_Cycle ++;
Else if(Cache is accessing)//Cache lookup exists

 Mem_Cycle ++;
Else if(CPU/Cache bus is active)//Having a request or returning data

 Mem_Cycle ++;
Else
 Mem_Cycle does not change

The AML for L1 cache can be extended to main memory with
little variation. When measuring main memory APCM, main
memory access count and LLC MSHR Cycle are needed to be
detected. The former can be found in CPU performance counters;
and the latter, only need 1 bit to detect whether the MSHR table is
empty or not. If the MSHR is not empty, then the memory cycle
should be increased. As a result, there is almost no extra hardware
cost to measure the APCM. Therefore, &'(!)!*+,"!-./01"*22-33"2/4,566("!"#$"2127-3"""""""#8%.
3. EXPERIMENTAL SETUP
The motivation of memory evaluation is due to the fact that the
final system computing performance is heavily influenced by
memory system performance. Therefore, an appropriate memory
metric should reflect the system performance. The mathematical
statistic variable correlation coefficient (CC) is used in this study
to determine which memory metric most closely trends with the
IPC variation. Correlation coefficient describes the proximity
between two variables' changing trends from a statistics
viewpoint. It measures how well two variables match with each
other. The correlation coefficient is a number between -1 and 1.
The higher the CC absolute value is, the closer the relation
between the two variables would be [11].
A detailed out-of-order CPU model in the M5 simulator [12] was
adopted. Unless stated otherwise, the experiments assume the
following processor and cache configuration as default.

Table 3. Simulation Configuration Parameters
Parameter Value
Processor
Function units

ROB, LSQ size

1core, 2 GHz, 8-issue width,
6 IntALU 1 cycle, 1 IntMul 3 cycles,
2 FPAdd 2 cycles, 1 FPCmp 2 cycles,
1 FPCvt 2 cycles,
1 FPMul 4 cycles, 1 FPDiv 12 cycles
ROB 192, LQ 32, SQ 32

L1 caches

32KB Inst/32KB Data, 2-way, 64B line,
hit latency: 2 cycle Inst/2 cycle Data,
ICache 10 MSHR Entry,
DCache 10 MSHR Entry

L2 cache 2MB, 8-way, 64B line,
12-cycle hit latency, 20 MSHR Entry

DRAM latency/Width 200-cycle access latency/64 bits

Other experimental configurations are based on the default
configuration. Each of these only changes one or two parameter/s
of the simulation. The detailed experiment configurations are
shown in Table 4.

Table 4. A Series of Simulation Configurations
ID Description Changed

Parameter/s
C1 L1:32KB,2way; L2: 2MB,8way; Mem100ns Default Config
C2 L1:32KB,4way; L2: 2MB,8way; Mem100ns L1 Cache Assoc.
C3 L1:32KB,8way; L2: 2MB,8way; Mem100ns L1 Cache Assoc.
C4 L1:64KB,2way; L2: 2MB,8way; Mem100ns L1 Cache Size
C5 L1:64KB,4way; L2: 2MB,8way; Mem100ns L1 Cache Size &

Assoc.
C6 L1:64KB,8way; L2: 2MB,8way; Mem100ns L1 Cache Size &

Assoc.
C7 L1:I$32KB,2way, D$64KB,2way;

L2: 2MB,8way; Mem100ns
Only DCache Size

C8 L1:I$64KB,2way, D$32KB, 2way;
L2: 2MB,8way; Mem100ns

Only ICache Size

C9 L1:I$64KB,4way, D$32KB, 2way;
L2: 2MB,8way; Mem100ns

Only ICache Size &
Assoc.

C10 L1:I$64KB,8way, D$32KB, 2way;
L2: 2MB,8way; Mem100ns

Only ICache Size &
Assoc.

C11 L1:32KB,2way; L2: 4MB,8way; Mem100ns L2 Cache Size
C12 L1:32KB,2way; L2: 8MB,8way; Mem100ns L2 Cache Size
C13 L1:32KB,2way; L2: 2MB,16way; Mem100ns L2 Cache Assoc.
C14 L1:32KB,2way; L2: 4MB,16way; Mem100ns L2 Cache Size &

Assoc.
C15 L1:32KB,2way; L2: 8MB,16way; Mem100ns L2 Cache Size &

Assoc.
C16 L1:32KB,2way; L2: 2MB,8way; Mem30ns Main memory latency
C17 L1:32KB,2way; L2: 2MB,8way; Mem60ns Main memory latency
C18 L1:32KB,2way, MSHR 1;

L2: 2MB,8way; Mem100ns
MSHR Entry

C19 L1:32KB,2way, MSHR 2;
L2: 2MB,8way; Mem100ns

MSHR Entry

C20 L1:32KB,2way, MSHR 16;
L2: 2MB,8way; Mem100ns

MSHR Entry

The configuration C1~C17 are the basic cache/memory
configurations, which only change the cache size, associativity, or
memory latency. These basic configurations have 10 MSHR
entries each. The C18 changes the cache model into a blocking
cache structure. C19 and C20 increase memory level parallelism
by increasing the MSHR entry to 2 and 16 respectively. By
changing memory system configurations, it is possible to observe
memory performance variation trends and IPC variation trends,
and examine which memory metric has a performance trend that
best matches that of IPC’s.
The simulations were conducted with 26 benchmarks from SPEC
CPU2006 suite [13]. Five benchmarks in the set were omitted
because of compatibility issues with the simulator. The
benchmarks were compiled using GCC 4.3.2 with -O2
optimization. The test input sizes provided by the benchmark suite
were adopted for all benchmarks. For each benchmark, one billion
instructions were simulated to collect statistics, or all executed
instructions if the benchmark finished before then.

4. EVALUATION OF RESULTS
Based on the above configurations, the M5 simulator was used to
collect the measurements of different memory metrics. Each
memory metric is then correlated against the IPC from two
approaches. First, based on one configuration, we correlate each
application's memory metric with its IPC. Second, we focus on
one application, while changing memory configurations, the
variation similarity between each memory metric and IPC is
observed. The first approach tests the correctness of each memory
performance metric. The second tests the sensitivity of each
memory performance metric. The combination of these two
provides a solid foundation to determine the appropriateness of a
metric. The results show that APC has the highest correlation
value with IPC in both cases.

Performance Evaluation Review, Vol. 40, No. 2, September 2012 127

4.1 Proximity for different applications
IPC with different memory metrics were compared. The memory
metrics compared include, Access per Cycle (APC), Hit Rate
(HR, the counterpart of Miss rate), Hits per 1K instruction (HPKI,
the counterpart of Misses per 1K instructions), average miss
penalty (AMP), and Average Memory Access Time (AMAT)
[14]. For APC, HR, and HPKI, there should be a positive relation
with IPC; for AMP and AMAT, there should be a negative
relation with IPC. To show the proximity of different memory
metrics with IPC, Spec CPU2006 was run for all configurations
(C1~C20). The correlation coefficient for each memory metric
against IPC was calculated and is shown in Fig. 2. From Fig. 2 it
can be observed that APC has the strongest relation with IPC,
whose average CC value is 0.876. This strong relation between
APC and IPC also reflects the fact that the final system
performance largely depends on the performance of the memory
hierarchy. AMAT is the best, with an average CC value of -0.672
among other metrics, since it considers both hit and miss cases.
Compared with AMAT, APC improves correlation value by
30.4%.

Figure 2. Correlation coefficients under different configurations

4.1.1 Instruction Cache Affection

To optimize the accuracy of APC, the L1 instruction cache APC,
APCI is measured. Using APCD to denote the L1 data cache APC,
then APCAll, which equals APCD�APCI, measures overall L1
performance. The reason APCD and APCI are correlated with
multiplication is inspired by the conditional possibility. Only
when the instruction is efficiently fetched into the CPU, can a data
access request be generated.

Figure 3. Normalized IPC, APCI, APCD, and APCAll

The correlation coefficient of APCAll under the default
configuration (C1) improves by 2.18%. For all configurations
(C1~C20), the accuracy of APCAll is 0.899, an improvement of
2.58% on average compared to APCD. For instruction accesses,
most applications work well with little catch misses. Only very
small numbers of applications, such as gcc, GemsFDTD, and
h264ref, have large instruction miss rates. For these applications,
APCAll is a more accurate measurement. The normalized APCI,
APCD, APCAll and IPC of default configuration (C1) are shown in
Fig. 3. The normalization is based on the magnitude of each
metric. From Fig. 3, it can be seen that the APCAll and IPC have

almost the same variation trends. Fig. 3 confirms that the overall
application performance is largely determined by the memory
performance as can be expressed by the APC metric.

4.2 Proximity for different configurations
In this section, we focus on each application, in order to observe
the impact of memory configuration on performance and
correlation. Two groups of 20 simulation configurations are
measured. The first group (C1~C17 in Table 4) changes basic
cache/memory configuration. Each configuration inside the first
group changes L1/L2 cache size or associativity, or memory
latency respectively. The other group (C18~C20) changes non-
blocking cache ability with altering the number of MSHR entry.
The simulation results of the first group are presented in this
section. In the next section, simulations with both groups are
conducted. To clearly show the difference, APCD and APCAll are
compared against the other four memory metrics from Fig. 4 to
Fig. 7. Similar to APC which has two measures APCD and APCAll,
every conventional memory metric also has two measures which
represent data cache performance only and comprehensive cache
performance (data and instruction cache combined performance).
For example, when considering AMAT, AMATD is used to
describe data cache AMAT, and AMATAll (equal to
AMATD�AMATI) describes comprehensive cache AMAT.

Figure 4. The Correlation Coefficients of APC and HR

Figure 5. The Correlation Coefficients of APC and HPKI

In Fig. 4 to Fig. 7, it can be seen that APCAll has the highest
correlation coefficient value with IPC, with an average value for
all applications of 0.9632, and this means that APCAll and IPC
have a dominant relation. For other memory metrics, AMATAll
has the closest relation with IPC, with an average value of -
0.9393, a little lower than APCAll. This shows if advanced data
access technologies, such as non-blocking, are not considered,
AMAT is a quite good metric in reflecting memory performance
variation. However, when considering non-blocking structure,
AMAT is misleading. (Please refer to next section for details). For
other metrics, there are some misleading indications as well. For
example, Hit Rate should have positive coefficient values, but for
several applications its coefficient values are negative or
approximate to zero.

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

APC HR HPKI AMP AMAT

0

0.2

0.4

0.6

0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

T
D

h2

64
re

f
to

nt
o

lb
m

om

ne
tp

p
as

ta
r

sp
hi

nx
3

sp
ec

ra
nd

_i

sp
ec

ra
nd

_f

APCD APCI APC(all) IPC

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) HitRate D HitRate(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) HPKI D HPKI(all)

128 Performance Evaluation Review, Vol. 40, No. 2, September 2012

4.1 Proximity for different applications
IPC with different memory metrics were compared. The memory
metrics compared include, Access per Cycle (APC), Hit Rate
(HR, the counterpart of Miss rate), Hits per 1K instruction (HPKI,
the counterpart of Misses per 1K instructions), average miss
penalty (AMP), and Average Memory Access Time (AMAT)
[14]. For APC, HR, and HPKI, there should be a positive relation
with IPC; for AMP and AMAT, there should be a negative
relation with IPC. To show the proximity of different memory
metrics with IPC, Spec CPU2006 was run for all configurations
(C1~C20). The correlation coefficient for each memory metric
against IPC was calculated and is shown in Fig. 2. From Fig. 2 it
can be observed that APC has the strongest relation with IPC,
whose average CC value is 0.876. This strong relation between
APC and IPC also reflects the fact that the final system
performance largely depends on the performance of the memory
hierarchy. AMAT is the best, with an average CC value of -0.672
among other metrics, since it considers both hit and miss cases.
Compared with AMAT, APC improves correlation value by
30.4%.

Figure 2. Correlation coefficients under different configurations

4.1.1 Instruction Cache Affection

To optimize the accuracy of APC, the L1 instruction cache APC,
APCI is measured. Using APCD to denote the L1 data cache APC,
then APCAll, which equals APCD�APCI, measures overall L1
performance. The reason APCD and APCI are correlated with
multiplication is inspired by the conditional possibility. Only
when the instruction is efficiently fetched into the CPU, can a data
access request be generated.

Figure 3. Normalized IPC, APCI, APCD, and APCAll

The correlation coefficient of APCAll under the default
configuration (C1) improves by 2.18%. For all configurations
(C1~C20), the accuracy of APCAll is 0.899, an improvement of
2.58% on average compared to APCD. For instruction accesses,
most applications work well with little catch misses. Only very
small numbers of applications, such as gcc, GemsFDTD, and
h264ref, have large instruction miss rates. For these applications,
APCAll is a more accurate measurement. The normalized APCI,
APCD, APCAll and IPC of default configuration (C1) are shown in
Fig. 3. The normalization is based on the magnitude of each
metric. From Fig. 3, it can be seen that the APCAll and IPC have

almost the same variation trends. Fig. 3 confirms that the overall
application performance is largely determined by the memory
performance as can be expressed by the APC metric.

4.2 Proximity for different configurations
In this section, we focus on each application, in order to observe
the impact of memory configuration on performance and
correlation. Two groups of 20 simulation configurations are
measured. The first group (C1~C17 in Table 4) changes basic
cache/memory configuration. Each configuration inside the first
group changes L1/L2 cache size or associativity, or memory
latency respectively. The other group (C18~C20) changes non-
blocking cache ability with altering the number of MSHR entry.
The simulation results of the first group are presented in this
section. In the next section, simulations with both groups are
conducted. To clearly show the difference, APCD and APCAll are
compared against the other four memory metrics from Fig. 4 to
Fig. 7. Similar to APC which has two measures APCD and APCAll,
every conventional memory metric also has two measures which
represent data cache performance only and comprehensive cache
performance (data and instruction cache combined performance).
For example, when considering AMAT, AMATD is used to
describe data cache AMAT, and AMATAll (equal to
AMATD�AMATI) describes comprehensive cache AMAT.

Figure 4. The Correlation Coefficients of APC and HR

Figure 5. The Correlation Coefficients of APC and HPKI

In Fig. 4 to Fig. 7, it can be seen that APCAll has the highest
correlation coefficient value with IPC, with an average value for
all applications of 0.9632, and this means that APCAll and IPC
have a dominant relation. For other memory metrics, AMATAll
has the closest relation with IPC, with an average value of -
0.9393, a little lower than APCAll. This shows if advanced data
access technologies, such as non-blocking, are not considered,
AMAT is a quite good metric in reflecting memory performance
variation. However, when considering non-blocking structure,
AMAT is misleading. (Please refer to next section for details). For
other metrics, there are some misleading indications as well. For
example, Hit Rate should have positive coefficient values, but for
several applications its coefficient values are negative or
approximate to zero.

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

APC HR HPKI AMP AMAT

0

0.2

0.4

0.6

0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

T
D

h2

64
re

f
to

nt
o

lb
m

om

ne
tp

p
as

ta
r

sp
hi

nx
3

sp
ec

ra
nd

_i

sp
ec

ra
nd

_f

APCD APCI APC(all) IPC

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) HitRate D HitRate(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) HPKI D HPKI(all)

Figure 6. The Correlation Coefficients of APC and AMP

Figure 7. The Correlation Coefficients of APC and AMAT

One reason for the divergence is that HR does not explicitly
include lower level cache performance factors, such as miss
latency information (whereas APC and AMAT do consider lower
level cache performance), so when L2 cache size increases or
main memory latency decreases, the IPC will increase, but Hit
Rate does not change. AMP only considers lower level cache miss
access. When L1 data/instruction cache size increases or
associativity increases, the number of miss accesses decreases, but
the miss latency for each miss may not change.

4.3 Changing Cache Access Parallelism
APC and AMAT have very similar correlation values with IPC
when changing basic cache/memory configurations. Here the
number of MSHR entries is altered to examine whether the two
memory metrics still have a similar relation with IPC. Fig. 8
shows the correlation coefficient of APC and AMAT for all the
twenty configurations listed in Table 4.

Figure 8. The Correlation Coefficients of APC and AMAT with

MSHR changes

Fig. 8 shows that APC still has the same correlation, with an
average value of 0.9696. However, AMAT could not correctly
reflect IPC for most applications. The reason is that when there
are not enough MSHR entries, the CPU will be blocked by the
memory system. APC can record the CPU blocked cycles by
detecting MSHR’s non-emptiness, whereas AMAT cannot. On the

contrary, contention increases with the number of MSHR entries;
therefore, the individual data access time, that is AMAT, will
increase as well. The variation of IPC and APC matches well with
each other. However, AMAT gives a false indication about
memory system performance.

Through the above simulation and analyses, under different
applications and under different configurations, it can be seen that
the APC metric is the most appropriate performance metric for
memory systems. APC can directly determine the overall system
performance in all the testing. In contrast, other existing memory
metrics cannot accurately reflect the system performance, and
sometimes even mislead the performance.

5. DISCUSSION
5.1 Bottleneck inside memory system
An important question is at which level of a memory system is the
actual bottleneck of its performance. According to the APC's
definition, each level of memory hierarchy has its own APC
values: L1 data and instruction caches have APCD and APCI
respectively; L2 cache has APCL2; and main memory has APCM.
However, each level's APC not only represents the performance of
its memory level, but also includes all the lower levels of the
memory hierarchy. For example, the value of APCD represents the
memory performance of L1 data cache, L2 cache and main
memory; and APCL2 represents the memory performance of L2
cache and main memory. Only APCM, which is the lowest level in
the memory hierarchy, represents main memory itself when disk
storage is not considered. Therefore, by correlating IPC with APC
at each level, one can find the lowest level that has a dominating
correlation with IPC and can quantitatively detect the performance
bottleneck inside the memory system. Fig. 9 shows the correlation
value of all level APCs for 26 benchmarks. For example, for
benchmark mcf, both APCAll and APCL2 have dominant relation
with IPC, but its APCM does not. That means the performance of
mcf application is determined by its L2 cache performance, and
has a good locality. For benchmark lbm, since all levels of APC
have dominating correlation with IPC, the performance of lbm is
determined by the performance of the lowest level, namely the
main memory level.

Figure 9. Correlation Coefficients of APCAll, APCL2, and APCM

5.2 A quantitative definition of data intensive
The term "Data-intensive Applications" and “Data-intensive
Computing” are widely-used terms in describing application or
computing where data movement, instead of computing, is the
dominant factor. However, there is no commonly accepted
definition of “data-intensive computing” or quantitative
measurement of “data intensive”. As APC characterizes the
overall memory performance, the IPC and APC correlation value
provides a quantitative definition of data intensive. The idea is
simple: if APCM dominates IPC performance, then the application
is data intensive. The degree of dominance provides a

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
bz

ip
2

gc
c

bw
av

es

ga
m

es
s

m
cf

m

ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le

sl
ie

3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po

vr
ay

ca

lc
ul

ix

sj
en

g
G

em
sF

D
TD

h2

64
re

f
to

nt
o

lb
m

om

ne
tp

p
as

ta
r

sp
hi

nx
3

sp
ec

ra
nd

_i

sp
ec

ra
nd

_f

APCD APC(all) AMP AMP(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) AMATD AMAT(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) AMATD AMAT(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

sp
ec

ra
nd

_i

sp
ec

ra
nd

_f

G
em

sF
D

TD

om
ne

tp
p

sp
hi

nx
3

h2
64

re
f

po
vr

ay

to
nt

o
gc

c
na

m
d

as
ta

r
ca

lc
ul

ix

gr
om

ac
s

m
cf

so

pl
ex

ga

m
es

s
de

al
II

m
ilc

bz

ip
2

le
sl

ie
3d

ca

ct
us

A
D

M

bw
av

es

sj
en

g
ze

us
m

p
go

bm
k

lb
m

APC(all) APCL2 APCM

Figure 6. The Correlation Coefficients of APC and AMP

Figure 7. The Correlation Coefficients of APC and AMAT

One reason for the divergence is that HR does not explicitly
include lower level cache performance factors, such as miss
latency information (whereas APC and AMAT do consider lower
level cache performance), so when L2 cache size increases or
main memory latency decreases, the IPC will increase, but Hit
Rate does not change. AMP only considers lower level cache miss
access. When L1 data/instruction cache size increases or
associativity increases, the number of miss accesses decreases, but
the miss latency for each miss may not change.

4.3 Changing Cache Access Parallelism
APC and AMAT have very similar correlation values with IPC
when changing basic cache/memory configurations. Here the
number of MSHR entries is altered to examine whether the two
memory metrics still have a similar relation with IPC. Fig. 8
shows the correlation coefficient of APC and AMAT for all the
twenty configurations listed in Table 4.

Figure 8. The Correlation Coefficients of APC and AMAT with

MSHR changes

Fig. 8 shows that APC still has the same correlation, with an
average value of 0.9696. However, AMAT could not correctly
reflect IPC for most applications. The reason is that when there
are not enough MSHR entries, the CPU will be blocked by the
memory system. APC can record the CPU blocked cycles by
detecting MSHR’s non-emptiness, whereas AMAT cannot. On the

contrary, contention increases with the number of MSHR entries;
therefore, the individual data access time, that is AMAT, will
increase as well. The variation of IPC and APC matches well with
each other. However, AMAT gives a false indication about
memory system performance.

Through the above simulation and analyses, under different
applications and under different configurations, it can be seen that
the APC metric is the most appropriate performance metric for
memory systems. APC can directly determine the overall system
performance in all the testing. In contrast, other existing memory
metrics cannot accurately reflect the system performance, and
sometimes even mislead the performance.

5. DISCUSSION
5.1 Bottleneck inside memory system
An important question is at which level of a memory system is the
actual bottleneck of its performance. According to the APC's
definition, each level of memory hierarchy has its own APC
values: L1 data and instruction caches have APCD and APCI
respectively; L2 cache has APCL2; and main memory has APCM.
However, each level's APC not only represents the performance of
its memory level, but also includes all the lower levels of the
memory hierarchy. For example, the value of APCD represents the
memory performance of L1 data cache, L2 cache and main
memory; and APCL2 represents the memory performance of L2
cache and main memory. Only APCM, which is the lowest level in
the memory hierarchy, represents main memory itself when disk
storage is not considered. Therefore, by correlating IPC with APC
at each level, one can find the lowest level that has a dominating
correlation with IPC and can quantitatively detect the performance
bottleneck inside the memory system. Fig. 9 shows the correlation
value of all level APCs for 26 benchmarks. For example, for
benchmark mcf, both APCAll and APCL2 have dominant relation
with IPC, but its APCM does not. That means the performance of
mcf application is determined by its L2 cache performance, and
has a good locality. For benchmark lbm, since all levels of APC
have dominating correlation with IPC, the performance of lbm is
determined by the performance of the lowest level, namely the
main memory level.

Figure 9. Correlation Coefficients of APCAll, APCL2, and APCM

5.2 A quantitative definition of data intensive
The term "Data-intensive Applications" and “Data-intensive
Computing” are widely-used terms in describing application or
computing where data movement, instead of computing, is the
dominant factor. However, there is no commonly accepted
definition of “data-intensive computing” or quantitative
measurement of “data intensive”. As APC characterizes the
overall memory performance, the IPC and APC correlation value
provides a quantitative definition of data intensive. The idea is
simple: if APCM dominates IPC performance, then the application
is data intensive. The degree of dominance provides a

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
bz

ip
2

gc
c

bw
av

es

ga
m

es
s

m
cf

m

ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le

sl
ie

3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po

vr
ay

ca

lc
ul

ix

sj
en

g
G

em
sF

D
TD

h2

64
re

f
to

nt
o

lb
m

om

ne
tp

p
as

ta
r

sp
hi

nx
3

sp
ec

ra
nd

_i

sp
ec

ra
nd

_f

APCD APC(all) AMP AMP(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) AMATD AMAT(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga

m
es

s
m

cf

m
ilc

ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M

le
sl

ie
3d

na

m
d

go
bm

k
de

al
II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

sj

en
g

G
em

sF
D

TD

h2
64

re
f

to
nt

o
lb

m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp

ec
ra

nd
_f

APCD APC(all) AMATD AMAT(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

sp
ec

ra
nd

_i

sp
ec

ra
nd

_f

G
em

sF
D

TD

om
ne

tp
p

sp
hi

nx
3

h2
64

re
f

po
vr

ay

to
nt

o
gc

c
na

m
d

as
ta

r
ca

lc
ul

ix

gr
om

ac
s

m
cf

so

pl
ex

ga

m
es

s
de

al
II

m
ilc

bz

ip
2

le
sl

ie
3d

ca

ct
us

A
D

M

bw
av

es

sj
en

g
ze

us
m

p
go

bm
k

lb
m

APC(all) APCL2 APCM

Performance Evaluation Review, Vol. 40, No. 2, September 2012 129

measurement of data intensiveness. We use the correlation value
of APCM to quantify the degree of data intensiveness. There are
three reasons to use APCM instead of APCD to measure data
intensiveness. First, due to the "memory-wall" problem, memory
latency becomes the most important performance bottleneck in the
memory hierarchy and dramatically drags CPU speed. Next, we
do not count data re-use as part of data-intensiveness unless it has
to be read from main memory again. Finally, according to the
definitions of APCs, if the APCM has a dominant relation with
IPC, then APCL2 and APCD will also have a dominant relation
with IPC.
Fig. 9 is sorted according to APCM correlation values in ascending
order (the farther to the left, the smaller the value of APCM). The
correlation value of APCM is divided into three intervals, that is (-
1, 0.3), [0.3, 0.9), and [0.9, 1). Thirteen applications counted from
the left side (from specrand_i to gromacs) fall into the first
interval. According to the three APC values used in Figure 9, it
can be concluded that the application performance of these 13
applications are dominated by the L1 cache, not L2 or main
memory because the correlation values of APCL2 and APCM of
these applications are negative or very small, As the correlation
value of APCM increases, the effect of main memory to the overall
application becomes increasingly important. Therefore, in the
second interval (from mcf to sjeng), some applications'
performance are dominated by the L2 caches, e.g. mcf, milc.
However, for some other applications, such as bzip2, L2 and main
memory are both important. For the third interval, the
applications' performances are dominated by main memory
performance. This observation motivates us to define an
application data intensive if its correlation coefficient of APCM
and IPC is equal to or larger than 0.9. Another reason for picking
0.9 as the threshold is that, according to mathematical definition
of correlation coefficient, when the correlation value of two
variables is equal to or larger than 0.9, then the two variables have
a dominant relation. Therefore, here we define that an application
is data intensive if and only if 9*5*"%,5-,3+:-"&;;7+2*5+/,"≡&'(!"#$&)"#'()*,
and the value of the correlation provides a quantitative
measurement of the data-intensiveness.

6. RELATED WORK
Except the four traditional memory metrics (miss rate (MR), miss
per kilo-instructions (MPKI), average miss penalty (AMP), and
average memory access time (AMAT) [14]) listed in the earlier
sections, there is a new main memory metric called Memory
Level Parallelism (MLP) [15]. It is the average number of long-
latency main memory outstanding accesses when there is at least
one such outstanding access [16]. Assuming each off-chip
memory access has a constant latency, say m cycles, one can
prove APCM=MLP/m. That means APCM is directly proportional
to MLP. Any analyzing indication from MLP on CPU micro-
architecture could also be obtained from APCM. A known
limitation of MLP is it only focuses on off-chip memory access
based on the epoch memory access mode for some commercial or
database workloads [16]. For some traditional CPU intensive
applications, only considering main memory access is far from
enough. In contrast, APC not only can be used to analyze
commercial applications, but also to analyze traditional scientific
applications, so it has a much wider application.

7. CONCLUSION
In this paper we proposed a new memory metric, APC, gave its
measurement methodology, and demonstrated its unique ability in

measuring the overall and layered performance of modern
hierarchical memory systems. Intensive simulations were
conducted with a modern computer system simulator, M5, to
verify the potential of APC and compared it with existing memory
performance metrics. Simulation and statistical results show that
APC is a significantly more appropriate memory metric than other
existing memory metrics when reflecting overall performance of a
memory system. APC can be applied at different levels of a
memory hierarchy. Based on the correlation coefficient with
different level APCs and IPC, the bottleneck of a memory
hierarchy can be identified. In addition, the correlation of APC
and IPC provides a quantitative measurement of data-
intensiveness of an application. It provides a measurement of
data-centric computing, and could have profound impact in future
data-centric algorithm design and system development.

8. REFERENCES
[1] X.-H. Sun, and L. Ni, Another View on Parallel Speedup, Proc. of

IEEE Supercomputing'90, NY, Nov. 1990.
[2] W. Wulf and S. McKee. Hitting the memory wall: Implications of

the obvious. ACM SIGArch Computer Architecture News, Mar.
1995.

[3] Michael E. Thomadakis, The Architecture of the Nehalem Processor
and Nehalem-EP SMP Platforms, A research report of Texas A&M
University, Mar. 2011. http://sc.tamu.edu/systems/eos / nehalem.pdf

[4] Robert Fiedler, Blue Waters Architecture, Great lakes consortium for
Petascale Computation. Oct. 2010.

[5] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, et.al Exploiting
Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor, in Proceedings of the 23rd
Annual International Symposium on Computer Architecture, May
1996, 191~202.

[6] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun,
Niagara: A 32-Way Multithreaded SPARC Processor, IEEE Micro,
21-29, Mar. 2005.

[7] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache
Organization. In 8th International Symposium on Computer
Architecture (ISCA81), 81–87, 1981.

[8] Amit Agarwal, Kaushik Roy, T. N. Vijaykumar: Exploring High
Bandwidth Pipelined Cache Architecture for Scaled
Technology. 2003: 10778-10783

[9] Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, et.al, On High-
Bandwidth Data Cache Design for Multi-Issue Processors, IEEE
Micro-30, Dec. 1997.

[10] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors, in Proceedings of the 9th
International Symposium on High-Performance Computer
Architecture (HPCA), 129-140, Anaheim, CA, Feb. 2003.

[11] Jim Higgins, The Radical Statistician: A Practical Guide to
Unleashing the Power of Applied Statistics in the Real World,
Biddle Consulting Group, Apr. 2011.
http://www.biddle.com/documents/bcg_comp_chapter2.pdf,

[12] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S.
Reinhardt. The M5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52, Jul. 2006.

[13] C. D. Spradling, SPEC CPU2006 benchmark tools. ACM SIGARCH
Computer Architecture News, 2007.

[14] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th edition, Sep. 2006.

[15] A. Glew, “MLP yes! ILP no!,” in ASPLOS Wild and Crazy Idea
Session ‘98, Oct. 1998.

[16] Y. Chou, B. Fahs and S. Abraham, Microarchitecture Optimizations
for Exploiting Memory-Level Parallelism, in 31st International
Symposium on Computer Architecture (ISCA04), Jun. 2004.

130 Performance Evaluation Review, Vol. 40, No. 2, September 2012

HOTL: a Higher Order Theory of Locality

Xiaoya Xiang Chen Ding Hao Luo
Department of Computer Science

University of Rochester
{xiang, cding, hluo}@cs.rochester.edu

Bin Bao ∗

Adobe Systems Incorporated
bbao@adobe.com

Abstract
The locality metrics are many, for example, miss ratio to test perfor-
mance, data footprint to manage cache sharing, and reuse distance
to analyze and optimize a program. It is unclear how different met-
rics are related, whether one subsumes another, and what combina-
tion may represent locality completely.

This paper first derives a set of formulas to convert between
five locality metrics and gives the condition for correctness. The
transformation is analogous to differentiation and integration. As a
result, these metrics can be assigned an order and organized into a
hierarchy.

Using the new theory, the paper then develops two techniques:
one measures the locality in real time without special hardware sup-
port, and the other predicts multicore cache interference without
parallel testing. The paper evaluates them using sequential and par-
allel programs as well as for a parallel mix of sequential programs.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Modeling Techniques

General Terms Measurement, Performance, Theory

Keywords Locality metrics, Locality modeling

1. Introduction
The memory system of a computer is organized as a hierarchy.
Locality metrics are used in software and hardware to manage and
optimize the use of the memory hierarchy. For locality analysis, the
basic unit of information is a data access, and the basic relation is a
data reuse. The theory of locality is concerned with the fundamental
properties of data accesses and reuses, just as the graph theory is
with nodes and their links.

An influential theory developed over the past four decades is
the working-set locality theory (WSLT) [14]. In this paper, we
develop a similar theory for cache locality (CLT). Cache locality
metrics are many and varied. To quantify performance, we use the
miss rate. To manage sharing, we use the footprint. To analyze and
optimize a program, we use the reuse distance. Some metrics are
hardware dependent, useful for evaluating a specific machine and

∗ The work was done when Bin Bao was a graduate student at the University
of Rochester.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $10.00

managing it at run time. Others are hardware independent, useful
for optimizing a program for all cache sizes. The two types of
metrics are converging in multicore caching, where the total cache
size is fixed but the available portion for each program varies.

In this paper we consider five locality metrics, with a short
description here and the precise definitions in the next section.

• Footprint: the expected amount of data a program accesses in a
given length window.
• Inter-miss time: the average time between two cache misses in

a given size cache.
• Volume fill time: the average time for the program to access a

given volume of data.
• Miss ratio: the fraction of references that cause cache misses.
• Reuse distance: for each data access, the amount of data ac-

cessed between this and the previous access to the same datum.

To denote them collectively, we insert ‘et’ between the last two,
take the initial letters (except for the fill time from which we take
one ’l’), and produce the acronym “Filmer”.

We present a theory showing that the five Filmer metrics can be
mutually derived from each other. The conversion involves taking
the difference in one direction and the sum in the reverse direction.
The theoretical relation is analogous to differentiation and integra-
tion. Hence we call it a higher order theory of locality (HOTL).

Similar conversions have been part of the working set theory,
making it the first HOTL theory (Section 2.8). The working set
theory was developed to analyze locality in the main memory. The
new theory we develop is for cache memory. It endows each of the
five cache locality metrics the collective strength of all its Filmer
peers:

• Efficiency. If we can measure one Filmer metric on-line, we can
calculate all the others at the same time.
• Composability. The miss rate does not compose in that when a

group of programs are run together, the number of misses is not
the sum of the misses of each member running alone. If another
Filmer metric is composable, then we can compose the miss
rate indirectly.
• Hardware sensitivity. If we can measure the effect of cache

associativity and other hardware parameters on the miss rate,
we can compute their impact on the other metrics.

The conversion methods we describe are not always accurate.
The correctness depends on whether the footprint statistics in reuse
windows is similar to the footprint in general windows, in other
words, whether the reuse windows are representative of general
windows. We call the condition the reuse-window hypothesis. The
Filmer metrics capture different aspects of an execution: the reuse
distance is per access, the footprint is per window, while the miss-

ratio has the characteristics of both. Their conversion creates con-
flicts, and the reuse-window hypothesis is the condition for recon-
ciliation.

Our recent work shows that one of the Filmer metrics, the
average data footprint, can be computed efficiently [46]. In this
work, we further improve the efficiency through sampling. More
importantly, we apply the HOTL theory to convert it to reuse
distance and predict the miss ratio. The purpose of the miss-ratio
prediction is twofold: to validate the theory and to show a practical
value. The main results are:

• Real-time locality measurement. The HOTL-enabled technique
predicts the miss ratio for thousands of cache sizes with a
negligible overhead. When tested on SPEC 2006 and PARSEC
parallel benchmarks, the prediction matches the actual miss
ratio measured using the hardware counters. Without sampling,
the analysis is 39% faster than simulating a single cache size.
With sampling, the end-to-end slowdown is less than 0.5% on
average with only three programs over 1%.
• Cache interference prediction. The HOTL-enabled technique

predicts the effect of cache sharing without parallel testing. For
pair interference, the result can be characterized as half-and-
half (Section 4.5).

Knowing the miss rate does not mean knowing the memory per-
formance. The actual effect of a cache miss depends significantly
on data prefetching, memory-bus arbitration, and other factors ei-
ther in the CPU above the cache hierarchy or the main memory
below. In this paper, we limit our scope to the models of data and
cache usage and to methods that measure and reduce the number of
cache misses.

2. The Higher Order Theory of Cache Locality
The theory includes a series of conversion methods and their cor-
rectness condition. We will refer to these methods collectively as
the HOTL conversion for the Filmer metrics.

2.1 Locality Metrics
The working set theory defines the locality metrics to measure the
intrinsic demand of a process [13]. The actual performance is the
hardware response to the program demand. By defining locality
metrics independent of their specific uses, the approach combines
clarity and concision on the one hand and usefulness and flexibility
on the other. We follow the same approach and say that a locality
metric is program intrinsic if it uses only the information from the
data access trace of a program. Throughout the paper, we use n
to denote the length of the trace and m the total amount of data
accessed in the trace.

A footprint is defined on a time window, and the miss ratio for
a cache size. Since we do not know a priori in which window or
cache the metrics may be used, we define the footprint and miss
ratio metrics to include all windows and all cache sizes — they are
functions over a parameter range.

The five metrics we consider are program intrinsic functions
defined on a sequential data access trace. The time is logical and
counted by the number of data accesses from the start of the execu-
tion. The cache is fully associative and uses the LRU replacement,
with a fixed cache-block size. We will consider the physical time
and set associative cache when we apply the basic theory. We use
the term miss ratio if the time is logical and miss rate if it is physi-
cal.

2.2 Average Footprint
A footprint is the amount of data accessed in a time window. A
performance tool often measures it for some execution window,

i.e. taking a snapshot. A complete measure should consider all
execution windows. For each length l, the average footprint fp(l)
is the average footprint size in all windows of length l.

Let W be the set of all length-l windows in a length-n trace.
Each window w has a footprint fpw. The average footprint fp(l)
is the total footprint in these windows divided by n − l + 1, the
number of the length-l windows.

fp(l) =

∑
all w of length l fpw

n− l + 1
For example, the trace “abbb” has 3 windows of length 2: “ab”,

“bb”, and “bb”. The size of the 3 footprints is 2, 1, and 1, so
fp(2) = (2 + 1 + 1)/3 = 4/3.

The footprint is composable in that the combined footprint of
two programs is the sum of their individual footprints (assuming no
data sharing). We have used this property when developing efficient
models of cache sharing [45, 46]. Another useful property, which
we will explore in Section 3, is that the footprint is amenable to
sampling.

The working set theory defined the average number of pages ac-
cessed in a time window as the working set size and gave a linear-
time method to estimate the size [13]. A number of other approxi-
mate solutions followed [9, 27, 36, 39]. Our recent work gave two
algorithms to measure the footprints in all execution windows and
compute either the distribution [45] or the average [46] of the foot-
prints for windows of the same length. The average footprint, e.g.
the one in the preceding example, can be computed precisely in
linear time. We use the average footprint in this work. Our mea-
surement algorithm [46] will play a critical role in the new theory
in Section 2.7.

2.3 Volume Fill Time
Intuitively, we may consider the cache as a reservoir and the data
access of a program a stream feeding into the reservoir with new
content. Having a fixed capacity, the reservoir discharges (evicts)
previous volumes as it receives the new flows. The key concept in
this analogy is the volume fill time, the time taken for a stream to
fill the reservoir.

The volume fill time is the time a program takes to access a
given amount of data, or symbolically, vt(v) for volume v. The
metric is program intrinsic. To model hardware, we simplify and
assume that the cache is fully associative LRU. Under the assump-
tion, the volume fill time vt(c) is the time for a program to fill the
cache of size c. Whether the cache is empty or not, after vt(c), the
cache is populated with the data (and only the data) accessed in the
last vt(c) time. In the cold-start cache, all data will be brought in by
cache misses. In the warm cache, the fraction of the data already in
the cache will stay, and the rest will be brought in by cache misses.
We call the volume fill time interchangeably as the cache fill time.

The fill time can be defined in two different ways. First, we
define it as the inverse of the footprint function:

vt(c) =

{
fp −1(c) if 0 ≤ c ≤ m

∞ if c > m

where m is the total amount of program data. Within the range
0 ≤ c ≤ m, the invariant fp(vt(c)) = fp(fp −1(c)) = c
symbolizes the conversion that when the footprint is the cache
size, the footprint window is the fill time. The conversion is shown
visually in Figure 1. From the average footprint curve, we find the
cache size c on the y-axis and draw a level line to the right. At the
point the line meets the curve, the x-axis value is the fill time vt(c).

A careful reader may question the uniqueness of the fill time.
For example for the trace “xx...x”, it is unclear what should be
the fill time vt(1). When defined as the inverse function fp−1,

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =
fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vtFilmer(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vtdirect(1) = (1 + 1 + 1 + 2 + 1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+ 1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c + 1)− vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

{
vt(c + 1)− vt(c) if 0 ≤ c < m
n
m

if c ≥ m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + ∆x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x + ∆x)− fp(x)

∆x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c ∈ [fp(x), fp(x + ∆x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let ∆x = x2 − x1 be the
difference in the window length and ∆y = y2−y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) = vt(y2)−vt(y1)

y2−y1
= ∆x

∆y
, and the footprint

conversion computes the miss ratio mr(fp(x1)) = mr(y1) =
fp(x2)−fp(x1)

x2−x1
= ∆y

∆x
.

For associative cache, Smith showed that cache conflicts can
be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c− 1)−mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

To review the conversion formulas, let’s consider the example
trace “xyzxyz...”. Assuming it infinitely repeating, we have m = 3
and n = ∞. The following table shows the discrete values of the
Filmer metrics computed according to the HOTL conversion.

t fp(t) c vt(c) im(c) mr(c) P(rd=c)
1 1 1 1 1 1 0
2 2 2 2 1 1 0
3 3 3 3 ∞ 0 1
4 3 4 ∞ ∞ 0 0

2.6 The Higher Order Relations
In algebra, the term order may refer to the degree of a polynomial.
Through differentiation, a higher order function can derive a lower
order function. If we use the concept liberally on locality functions
(over the discrete integer domain), we see a higher order locality
theory, as shown in a metrics hierarchy in Figure 3.

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

Figure 3: The hierarchy of cache locality metrics. The five locality
metrics are mutually derivable by either taking the difference of the
metrics when moving down the hierarchy or taking the sum of the
metrics when moving up.

In the preceding sections, we have shown the series of conver-
sions from the third order metric, the footprint, to the first order
metric, the reuse distance. To compute a lower order metric, the
HOTL conversion takes the difference of the function of a higher
order metric. The inter-miss time is the difference of the fill times,
and the reuse distance is the difference of the miss ratios.

The conversion formulas are all reversible. We can calculate a
higher order metric by integrating the function of a lower order
metric. For example, the miss ratio is the sum of the reuse distances
greater than the cache size. The fill time is the sum of the inter-miss
times up to the cache size.

The mathematical property is different depending on the order
of the locality metric, as shown in the second column in Figure 3.
Going bottom up, the reuse distance is a distribution, so the range
is non-negative. For just compulsory and capacity misses, the miss
ratio is monotone and non-increasing, i.e. the stack property [31].
The footprint has been shown to be monotone [46]. Later we will
prove a stronger property.

Although the phrase higher order was not used, the working set
theory was about the higher order relations between the working
set size, the miss rate, and the reuse-time interval. In Section 2.8,
we will compare the two higher order theories.

2.7 The Correctness Condition
The conversion from the footprint to the miss ratio is not always
correct. To understand correctness, consider the reuse distance and
the footprint both as window statistics. The reuse distance is the

footprint of a reuse window. A reuse window starts and finishes
with two accesses to the same datum with no intervening reuses.
For a program with n accesses to m data, there are n −m finite-
length reuse windows. They are a subset of all windows. The
number of all windows is n choose 2 or n(n+1)

2
. We define the

average footprint over all reuse windows as rfp(l), the same way
we define fp(l) over all windows.

In this section, we show the correctness condition: for the HOTL
conversions to be correct, the two functions, fp(l) and rfp(l),
must be equal.

To show this result, we introduce a different formula for pre-
dicting the miss ratio. To estimate whether an access is a miss for
cache size c, we take the reuse window length l, find the average
footprint fp(l), and predict it a cache miss if and only if fp(l) > c.
We call this method the reuse-time conversion. Let P (rt = t) be
the density function of the reuse time, that is, the fraction of reuse
windows with the length t. The miss ratio predicted by the reuse-
time conversion is as follows. We label the result mrrt to indicate
that the prediction is based on the reuse time. The first access to a
datum has the reuse time of∞.

mrrt(fp(l)) = P (rt > l) =

∞∑
t=l+1

P (rt = t)

If we re-label fp(l) as the working set size, the formula is identical
to that of Denning and Schwartz (Section 2.8). However, the use
of fp(l) is an important difference. The reuse-time conversion is
a modified version of Denning and Schwartz. We may call it an
augmented Denning-Schwartz conversion.

Take the example trace “xxyxxz”. Two of the average footprints
are fp(3) = 2 and fp(4) = 7

3
. The reuse times, i.e. the length

of the reuse windows, are ∞, 2,∞, 3, 2,∞. The reuse-time con-
version is mrrt(2) = mrrt(fp(3)) =

∑∞
t=4 P (rt = t) = 50%.

The Filmer conversion is based on the footprint. We call it mrfp
and have mrfp(2) = fp(4)− fp(3) = 33%. In general for small
traces, the reuse-time conversion is more accurate, as is the case in
this example.

Next we prove that for large traces, the miss ratio prediction is
the same whether using the reuse time or using the footprint. Then
we will show the correctness condition of the entire HOTL theory
as a corollary.

From the view of the locality-metrics hierarchy, the reuse-time
conversion is bottom up from a first-order metric to a second-order
metric. The footprint conversion is top-down from a third-order
metric to the same second-order metric. If they meet and produce
the same result, we have the equivalence relation across the entire
hierarchy.

To prove the equivalence, we need the recently published for-
mula that computes the average footprint from the reuse-time dis-
tribution [46].

Lemma 2.1 (Xiang formula [46]).

fp(w) = m− 1

n− w + 1
(

m∑
i=1

(fi − w)I(fi > w)

+

m∑
i=1

(li − w)I(li > w)

+n

n−1∑
t=w+1

(t− w)P (rt = t)) (1)

The symbols are defined as:

• fi: the first access time of the i-th datum.

• li: the reverse last access time of the i-th datum. If the last
access is at position x, li = n + 1 − x, that is, the first access
time in the reverse trace.
• P (rt = t): the fraction of accesses with a reuse time t.
• I(p): the predicate function equals to 1 if p is true; otherwise 0.

If we assume n� w, the equation can be simplified to

fp(w) ≈ m−
n−1∑

t=w+1

(t− w)P (rt = t)

Theorem 2.2 (Footprint and reuse-time conversion equivalence).
For long executions (n � w), the footprint conversion and the
reuse-time conversion produce equivalent miss-ratio predictions.

Proof Let the cache size be c and l and l + x be two consecutive
window sizes such that c ∈ [fp(l), fp(l + x)). The miss ratio by
the footprint conversion is fp(l+x)−fp(l)

x
.

Expand the numerator fp(l+x)−fp(l) using the approximate
equation from Lemma 2.1:

fp(l + x)− fp(l)

≈m−
n−1∑

t=l+x+1

(t− l − x)P (rt = t)−m +

n−1∑
t=l+1

(t− l)P (rt = t)

=

n−1∑
t=l+1

(t− l)P (rt = t)−
n−1∑

t=l+x+1

(t− l − x)P (rt = t)

=

l+x∑
t=l+1

(t− l)P (rt = t) +

n−1∑
t=l+x+1

(t− l)P (rt = t)

−
n−1∑

t=l+x+1

(t− l − x)P (rt = t)

=

l+x∑
t=l+1

(t− l)P (rt = t) + x

n−1∑
t=l+x+1

P (rt = t)

≈
l+x∑

t=l+1

xP (rt = t) + x

n−1∑
t=l+x+1

P (rt = t)

=x

n−1∑
t=l+1

P (rt = t)

≈x
∞∑

t=l+1

P (rt = t)

The miss ratio, fp(l+x)−fp(l)
x

, is approximately
∑∞

t=l+1 P (rt =
t), which is the result of the reuse-time conversion. Note that the
equation is approximately true also because of the earlier simplifi-
cations made to the Xiang formula.

The two predictions being the same does not mean that they
are correct. They may be both wrong. Since the correct calculation
can be done using reuse distance, the correctness would follow if
from the reuse time, we can produce reuse distance. In other words,
the correctness depends on whether the all-window footprint used
by the reuse time conversion is indeed the reuse distance. We can
phrase the correctness condition as follows:

COROLLARY 2.3 (Correctness). The footprint-based conversions
are accurate if the footprints in all reuse windows have the same
distribution as the footprints in all windows, for every reuse win-
dow length l.

When the two are equal, using the all-window footprint is the
same as using the reuse distance. We posit as a hypothesis that the
condition holds in practice, so the HOTL conversion is accurate.
We call it the reuse-window hypothesis.

Consider the following two traces. The second trace has a
smaller difference between the all-window footprint fp and the
reuse-window footprint rfp. The smaller difference leads to more
accurate miss ratio prediction by HOTL. The hypothesis does not
hold in either trace, so the prediction is not completely accurate.
As to real applications, we will show an empirical evaluation for
the full suite of SPEC CPU2006 benchmark programs [23] and a
number of PARSEC parallel programs [6].

mr(1) error
trace fp(2) rfp(2) pred real |pred− real|

wwwx 4/3 1 1/3 2/4 17%
wwwwx 5/4 1 1/4 2/5 5%

Finally, we show another consequence of Theorem 2.2.

COROLLARY 2.4 (Concavity). The average footprint fp(x) is a
concave function.

Since fp(l+x)−fp(l)
x

≈
∑∞

t=l+1 P (rt = t), fp(l) always
increases but increases at a slower rate for a larger l. The function
is obviously concave. In the higher order relation, the concavity
guarantees that the miss ratio predicted by HOTL is non-increasing
with the cache size (as expected from the inclusion property [31]).

2.8 Comparison with Working Set Theory
The first higher-order locality theory is the working set theory,
pioneered in Peter Denning’s thesis work [13]. His 1968 paper
established the relation between the working set size, the miss rate,
and the inter-reference interval (iri). The last one is the same as
reuse time. The notion of reuse distance or the LRU stack distance
was not formalized until 1970 [31]. Figure 4 shows the parallels
between the working set locality theory (WSLT) and the new cache
locality theory of this paper (CLT).

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

Figure 4: Comparison between two higher order locality theories:
the working set locality theory (WSLT) for dynamic partitioned
primary memory and the cache locality theory (CLT) for cache
memory.

WSLT computes the metrics bottom-up. The base metric, P (iri =
x), is the histogram of the inter-reference intervals (reuse time),
measured in linear time in a single pass of the address trace. The
time-window miss ratio m(T) is the sum of reuse time. The mean
working set size s(T) is the sum of m(T).

m(T) = P (rt > T)

s(T + 1) = s(T) + m(T)

Taking together, the working set size s(T) is the second order sum
of the reuse frequency.

The s(T) formula was first proved by Denning and Schwartz
in 1972 [15]. The formulation assumes an infinitely long execution
with a “stationary” state (“the stochastic mechanism ... is station-
ary”). The working set, w(t, T), is the number of distinct pages
accessed between time t − T + 1 and t. The average working set
size, s(T), is the limit value when taking the average of w(t, T) for
all t. The proof is based on the fact that only recurrent pages with
an infinite number of accesses contribute to the mean working set
size.

In 1978, Denning and Slutz defined the generalized working set
(GWS) as a time-space product [16]. The product, denoted here
as st(T), is defined for finite-length execution traces, variable-size
memory segments, all cache replacement policies that observe the
stack property. Interestingly, they found the same recursive relation.
The GWS formula is as follows, where the last term is the extra
correction to take into account the finite trace length.

st(T + 1) = st(T) + Tm(T)− a(T)

Dividing both sides by T , we have the last term vanishing for large
T and see the same recursive relation for GWS in finite-length
traces as s(T) in infinitely long traces.

In the present paper, the same recurrence emerges in Section 2.7
as an outcome of Theorem 2.2. For the average footprint, we have
effectively

fp(T + 1) = fp(T) + m(T)

If we view the following three as different definitions of the
working set: the limit value in 1972 [15], the time-space product in
1978 [16], and the average footprint in 2011 [46], we see an iden-
tical equation which Denning envisioned more than four decades
ago (before the first proof in 1972). We state it as a law of locality
and name it after its inventor:

Denning’s Law of Locality The working set is the second-order
sum of the reuse frequency, and conversely, the reuse frequency is
the second-order difference of the working set.

As the relativity theory gives the relation between space and
time, Denning’s law gives the relation between memory and com-
putation: the working set is the working memory, and the reuse
frequency is a summary of program actions (time transformed into
frequency and a spectrogram of time). The law states that the rela-
tion is higher order.

Our work augments Denning’s law in two ways. First, it is the
final step to conclusively prove Denning’s Law — that it holds for
the footprint working set in finite-length program executions. The
1972 proof depends on the idealized condition in infinite-length
executions. Subsequent research has shown that the working set
theory is accurate and effective in managing physical memory for
real applications [14]. The new proof subsumes the infinitely long
case and makes Denning’s law a logical conclusion for all (long
enough) executions. It gives a theoretical explanation to the long
observed effectiveness of the working set theory in practice.

Second, we extend HOTL to include cache memory. For main
memory, the locality is parameterized in time: the working set of
a program in a time quantum. For cache, the primary constraint is
space: the miss ratio for a given cache size. Denning et al. named
them the “time-window miss ratio” and the “LRU miss ratio” and

noted that the two are not necessarily equal [15, 16]. The following
formulas show the two miss ratios:

working set m(T) = P (rt > T)
cache locality mr(fp(T)) = P (rt > T)

In the above juxtaposition, the only difference is the parame-
ter to the miss rate function. In m(T), the parameter is the time
window length. In mr(fp(T)), the parameter is the cache size.
Through the second formula, this work connects the cache size and
the reuse frequency. In Section 2.4, we show how the time-centric
and the space-centric views have different derivations but the same
miss ratio. Then in Section 2.7, we give the reuse-window hypoth-
esis as the condition for correctness, which implies the equality
between the time-window miss ratio and the LRU miss ratio.

3. Sampling-based Locality Analysis
The footprint can be analyzed through sampling, e.g. by tracing
a window of program execution periodically. Sampling has two
benefits. First, by reducing the sampling frequency, the cost can be
arbitrarily reduced. Second, sampling may better track a program
that has significant phase behavior.

Uniform sampling We implement footprint sampling using a
technique pioneered by shadow profiling [32] and SuperPin [42].
When a program starts, we set the system timer to interrupt at some
preset interval. The interrupt handler is shown in Figure 5. It forks
a sampling task and attaches the binary rewriting tool Pin [29].
The Pin tool instruments the sampling process to collect its data
access trace, measures all-window footprints using the Xiang for-
mula [46]. In the meanwhile, the base program runs normally until
the next interrupt.

Require: This handler is called whenever a program receives the
timer interrupt

1: pid← fork()
2: if pid = 0 then
3: Attach the Pin tool and begin sampling until seeing c distinct

memory accesses
4: Exit
5: else
6: Reset the timer to interrupt in k seconds
7: Return
8: end if

Figure 5: The timer-interrupt handler for footprint sampling

Footprint Sampling Footprint by definition is amenable to sam-
pling. We can start a sample at any point in an execution and con-
tinue until the sample execution accesses enough data to fill the
largest cache size of interest. We can sample multiple windows in-
dependently, which means they can be parallelized. It does not mat-
ter whether the sample windows are disjoint or overlapping, as long
as the choice of samples is random and unbiased.

The Associative Cache A program execution produces a series of
m samples at regular intervals, x1, x2, . . . , xm. We use them in the
following way:

1. For each sample xi, with trace length ni, predict the miss ratio
function mr(xi, c) for each cache size c by the following:

(a) Use the analysis of Xiang et al. [46] to compute the average
footprint function fp.

(b) Use the footprint conversion to compute the capacity miss
ratio for cache size c.

(c) Use the miss-ratio conversion to compute the reuse distance
distribution and the Smith formula [37] to estimate the num-
ber of conflict misses for cache size c.

2. For all xi, take the weighted average and compute the miss ratio
for all cache sizes for the program mr(c) =

∑m
i=1 mr(xi,c)∗ni∑m

i=1 ni
.

The Phase Effect The preceding design assumes phase behavior.
Since different samples may come from different phases, combin-
ing their footprints would lose the phase distinction. To validate
the conjecture, we will compare the phase-sensitive sampling with
phase-insensitive sampling. The former, as just described, com-
putes the miss ratio for each sample and then takes the average.
The next design combines the footprint from all the samples and
then computes the miss ratio. Specifically, the second design is as
follows:

1. For each sample xi, with trace length ni,
• Use the analysis of Xiang et al. [46] to compute the average

footprint function fp.

2. For all samples xi, take the weighted average and compute the
fp function for the program fp =

∑m
i=1 fp(xi)∗ni∑m

i=1 ni
.

3. Use the footprint and miss-ratio conversions and the Smith
formula [37] to estimate the number of cache misses.

Comparison with Reuse Distance Sampling To be statistically
sound, reuse distance sampling must evenly sample reuse windows.
After picking an access, it needs to trace the subsequent program
accesses until the next data reuse. When a reuse window is long,
it does not know a priori how long to monitor, so it has to keep
analyzing until seeing the next reuse or until the reuse distance
exceeds the largest cache size of interest. The cut-off strategy is
also used in footprint sampling.

Beneath this similarity lies two important differences. The reuse
distance measures the locality by examining reuses. The footprint
measures the locality by examining data accesses. Footprint sam-
pling computes the distribution of all reuse distances from a single
sample window using the HOTL conversion. The footprint analysis
and conversion take linear time. In comparison, each reuse window
sample produces just one reuse distance. It takes asymptotically
higher time cost to measure the reuse distance in the sample (than
it takes HOTL conversion to compute all reuse distances from the
same sample). Hence the advantage of footprint sampling is algo-
rithmic and computational, and this strength comes from the HOTL
theory.

4. Evaluation
4.1 Experimental Setup
We have tested the full set of 29 benchmarks from SPEC 2006
and 8 from the PARSEC v2.1 suite. All programs are instrumented
by Pin [29] and profiled on a Linux cluster where each node has
two Intel Xeon 3.2GHz processors. PARSEC is run on a machine
with two Intel Xeon E5649 processors. In simulation, we simulate
a single-level cache, which is shared in the case of parallel code.
On a real machine, the baseline is the program run time without
instrumentation or any analysis.

For SPEC 2006, we use the first reference input provided by the
benchmark suite. Table 1 shows for each SPEC 2006 program the
length of trace n, the size of data m and the time of the unmodified
program execution. The length of SPEC 2006 traces ranges from
20 billion in 403.gcc to 2.1 trillion in 436.cactusADM. The amount
of data ranges from 3MB in 416.gamess to 1.7GB in 429.mcf. For
PARSEC, we test programs using the three provided input sizes:

benchname n m T
(1011) (107bytes) (sec)

400.perlbench 4.2 24.4 457
401.bzip2 1.7 39.3 263
403.gcc 0.2 40.4 72

410.bwaves 14.4 98.2 1664
416.gamess 4.8 0.3 444

429.mcf 1.2 175.7 1172
433.milc 3.8 74.2 1077

434.zeusmp 5.7 51.9 1555
435.gromacs 9.8 1.4 1272

436.cactusADM 20.6 65.5 3411
437.leslie3d 6.8 12.9 1212
444.namd 6.8 4.7 915

445.gobmk 0.9 2.7 173
447.dealII 7.3 88.5 773
450.soplex 1.0 16.2 604
453.povray 4.8 0.3 493
454.calculix 9.5 16.4 1512
456.hmmer 4.9 4.2 303
458.sjeng 7.0 18.2 1356

459.GemsFDTD 8.6 86.9 1397
462.libquantum 3.0 16.8 1391

464.h264ref 2.6 2.7 143
465.tonto 10.0 5.2 1312
470.lbm 3.3 42.9 1491

471.omnetpp 2.3 17.6 1048
473.astar 1.4 29.5 512
481.wrf 9.7 76.8 1895

482.sphinx3 8.9 5.1 1765
483.xalancbmk 3.6 43.8 778

Table 1: The SPEC2006 integer and floating-point benchmarks. For
each benchmark, n is the memory trace length of whole execution,
m is the number of distinct data blocks (size in bytes) accessed
during the execution, and T is the execution time without any
instrumentation or analysis.

simsmall, simmedium and simlarge. We run each with 4 threads, a
commonly used configuration.

Locality sampling is implemented using fork, as described in
Section 3. The implementation does not yet recognize system calls,
so sampling handles only 22 of the 29 sequential programs. Nor
does the sampling implementation handle multi-threaded code. We
evaluate miss-ratio prediction using the full trace of the 8 parallel
programs.

3073 Cache Sizes In the analysis, the footprint and reuse distance
numbers are bin-ed using logarithmic ranges as follows. For each
(large enough) power-of-two range, we sub-divide it into (up to)
256 equal-size increments. As a result, we can predict the miss ratio
not just for power-of-two cache sizes, but 3073 cache sizes between
16KB and 64MB.

4.2 Miss-Ratio Prediction
We first evaluate the accuracy and the speed of miss-ratio predic-
tion, made by the Filmer conversion and locality sampling, tested
on sequential and parallel programs, and verified through simula-
tion and hardware counters.

4.2.1 Sequential Programs
We first use cache simulation to evaluate the accuracy of Filmer-
based miss ratio prediction. Instead of evaluating each of the 29

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

42
9.

m
cf

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi

nx
3

43
5.

gr
om

ac
s

44
7.

de
al

II

45
0.

so
pl

ex

46
5.

to
nt

o

47
1.

om
ne

tp
p

48
1.

w
rf

48
3.

xa
la

nc
bm

k

m
is

s
ra

te

0.00

0.05

0.10

0.15

0.20

0.25

0.30
simulation
rd−prediction
fp−prediction
sampling

(a) 8-way, 32KB cache

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

42
9.

m
cf

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi

nx
3

43
5.

gr
om

ac
s

44
7.

de
al

II

45
0.

so
pl

ex

46
5.

to
nt

o

47
1.

om
ne

tp
p

48
1.

w
rf

48
3.

xa
la

nc
bm

k

m
is

s
ra

te

0.00

0.05

0.10

0.15

0.20

0.25 simulation
rd−prediction
fp−prediction
sampling

(b) 8-way, 256KB cache

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

42
9.

m
cf

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi

nx
3

43
5.

gr
om

ac
s

44
7.

de
al

II

45
0.

so
pl

ex

46
5.

to
nt

o

47
1.

om
ne

tp
p

48
1.

w
rf

48
3.

xa
la

nc
bm

k

m
is

s
ra

te

0.00

0.05

0.10

0.15 simulation
rd−prediction
fp−prediction
sampling

(c) 16-way, 8MB cache

Figure 6: Accuracy of the miss-ratio prediction by reuse distance, footprint (HOTL conversion in Section 2.4), and footprint sampling
(Section 3) for 29 SPEC 2006 benchmarks, each on 3 (of the 3073) cache configurations, compared with cache simulation. (a) 8-way, 32KB
cache. (b) 8-way, 256KB cache. (c) 16-way, 8MB cache. The sampling results are for 22 out of 29 programs (not the last 7). The average
time cost of sampling is 0.5% (Table 2).

programs on 3073 cache sizes, we show results for 3 configura-
tions: 32KB, 8-way associative L1D; 256KB, 8-way associative
L2; and 8MB, 16-way associative L3. They are the cache configu-
rations on our test machine. We will compare our prediction to the
performance counter result later. The cache-block size is 64 bytes
in all cases. The accuracy for the other 3070 cache sizes looks sim-
ilar.

Figure 6 plots the measured and predicted miss ratios. The rd-
prediction, which uses the measured reuse distance, is the most ac-
curate. The other two, fp-prediction and sampling measure the foot-
print and then use the HOTL conversion in Section 2.4. The HOTL
conversion fp-prediction closely matches the reuse-distance anal-
ysis rd-prediction in almost all cases, showing that the footprint-
converted reuse distance is almost identical to the measured reuse
distance—hence the validity of the reuse-window hypothesis.

The Phase Effect The reuse distances of a program, when added
together regardless of phases, predict the (capacity) miss ratio ac-
curately, because an access is a cache capacity miss if and only if its
reuse distance is greater than the cache size. On the other hand, the
footprint should be affected by phases. As the footprint changes
from phase to phase, it is possible that taking the global average
might lose critical information.

A consistent result from the theory and the experiments is that
the two are largely equivalent, as far as computing the miss ratio
is concerned. The theory gives the conversion procedure from the
footprint to the reuse distance. The experiments show, by the close
match between rd-prediction and fp-prediction in Figure 6, the
conversion is accurate for most programs. This suggests that reuse
windows are representative of all windows, and this is why the
prediction is accurate in spite of the phase effect.

Another evidence, for which we do not include the results in the
paper, is that the two sampling designs in Section 3, phase sensitive
and insensitive, produce almost identical predictions.

Analysis Speed Table 2 compares the cost of four analysis meth-
ods: the simulation sim, the reuse distance rd [49], the footprint
fp [46], and the footprint sampling sp. For simulation we could
use the algorithm of Smith and Hill [25] to simulate all three con-
figurations in one pass. For speed comparison, we ran the simplest
simulator once for each configuration. The simulation cost in ta-
ble 2 is the average of the three runs.

The cost for reuse distance analysis ranges from 52 times to
426 times with an average of 153 times. The footprint analysis
costs about 7 times less, with slowdowns between 6 and 66 times
and on average 23 times. Simulation for a single configuration has
slowdowns from 14 to 80 times, with an average of 38 times.

Comparing the average, we see that measuring the footprint, the
third order Filmer metric that can compute the second order metric
miss ratio for all cache sizes, is 39% faster than simulating for a
single cache size, before we use footprint sampling.

4.2.2 Locality Sampling
For this experiment, we choose somewhat arbitrarily the frequency
of one sample every 10 seconds. The sample length is the volume
fill time for the cache size. Sampling analysis is not always accu-
rate. Visible errors are seen in mcf, libquantum and astar in Fig-
ure 6. The reason, as shown by the last column of Table 2, is that it
covers less than 1% of the execution. The coverage is computed by
the ratio of the number of sampled instructions to the total number
of instructions (counted by our full trace profiling). The coverage is
as low as 0.006% in lbm. The low coverage does not mean low ac-
curacy. The prediction of lbm is 99% accurate for the 32KB cache,
97% for the 256KB cache, and 92% for the 8MB cache.

In Table 2, we show the slowdown in the end-to-end run time
by the column marked samp. It ranges from 0% to 2.14%. Three

benchname sim rd fp samp cov

400.perlbench 49 219 34 0.24% 3.1%
401.bzip2 34 139 24 0.73% 1.5%
403.gcc 24 88 15 0.55% 0.1%

410.bwaves 57 196 35 2.14% 0.5%
416.gamess 62 286 40 0.29% 2.9%

429.mcf 10 56 6 0.14% 0.03%
433.milc 21 74 9 1.53% 0.04%

434.zeusmp 25 102 14 0.81% 0.06%
435.gromacs 40 142 19 - -

436.cactusADM 40 167 21 0.00% 1.1%
437.leslie3d 42 131 23 0.00% 0.01%
444.namd 44 155 24 0.00% 2.2%

445.gobmk 35 130 23 0.22% 1.1%
447.dealII 54 209 34 - -
450.soplex 13 52 7 - -
453.povray 51 220 33 0.00% 1.8%
454.calculix 39 127 19 0.11% 1.8%
456.hmmer 80 426 59 0.00% 0.8%
458.sjeng 34 152 23 0.82% 0.4%

459.GemsFDTD 42 181 21 1.28% 0.01%
462.libquantum 17 48 9 0.00% 0.01%

464.h264ref 101 424 66 0.00% 1.2%
465.tonto 52 168 30 - -
470.lbm 14 76 6 0.00% 0.01%

471.omnetpp 17 69 10 - -
473.astar 15 73 11 0.80% 0.9%
481.wrf 33 113 19 - -

482.sphinx3 30 117 16 0.59% 1.2%
483.xalancbmk 31 99 21 - -

average 38 153 23 0.47% 0.9%

Table 2: Time comparison between different profiling methods and
cache simulation for SPEC 2006. The baseline is the execution time
without any instrumentation or analysis. The middle four columns
show the slowdown compared to the baseline: sim for simulating
one cache size, rd for reuse distance profiling, fp for footprint
profiling, and samp for footprint sampling. The last column cov
gives the sampling coverage.

programs have a visible cost of over 1%. They are bwaves 2.1%,
GemsFDTD 1.3% and milc 1.5%. The reason for the relatively
high cost may be the non-trivial interference between the sampling
task and the parent task. Across all programs, the average visible
overhead is below a half percent. If we measure the total CPU
time, sampling takes between 0% and 80% of the original run time.
The average cost is 19%, of which over 18% is hidden by shadow
profiling.

4.2.3 Parallel Programs
Figure 7 shows that for 3 of the 3073 cache configurations and
across the 3 input sizes, the predicted miss ratio matches closely
with the simulated miss ratio, similar to the results we saw in the
sequential programs. The accuracy shows that the reuse-window
hypothesis holds for these threaded applications.

The last column of table 3 shows the slowdowns of footprint
profiling, which ranges from 14 times to 159 times with an aver-
age of 113 times. We did not profile reuse distance for PARSEC
because it took too long. We note that the footprint analysis shows
5 times as much overhead in 4-threaded tests as in sequential pro-
grams (159 times in PARSEC vs. 23 times in SPEC 2006). The
reason is that our data analysis is still serial, so the overhead is pro-
portional to the total amount of work. We plan to parallelize the

bl
ac

−
s

bl
ac

−
m

bl
ac

−
l

bo
dy

−
s

bo
dy

−
m

bo
dy

−
l

ca
nn

−
s

ca
nn

−
m

ca
nn

−
l

fa
ce

−
s

fa
ce

−
m

fa
ce

−
l

flu
i−

s
flu

i−
m

flu
i−

l
st

re
−

s
st

re
−

m
st

re
−

l
sw

ap
−

s
sw

ap
−

m
sw

ap
−

l
vi

ps
−

s
vi

ps
−

m
vi

ps
−

l

m
is

s
ra

te

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

simulation
prediction

(a) 8-way, 32KB cache

bl
ac

−
s

bl
ac

−
m

bl
ac

−
l

bo
dy

−
s

bo
dy

−
m

bo
dy

−
l

ca
nn

−
s

ca
nn

−
m

ca
nn

−
l

fa
ce

−
s

fa
ce

−
m

fa
ce

−
l

flu
i−

s
flu

i−
m

flu
i−

l
st

re
−

s
st

re
−

m
st

re
−

l
sw

ap
−

s
sw

ap
−

m
sw

ap
−

l
vi

ps
−

s
vi

ps
−

m
vi

ps
−

l

m
is

s
ra

te

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

simulation
prediction

(b) 8-way, 256KB cache

bl
ac

−
s

bl
ac

−
m

bl
ac

−
l

bo
dy

−
s

bo
dy

−
m

bo
dy

−
l

ca
nn

−
s

ca
nn

−
m

ca
nn

−
l

fa
ce

−
s

fa
ce

−
m

fa
ce

−
l

flu
i−

s
flu

i−
m

flu
i−

l
st

re
−

s
st

re
−

m
st

re
−

l
sw

ap
−

s
sw

ap
−

m
sw

ap
−

l
vi

ps
−

s
vi

ps
−

m
vi

ps
−

l

m
is

s
ra

te

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

simulation
prediction

(c) 16-way, 8MB cache

Figure 7: Accuracy of the miss-ratio prediction for 3 (of the 3073)
cache configurations and 3 input sizes, compared with cache simu-
lation. (a) 8-way, 32KB cache. (b) 8-way, 256KB cache. (c) 16-way,
8MB cache.

footprint analysis in the future, building on recent work in paral-
lelizing the reuse-distance analysis [12, 22, 33].

4.3 Validation on a Real Machine
In Figure 8, we compare the simulation result with the miss ratio
measured by the hardware counters on our test machine. To mea-

bench input n m T slow-
name size (109) (106bytes) (sec) down
black S 0.1 0.4 0.093 129
-scholes M 0.4 1.2 0.384 91

L 1.6 4.4 1.542 88
body S 0.3 8.1 0.285 129
-track M 1.1 11.1 0.948 155

L 4.0 14.8 3.35 111
canneal S 0.6 43.0 1.525 19

M 1.3 84.3 3.859 15
L 2.7 164.9 8.804 14

facesim S 12.7 344.2 7.448 139
M 12.7 344.2 7.306 131
L 12.7 344.2 7.86 116

fluid S 0.5 10.5 0.429 114
-animate M 1.3 20.6 0.983 145

L 3.9 57.6 2.9 124
stream S 0.5 1.2 0.722 87
-cluster M 2.6 2.9 1.641 138

L 9.6 9.5 6.951 173
swapt S 3.6 0.9 2.349 134
-ions M 1.4 1.2 0.935 114

L 5.7 1.9 3.766 132
vips S 1.0 13.5 0.748 159

M 3.1 26.9 2.228 140
L 8.6 15.7 7.332 103

Table 3: The PARSEC parallel benchmarks. For each benchmark,
n is the memory trace length of whole execution, m is the size of
program data (in bytes) accessed during the execution, and T is the
execution time without any instrumentation or analysis. The last
column is the slowdown of the footprint analysis.

pe
rlb

en
ch

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
hm

m
er

sj
en

g
G

em
sF

D
T

D
lib

qu
an

tu
m

h2
64

re
f

to
nt

o
lb

m
om

ne
tp

p
as

ta
r

w
rf

sp
hi

nx
3

xa
la

nc
bm

k

m
is

s
ra

te

0.00

0.05

0.10

0.15

0.20
hardware counter
simulation

Figure 8: Comparison between hardware counter measured L3
cache miss ratio and the simulation result.

sure the actual misses, we use Intel’s VTune tool to record three
hardware counter events named

OFFCORE RESPONSE 0.DATA IN.LOCAL DRAM
MEM INST RETIRED.LOADS
MEM INST RETIRED.STORES

The measured miss ratio is the first count divided by the sum of the
last two counts.

The figure shows a significant difference in gcc. The reason is
that the simulation considers only data accesses but the hardware
counter counts instruction misses in the data cache, which we
believe are significant in gcc.

4.4 Direct Fill Time vs. Filmer Fill Time
The measurement of the direct fill time, definition in Section 2.3
and algorithm in Section A, takes so long that the only programs
we could finish are 10 of the 11 SPEC 2000 integer benchmark
programs. Table 4 compares the average time for these programs.
An unmodified SPEC 2000 program runs for 3 minutes on aver-
age, the direct fill time analysis takes over 22 hours. The average
overhead is more than 7 hours for each minute. In comparison, the
per minute overhead is an hour and a half for reuse distance and 7
minutes if we first compute footprint and then derive the Filmer fill
time.

analysis avg. time avg. slowdown
direct fill time (Section A) 22h12m11s 446x
reuse distance 3h57m36s 84x
Filmer fill time (Section 2.3) 22m4s 8x

Table 4: Speed comparison for 10 SPEC 2000 integer benchmarks.
The average trace length n is 47 billion, data size m is 73MB, and
baseline run time is 3 minutes and 16 seconds.

More problematic is that with the direct fill time, the predicted
miss ratio is not monotone. Worse, the miss ratio may be negative.
Consider an example trace with 100 a’s followed by 11 b’s, 1 c, 20
d’s, 15 e’s, 1 f and 320 g’s. The average time to fill a 4-element
cache, vt(4), is 161.5, is longer than the average time to fill a
5-element cache, vt(5), which is 149.5. Since the direct fill time
decreases when the cache size v increases, the predicted miss ratio
is negative!

The preceding example was constructed based on an analysis of
real traces. During experimentation, we found that the miss ratios
of some cache sizes were negative. While most of the 3000 or so
sizes had positive predictions, the negatives were fairly frequent
and happened in most test programs. It seemed contradictory that
it could take a program longer to fill a smaller cache. The reason
is subtle. To compute the direct fill time, we find windows with
the same footprint and take the average length. As we increase the
footprint by 1, the length of these windows will increase but the
number of such windows may increase more, leading to a lower
average, as happened in the preceding example.

In contrast, the Filmer fill time is a positive, concave function
(Corollary 2.4). Its miss-ratio prediction is monotone and can be
measured in near real time (Section 4.2.2).

4.5 Predicting Cache Interference
A complete 2-program co-run test for the 29 SPEC 2006 bench-
marks would include

(
29
2

)
= 406 program pairs. To reduce the

clutter in the graphs we show, we choose 20 programs. To avoid
bias, we pick programs with the smallest benchmark ids. Since we
profile data accesses only, we exclude perlbench and gcc because
their large code size may cause significant instruction misses in the
data cache. After the removal, we have 20 SPEC benchmark pro-
grams from 401.bzip2 to 464.h264ref. The trimming reduces the
number of pair-run tests to

(
20
2

)
= 190.

Cache interference models were pioneered by Thiebaut and
Stone [41], Suh et al. [39] and Chandra et al. [9], who computed
the cache interference by the impact of the peer footprint on the self
locality.2 The footprint is measured for a single window length [41]
and approximated for multiple lengths [9, 39]. Our subsequent
work found a way to measure all-window footprints precisely and

2 Chandra et al. also gave a model that used only the reuse distance [9].
Zhuravlev et al. used it and two other such models and found that in task
scheduling, they did not significantly outperform a simple model that used
only the miss rate [51].

0 100 200 300 400

0
5

10
15

20

tests

co
ru

n
m

is
s

ra
tio

 (
%

)

hardware counter
prediction

(a) linear scale miss ratios

tests

co
ru

n
m

is
s

ra
tio

 (
%

)

0 100 200 300 400

1e
−

5
1e

−
3

0.
1

10 hardware counter
prediction

(b) logarithmic scale miss ratios

Figure 9: The predicted and measured miss ratios of the 380 exe-
cutions in 190 pair runs. The executions are ordered by the ascend-
ing miss ratio as measured by the hardware counters in exhaustive
testing. For each execution, the solid (black) line shows the hard-
ware counter result, and the dotted (red) line shows the prediction.
The prediction takes about a half percent of the time of exhaustive
testing. Just two executions have a significant error in both graphs,
which are a half percent of all executions.

efficiently [17, 45, 46]. The self locality is measured by the reuse
distance. As the measurement problem for the footprint is solved,
the speed of reuse-distance analysis becomes the bottleneck. We
found that by profiling up to two days for each program, the reuse
distance analyzer by Zhong et al. [49] could finish only 8 SPEC
2006 programs [46]. The total modeling time was over 106 CPU
hours, 94% of which was spent on the reuse-distance analysis. In

this study, we have measured reuse distance for all benchmarks (see
Table 2 for measurement costs). Some programs took over 4 days.

Based on the new theory, we compute the reuse distance from
the footprint and predict the co-run interference. Figure 9 compares
the measured and predicted miss ratios. There are 190 pair runs for
a total of 380 executions. The x-axis orders these executions by
the measured miss ratios from the lowest to the highest. For easy
viewing, we connect the points into a line. The measured curve is
necessarily monotone. The prediction is to match the measurement.

Figure 9 has two graphs, showing the miss ratio in the linear
scale in the upper graph and the logarithmic scale in the lower
graph. The prediction is mostly accurate. The errors happen but
for different executions in the two graphs. If an error is visible
in the linear scale but not in the logarithmic scale, the error is
significant in absolute terms but not in relative terms. Similarly, we
have errors significant relatively but not absolutely. The two graphs
show just two errors that are significant in both scales. In the other
378 (99.5%) executions, the prediction is either accurate or the
error insignificant. From visual inspection, the error is significant
in just 0.5% of all executions.

To make the prediction, the analysis needs 1 hour 4 minutes
CPU time for sampling, almost as fast as we can run the 20 pro-
grams without analysis. In comparison, the exhaustive testing takes
over 9 days (estimated) of CPU time. The cost saving is 99.5%.

To see interference in 3-program co-runs, the exhaustive test-
ing has to re-test and collect results anew, but the modeling needs
no additional testing. Indeed, the new model has been used in an
on-line system to regroup eight programs to run on two quad-core
processors (to have a higher performance or at least a more repeat-
able performance) [47]. The exhaustive testing of the 4-program
co-runs in our 20-program suite would need 19 thousand test exe-
cutions and have taken months of time.

To summarize the pair interference experiment, we can say that
the result is half and half: the modeling takes half percent of the
time and has a significant error in a half percent of executions.

5. Related Work
The concept of locality has evolved from an observation that a
program does not use all the data at all times, to quantitative metrics
that we can evaluate and compare but for which we must solve the
dual problems of speed and precision.

Locality sampling A publicly available system for locality sam-
pling is the SLO tool developed by Beyls and D’Hollander [5]. SLO
instruments a program to skip every k accesses and take the next
address as a sample. A bounded number of samples are kept in a
sample reservoir. To track reuse windows, it checks each access to
see if it is an access to some sampled datum. The instrumentation
code is carefully engineered in GCC to have just two conditional
statements for each memory access (one for address and the other
for counter checking). Reservoir sampling reduces the time over-
head from 1000-fold slow-down to only a factor of 5 and the space
overhead to within 250MB extra memory. The sampling accuracy
is 90% with 95% confidence. The accuracy is measured in the reuse
time, not the reuse distance or the miss ratio.

To accurately measure reuse distance, a record must be kept
to count the number of distinct data appeared in a reuse window.
Zhong and Chang developed the bursty reuse distance sampling,
which divides a program execution into sampling and hibernation
periods [48]. In the sampling period, the counting uses a tree struc-
ture and costs O(log logM) per access. If a reuse window extends
beyond a sampling period into the subsequent hibernation period,
the counting uses a hash-table, which reduces the cost to O(1) per
access. Multicore reuse distance analysis uses a similar scheme for
analyzing multi-threaded code [35]. Its fast mode improves over hi-

bernation by omitting the hash-table access at times when no sam-
ples are being tracked. Both methods compute the reuse distance
accurately.

StatCache is based on unbiased uniform sampling [3]. After
a data sample is selected, StatCache puts the page under the OS
protection to capture the next access to the same datum. It uses the
hardware counters to measure the time distance till the reuse. OS
protection is limited by the page granularity. Two other systems,
developed by Cascaval et al. [7] and Tam et al. [40], used the
special support on IBM processors to trap accesses to specified data
addresses. To reduce the cost, these methods used a small number
of samples. Cascaval et al. used the Hellinger Affinity Kernel to
infer the accuracy of sampling [7]. Tam et al. predicted the miss
rate curves in real time [40].

Locality measurement Reuse distance is a shorter name for the
LRU stack distance defined by Mattson et al. [31]. The fastest pre-
cise method takes O(n logm) time, where n is the length of the
trace and m is the size of data [34]. A variation of the algorithm
powered the Cheetah cache simulator [38], widely distributed as
part of the SimpleScalar tool set. By approximating long-distance
reuses (with a guaranteed precision e.g. 99%), the cost can be re-
duced to O(n log logm) [49]. This n log logm algorithm is used
in the two most recent sampling studies [35, 48]. In our experi-
ments, the cost is several hundred times slowdown. The average
cost reported in another study is as high as several thousand times
slowdown (although with a different implementation) [35]. Zhong
et al. gave a lower bound result indicating that the (asymptotic)
cost cannot be further reduced for full reuse distance analysis [49].
Recent studies found efficient algorithms to parallelize the reuse
distance analysis to run on MPI [33] or GPU [12, 22].

Time-based conversion [27, 36] and StatStack [19, 20] each
gave a statistical formula to convert the reuse time distribution to
miss rate, so did the working set theory [15]. These methods were
not guaranteed to be correct or have a bounded error. This work
gives a different conversion method based on the footprint formula
and the correctness condition for the conversion.

If the cost of measuring O(n) reuse windows was high, the
cost of measuring O(n2) footprint windows was prohibitively
high. In 2008, a sub-quadratic cost O(n logm) solution was pro-
posed [17]. Later, the algorithm was implemented and made 70
times faster [45]. These two methods measure the full distribution,
including for example, the maximum and the minimum sizes. In-
stead of the full distribution, Xiang et al. showed that the average
footprint can be measured in linear time O(n), and it is a mono-
tone function [46]. Based on the HOTL theory in this paper, we
have reduced the analysis cost to a negligible level using sampling
and proved that the footprint function is concave.

Program sampling Arnold and Ryder pioneered a general frame-
work to sample Java code, i.e. the first few invocations of a function
or the beginning iterations of a loop [2]. It has been adopted for hot-
stream prefetching in C/C++ in bursty sampling [11] and extended
to sample both static and dynamic bursts for calling context pro-
filing [50]. Shadow profiling pauses a program at preset intervals
and forks a separate process to profile in parallel with the base pro-
gram [32, 42]. Before the new theory, the reuse distance analysis
is not a good target for these techniques because of the uncertain
length of the reuse windows. With the new theory, locality sam-
pling becomes a similar task as frequency profiling. Like frequency
profiling, the cost can be adjusted by simply changing the sampling
rate.

Filmer metrics in multi-threaded code The locality metrics in
particular the footprint and the reuse distance have been extended
to multi-threaded code by a number of studies, including compos-
able modeling of shared footprint [18], statistical modeling in con-

current reuse distance [27], and direct measurement by multi-core
reuse distance [35]. In a concurrent program, the reuse distance
is affected by data sharing, thread interleaving and composition.
These studies solved the problems by characterizing the relation
between the private reuse distance (PRD) and the concurrent reuse
distance (CRD). For loop-based code, Wu and Yeung gave a scaling
model to predict how the reuse distance changes when the work is
divided by a different number of threads [43]. These modeling tech-
niques have found uses in co-scheduling [26] and multicore cache
hierarchy design [44]. In this paper, we use footprint sampling and
HOTL conversion in multi-threaded code and show the result that
the reuse-window hypothesis holds there as it does in sequential
code.

6. Summary
In this paper, we have compiled five Filmer metrics— the footprint,
the inter-miss time, the volume fill time, the miss ratio curve and
the reuse distance—and shown that they are mutually derivable.
The derivations form a higher order relation. We prove that two of
the miss-ratio derivations, by the footprint and by the reuse time,
are mathematically equivalent. As a result, the correctness of the
conversion depends on the reuse-window hypothesis. In addition,
we prove that the average footprint is a concave function. We also
give a direct definition of the fill time and show it to be unusable in
practice. When comparing with the working set theory, we show
the recurring theoretical result which we call Denning’s law of
locality. We show how the new theory complements and extends
the previous theory.

Based on the new theory, we have developed a novel technique
of locality sampling and used it to predict the miss ratio. When
tested on the full suite of the SPEC 2006 benchmarks, the HOTL
conversion predicts the miss ratio for over 3000 cache sizes at a
speed 39% faster than cache simulation for a single cache size.
The prediction is accurate compared to simulation and hardware
counter results. Locality sampling obtains a similar accuracy by
examining 0.9% of the execution and incurring a cost of less than
0.5% of the time of the unmodified code. When used to predict
cache interference, the new technique takes 0.5% of the time of
the exhaustive testing and predicts the interference accurately for
99.5% of the executions.

In summary, we have shown that the Filmer metrics can be
measured in real time, and they are easy to compose and convert.
We expect that the higher order theory and the sample technique
will provide a new foundation for developing future techniques of
locality analysis and optimization.

Acknowledgments
The comparison with the working set theory was done in collabora-
tion with Peter Denning. It was a rare privilege to discuss the field
defining ideas with their creator. He was also the first to use the
acronyms HOTL, WSLT and CLT when commenting on our paper
and suggested the comparative view in Figure 4. Kim Hazelwood,
Ramesh Peri and Tipp Moseley answered our questions about Pin
and shadow profiling. We also thank Jacob Brock, Xipeng Shen,
Donald Yeung, other colleagues, the reviewers of ASPLOS and the
program committee especially P. Sadayappan for the careful review
and constructive critiques, which are invaluable in improving the
presentation of both the theory and the evaluation.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-

tures: A Dependence-based Approach. Morgan Kaufmann Publishers,
Oct. 2001.

[2] M. Arnold and B. G. Ryder. A framework for reducing the cost of in-
strumented code. In Proceedings of PLDI, pages 168–179, Snowbird,
Utah, June 2001.

[3] E. Berg and E. Hagersten. Fast data-locality profiling of native execu-
tion. In Proceedings of SIGMETRICS, pages 169–180, 2005.

[4] K. Beyls and E. D’Hollander. Generating cache hints for improved
program efficiency. Journal of Systems Architecture, 51(4):223–250,
2005.

[5] K. Beyls and E. D’Hollander. Discovery of locality-improving refac-
toring by reuse path analysis. In Proceedings of HPCC. Springer. Lec-
ture Notes in Computer Science Vol. 4208, pages 220–229, 2006.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proceedings
of PACT, pages 72–81, 2008.

[7] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski.
Multiple page size modeling and optimization. In Proceedings of
PACT, pages 339–349, 2005.

[8] C. Cascaval and D. A. Padua. Estimating cache misses and locality
using stack distances. In Proceedings of ICS, pages 150–159, 2003.

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In Proceed-
ings of HPCA, pages 340–351, 2005.

[10] A. Chauhan and C.-Y. Shei. Static reuse distances for locality-based
optimizations in MATLAB. In Proceedings of ICS, pages 295–304,
2010.

[11] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching
for general-purpose programs. In Proceedings of PLDI, Berlin, Ger-
many, June 2002.

[12] H. Cui, Q. Yi, J. Xue, L. Wang, Y. Yang, and X. Feng. A highly
parallel reuse distance analysis algorithm on gpus. In Proceedings
of the International Parallel and Distributed Processing Symposium,
2012.

[13] P. J. Denning. The working set model for program behaviour. Com-
mun. ACM, 11(5):323–333, 1968.

[14] P. J. Denning. Working sets past and present. IEEE Transactions on
Software Engineering, SE-6(1), Jan. 1980.

[15] P. J. Denning and S. C. Schwartz. Properties of the working set model.
Communications of ACM, 15(3):191–198, 1972.

[16] P. J. Denning and D. R. Slutz. Generalized working sets for segment
reference strings. Communications of ACM, 21(9):750–759, 1978.

[17] C. Ding and T. Chilimbi. All-window profiling of concurrent execu-
tions. In Proceedings of PPoPP, 2008. poster paper.

[18] C. Ding and T. Chilimbi. A composable model for analyzing locality
of multi-threaded programs. Technical Report MSR-TR-2009-107,
Microsoft Research, August 2009.

[19] D. Eklov, D. Black-Schaffer, and E. Hagersten. Fast modeling of
shared caches in multicore systems. In Proceedings of HiPEAC, pages
147–157, 2011. best paper.

[20] D. Eklov and E. Hagersten. StatStack: Efficient modeling of LRU
caches. In Proceedings of ISPASS, pages 55–65, 2010.

[21] C. Fang, S. Carr, S. Önder, and Z. Wang. Path-based reuse distance
analysis. In Proceedings of CC, pages 32–46, 2006.

[22] S. Gupta, P. Xiang, Y. Yang, and H. Zhou. Locality principle revisited:
A probability-based quantitative approach. In Proceedings of the
International Parallel and Distributed Processing Symposium, 2012.

[23] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[24] M. D. Hill. Aspects of cache memory and instruction buffer perfor-
mance. PhD thesis, University of California, Berkeley, Nov. 1987.

[25] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches.
IEEE Transactions on Computers, 38(12):1612–1630, 1989.

[26] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with on-
line proactive job co-scheduling in chip multiprocessors. In Proceed-
ings of HiPEAC, pages 201–215, 2010.

[27] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen. Is reuse distance applica-
ble to data locality analysis on chip multiprocessors? In Proceedings
of CC, pages 264–282, 2010.

[28] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson. Flexible reference
trace reduction for VM simulations. ACM Transactions on Modeling
and Computer Simulation, 13(1):1–38, 2003.

[29] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation. In Pro-
ceedings of PLDI, pages 190–200, 2005.

[30] G. Marin and J. Mellor-Crummey. Cross architecture performance
predictions for scientific applications using parameterized models. In
Proceedings of SIGMETRICS, pages 2–13, 2004.

[31] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM System Journal, 9(2):78–117,
1970.

[32] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri. Shadow
profiling: Hiding instrumentation costs with parallelism. In Proceed-
ings of CGO, pages 198–208, 2007.

[33] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan. PARDA: A fast parallel
reuse distance analysis algorithm. In Proceedings of the International
Parallel and Distributed Processing Symposium, 2012.

[34] F. Olken. Efficient methods for calculating the success function
of fixed space replacement policies. Technical Report LBL-12370,
Lawrence Berkeley Laboratory, 1981.

[35] D. L. Schuff, M. Kulkarni, and V. S. Pai. Accelerating multicore reuse
distance analysis with sampling and parallelization. In Proceedings of
PACT, pages 53–64, 2010.

[36] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality approximation
using time. In Proceedings of POPL, pages 55–61, 2007.

[37] A. J. Smith. On the effectiveness of set associative page mapping
and its applications in main memory management. In Proceedings of
ICSE, 1976.

[38] R. A. Sugumar and S. G. Abraham. Efficient simulation of caches
under optimal replacement with applications to miss characterization.
In Proceedings of SIGMETRICS, Santa Clara, CA, May 1993.

[39] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache models with
applications to cache partitioning. In Proceedings of ICS, pages 1–12,
2001.

[40] D. K. Tam, R. Azimi, L. Soares, and M. Stumm. RapidMRC: ap-
proximating L2 miss rate curves on commodity systems for online
optimizations. In Proceedings of ASPLOS, pages 121–132, 2009.

[41] D. Thiébaut and H. S. Stone. Footprints in the cache. ACM Transac-
tions on Computer Systems, 5(4):305–329, 1987.

[42] S. Wallace and K. Hazelwood. Superpin: Parallelizing dynamic instru-
mentation for real-time performance. In Proceedings of CGO, pages
209–220, 2007.

[43] M.-J. Wu and D. Yeung. Coherent profiles: Enabling efficient reuse
distance analysis of multicore scaling for loop-based parallel pro-
grams. In Proceedings of PACT, pages 264–275, 2011.

[44] M.-J. Wu and D. Yeung. Identifying optimal multicore cache hier-
archies for loop-based parallel programs via reuse distance analysis.
In Proceedings of the ACM SIGPLAN Workshop on Memory System
Performance and Correctness, pages 2–11, 2012.

[45] X. Xiang, B. Bao, T. Bai, C. Ding, and T. M. Chilimbi. All-window
profiling and composable models of cache sharing. In Proceedings of
PPoPP, pages 91–102, 2011.

[46] X. Xiang, B. Bao, C. Ding, and Y. Gao. Linear-time modeling of
program working set in shared cache. In Proceedings of PACT, pages
350–360, 2011.

[47] X. Xiang, B. Bao, C. Ding, and K. Shen. Cache conscious task
regrouping on multicore processors. In Proceedings of CCGrid, pages
603–611, 2012.

[48] Y. Zhong and W. Chang. Sampling-based program locality approxi-
mation. In Proceedings of ISMM, pages 91–100, 2008.

[49] Y. Zhong, X. Shen, and C. Ding. Program locality analysis using reuse
distance. ACM TOPLAS, 31(6):1–39, Aug. 2009.

[50] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate,
efficient, and adaptive calling context profiling. In Proceedings of
PLDI, pages 263–271, 2006.

[51] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In Pro-
ceedings of ASPLOS, pages 129–142, 2010.

A. Measuring the Direct Fill Time
As defined in Section 2.3, the direct fill time is the average length
of all windows that have the same-size footprint. For a trace of
n accesses to m data, the fill time algorithm counts all O(n2)
windows but reduces the quadratic cost of counting in three ways.
The solution is similar in design to all-window footprint measure-
ment [17, 45].

Counting by footprint size rather than window length The foot-
print size in a window is up to m, the size of data. Although there
are up to n windows ending at each element, there are at most m
different footprint sizes. By counting m footprint sizes rather than
n windows, the algorithm reduces the counting cost from O(n2) to
O(nm).

Consider the example in Figure 10. Take the trace till the second
access of b (before |). It is the 6th access, so there are 6 windows
ending there. Only 3 distinct elements are accessed, so the 6 win-
dows have at most 3 different footprint sizes. From small to large,
the 6 windows have a length 1 to 6 and footprints 1,2,3,3,3,3 re-
spectively.

aabacb|acadaadeedab

Windows ending at the second b

b, cb, acb, bacb, abacb, aabacb

Figure 10: There are 3 different footprints for the 6 windows ending
at the second b, so the 6 windows can be counted in 3 (instead of 6)
steps.

Relative precision footprint size By measuring data sizes with
a relative precision, for example, 99% or 99.9%, the number of
different footprint sizes becomes O(logm) instead of m. The cost
of the algorithm becomes O(n logm).

Trace compression A user sets a positive threshold c. The trace
is divided into a series of k intervals. Each interval has c distinct
elements (except for the last interval, which may have fewer than
c distinct elements). This is known as trace compression [28]. The
algorithm traverses the trace interval by interval rather than element
by element. The length of the trace is reduced from n to k, and the
cost becomes O(ck logm).

The algorithm computes the full distribution of the fill time
V T (v), from which we can compute the average fill time vt(v).
As far as we know, this is the first algorithm that computes the
direct fill time with a guaranteed precision. We have implemented
it and shown the results in the evaluation section.

20

Program Locality Analysis Using
Reuse Distance

YUTAO ZHONG
George Mason University
XIPENG SHEN
The College of William and Mary
and
CHEN DING
University of Rochester

On modern computer systems, the memory performance of an application depends on its locality. For
a single execution, locality-correlated measures like average miss rate or working-set size have long
been analyzed using reuse distance—the number of distinct locations accessed between consecutive
accesses to a given location. This article addresses the analysis problem at the program level, where
the size of data and the locality of execution may change significantly depending on the input.

The article presents two techniques that predict how the locality of a program changes with
its input. The first is approximate reuse-distance measurement, which is asymptotically faster
than exact methods while providing a guaranteed precision. The second is statistical prediction of
locality in all executions of a program based on the analysis of a few executions. The prediction
process has three steps: dividing data accesses into groups, finding the access patterns in each
group, and building parameterized models. The resulting prediction may be used on-line with
the help of distance-based sampling. When evaluated on fifteen benchmark applications, the new
techniques predicted program locality with good accuracy, even for test executions that are orders
of magnitude larger than the training executions.

The two techniques are among the first to enable quantitative analysis of whole-program local-
ity in general sequential code. These findings form the basis for a unified understanding of program

The article contains material previously published in the 2002 Workshop on Languages, Compilers,
and Runtime Systems (LCR), 2003 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), and 2003 Annual Symposium of Los Alamos Computer Science Insti-
tute (LACSI).
The authors were supported by the National Science Foundation (CAREER Award CCR-0238176
and two grants CNS-0720796 and CNS-0509270), the Department of Energy (Young Investigator
Award DE-FG02-02ER25525), IBM CAS Faculty Fellowship, and a gift from Microsoft Research.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the funding organizations.
Authors’ addresses: Y. Zhong, George Mason University, Fairfax, VA; email: yzhong@cs.gmu.edu; X.
Shen, College of William and Mary, Williamsburg, VA; email: xshen@cs.wm.edu; C. Ding, University
of Rochester, Rochester, NY; email: cding@cs.rochester.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0164-0925/2009/08-ART20 $10.00
DOI 10.1145/1552309.1552310 http://doi.acm.org/10.1145/1552309.1552310

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:2 • Y. Zhong et al.

locality and its many facets. Concluding sections of the article present a taxonomy of related lit-
erature along five dimensions of locality and discuss the role of reuse distance in performance
modeling, program optimization, cache and virtual memory management, and network traffic
analysis.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimiza-
tion, compilers

General Terms: Measurement, Languages, Algorithms

Additional Key Words and Phrases: Program locality, reuse distance, stack distance, training-based
analysis

ACM Reference Format:
Zhong, Y., Shen, X., and Ding, C. 2009. Program locality analysis using reuse distance. ACM Trans.
Program. Lang. Syst. 31, 6, Article 20 (August 2009), 39 pages.
DOI = 10.1145/1552309.1552310 http://doi.acm.org/10.1145/1552309.1552310

1. INTRODUCTION

Today’s computer systems must manage a vast amount of memory to meet the
data requirements of modern applications. Because of fundamental physical
limits—transistors cannot be infinitely small and signals cannot travel faster
than the speed of light—practically all memory systems are organized as a
hierarchy with multiple layers of fast cache memory. On the software side, the
notion of locality arises from the observation that a program uses only part of
its data at each moment of execution. A program can be said to conform to the
80-20 rule if 80% of its execution requires only 20% of its data. In the general
case, we need to measure the active data usage of a program to understand and
improve its use of cache memory.

Whole-program locality describes how well the data demand of a program can
be satisfied by data caching. Although a basic question in program understand-
ing, it has eluded systematic analysis in the past due to two main obstacles:
the complexity of program code and the effect of program input. In this article,
we address these two difficulties using training-based locality analysis. This
analysis examines the execution of a program rather than analyzing its code.
It profiles a few runs of the program and uses the result to build a statistical
model to predict how the locality changes in other runs. Conceptually, training-
based analysis is analogous to observation and prediction in the physical and
biological sciences.

The basic runtime metric we measure is reuse distance. For each data access
in a sequential execution, the reuse distance is the number of distinct data ele-
ments accessed between the current and previous accesses to the same datum
(the distance is infinite if no prior access exists). It is the same as the LRU stack
distance defined by Mattson et al. [1970]. As an illustration, Figure 1(a) shows
an example access trace and its reuse distances. If we take the histogram of
all (finite) reuse distances, we have the locality signature, which is shown in
Figure 1(b) for the example trace. For a fully-associative LRU cache, an access
misses in the cache if and only if its reuse distance is greater than the cache
size. Figure 1(c) shows all nonzero miss rates of the example execution on all
cache sizes. In general, a locality signature captures the average locality of an

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

Chen Ding

Program Locality Analysis Using Reuse Distance • 20:3

Fig. 1. Example reuse distances, locality signature, and miss rate curve.

execution from the view of the hardware as the miss rate in caches of all sizes
and all levels of associativity [Mattson et al. 1970; Smith 1976; Hill and Smith
1989] and from the view of the operating system as the size of the working
sets [Denning 1980].

At the program level, locality analysis is hampered by complex control flows
and data indirection. For example, pointer usage obscures the location of the
datum being accessed. With reuse distance, we can avoid the difficulty of code
analysis by directly examining the execution or, more accurately, the locality
aspect of the execution. Compilers may make local changes to a program, for
example, by unrolling a loop. Modern processors, likewise, may reorder instruc-
tions within a limited execution window. These transformations affect paral-
lelism but not cache locality. The unchanging locality cannot be seen in the
reuse distance since the number and the length of long reuse distances stay
the same with and without the transformations. As a direct measure, reuse
distance is unaffected by coding and execution variations that do not affect
locality.

Furthermore, reuse distance makes it possible to correlate data usage
across training executions. Since a program may allocate different data (or
the same data in different locations) between runs, we cannot directly compare
data addresses, but we may find correlations in their reuse distances. More
importantly, we can partition memory accesses by decomposing the locality
signature into subcomponents with only short- or long-distance reuses. As we
shall see, programs often exhibit consistent patterns across inputs, at least in
some components. As a result, we can characterize whole-program locality by
defining common patterns and identifying program components that have these
patterns.

A major difficulty of training-based analysis is the immense size of execution
traces. A small program may produce a long execution, in which a modern
processor may execute billions of operations a second. Section 2 addresses the
problem of measuring reuse distance. We present two approximate algorithms:
one guarantees a relative precision and the other an absolute precision. Since
data may span the entire execution between uses, a solution must maintain
some representation of the trace history. The approximate solutions use a data
structure called a scale tree, in which each node represents a time range of
the trace. By properly adjusting these time ranges, an analyzer can examine
the trace and compute approximate reuse distance in effectively constant time
regardless of the length of the trace. Over the past four decades, there has been a

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

Chen Ding

20:4 • Y. Zhong et al.

steady stream of solutions developed for the measurement problem. We review
the other solutions in Section 2.3 and present a a new lower-bound result in
Section 2.4.

The key to modeling whole-program locality is prediction across program
inputs. Section 3 describes the prediction process, which first divides data ac-
cesses into groups, then identifies statistical patterns in each group, and finally
computes parameterized models that yield the least error. Pattern analysis is
assisted by the fact that reuse distance is always bounded and can change at
most as a linear function of the size of the data. We present five prediction meth-
ods assembled from different division schemes, pattern types, and statistical
equations. Two methods are single-model, which means that a locality compo-
nent, that is, a partition of memory accesses, has only one pattern. The other
three are multimodel, which means that multiple patterns may appear in the
same component. These offline models can be used in online prediction using a
technique called distance-based sampling.

The new techniques of approximate measurement and statistical prediction
are evaluated in Section 4 using real and artificial benchmarks. Section 4.1
compares eight analyzers and shows that approximate analysis is substantially
faster than previous techniques in measuring long reuse distances. Section 4.2
compares five prediction techniques and shows that most programs have pre-
dictable components, and the accuracy and efficiency of prediction increase with
additional training inputs and with multimodel prediction. On average, the lo-
cality in fifteen test programs can be predicted with 94% accuracy. Programs
that are difficult to predict include interpreters and scientific code with high-
dimension data. Interestingly, because reuse distance is execution-based, our
analyses can reveal similarities in inherent data usage among applications that
do not share code.

Our locality prediction techniques are examples of a broader approach we
call behavior-based program analysis. Conventional program analysis identi-
fies invariant properties by examining program code. Behavior analysis infers
common patterns by examining program executions. Section 5 discusses re-
lated work in locality analysis using program code and behavior metrics in-
cluding reuse distance, access frequency and data streams. Locality analysis
has numerous uses in performance modeling, program improvement, cache and
virtual memory management, and network caching. Section 6 presents a tax-
onomy that classifies the uses of reuse distance into five dimensions—program
code, data, input, time, and environment. Many of these uses may benefit from
the fast analysis and predictive modeling described in this article.

2. APPROXIMATE REUSE-DISTANCE MEASUREMENT

In our problem setup, a trace is a sequence of T accesses to N distinct data
items. A reuse-distance analyzer traverses the trace and measures the reuse
distance for each access. At each access, the analyzer finds the previous time the
data was accessed and counts the number of different data elements accessed in
between. To find the previous access, the analyzer assigns each access a logical
time and stores the last access time of each datum in a hash table. In the worst

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

Chen Ding

Program Locality Analysis Using Reuse Distance • 20:5

Fig. 2. An example illustrating the reuse-distance measurement. Part (a) shows a reuse distance.
Parts (b) and (c) show its measurement by the Bennett-Kruskal algorithm and the Olken algorithm.
Part (d) shows our approximate measurement with a guaranteed precision of 33%.

case, the previous access may occur at the beginning of the trace, the difference
in access time is up to T − 1, and the reuse distance is up to N − 1. In large
applications, T can be over 100 billion, and N is often in the tens of millions.

We use the example in Figure 2 to introduce two previous solutions and
then describe the basic idea for our solution. Part (a) shows an example trace.
Suppose we want to find the reuse distance between the two accesses of b at time
4 and 12. A solution has to store enough information about the trace history
before time 12. Bennett and Kruskal [1975] discovered that it is sufficient to
store only the last access of each datum, as shown in Part (b) for the example
trace. The reuse distance is measured by counting the number of last accesses,
stored in a bit vector rather than using the original trace.

The efficiency was improved by Olken [1981], who organized the last accesses
as nodes in a search tree keyed by their access time. The Olken-style tree for
the example trace has 7 nodes, one for the last access of each datum, as shown
in Figure 2(c). The reuse distance is measured by counting the number of nodes
whose key values are between 4 and 12. The counting can be done in a single
tree search, first finding the node with key value 4 and then backing up to the
root accumulating the subtree weights [Olken 1981]. Since the algorithm needs
one tree node for each data location, the search tree can grow to a significant
size when analyzing programs with a large amount of data.

While it is costly to measure long reuse distances, we rarely need the exact
length. Often the first few digits suffice. For example, if a reuse distance is
about one million, it rarely matters whether the exact value is one million or
one million and one. Next we describe two approximate algorithms that extend
the Olken algorithm by adapting and trimming the search tree.

The new algorithms guarantee two types of precision for the approximate
distance, dapproximate, compared to the actual distance, dactual. In both types, the

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:6 • Y. Zhong et al.

approximate distance is no greater than the actual distance. Relative precision
means that the maximal error is no more than a constant fraction e of the actual
distance. Absolute precision means that the maximal error b is a constant. Here
the term “precision” means the portion of a value that can be reliably measured.
We also use the term “accuracy” interchangeably. The formal definition of the
two guarantees is as follows:

(1) Relative precision w/ max error e: 0 < e < 1 and 0 ≤
dactual−dapproximate

dactual
≤ e.

(2) Absolute precision w/ max error b: b > 0 and 0 ≤ dactual − dapproximate ≤ b.

Instead of using a tree node to store the last access of one data element as
in the Olken algorithm, the approximate analysis uses a tree node to store a
time range that may include the last accesses of multiple data elements. We
call the new tree a scale tree and define the size of each node as the number of
data elements last accessed in its time range. An example scale tree is shown
in Figure 2(d), which stores the last accesses of 7 variables approximately in
3 tree nodes with sizes 2, 4, and 1, respectively (in comparison, the precise
representation in Figure 2(c) requires 7 tree nodes). The size of the scale tree,
measured by the number of tree nodes, equals N divided by the average node
size. The error in approximation can be as large as the maximal node size. The
Olken algorithm uses unit-size nodes and has full precision. The problem for
the approximation algorithms is how to inflate the node size so the tree size is
minimized while the measurement error is bounded.

In the following discussion, we do not consider the cost of finding the last
access time. This can be performed by looking it up in a hash table, which has
an O(1) expected cost per access. The space cost is O(N), although it can be
reduced to a constant using multipass analysis [Bennett and Kruskal 1975].

2.1 Approximation with a Relative Precision

We describe the scale tree and its two types of operations. The first happens at
every access to compute the reuse distance. The second happens periodically
to compress the tree by coalescing the time ranges and reducing the number of
tree nodes.

A node in a scale tree has 7 attributes, as defined in Figure 3. The time at-
tribute is the end of its time range and also the search key. The size attribute
is the number of data last accessed in the time range. The weight attribute is
the total size of all the tree node’s children. We assume the tree is a binary
tree, so each node has left and right children. For the purpose of compres-
sion, we link tree nodes in a linear order using the prev attribute, by which
each node is tied to the node of the immediately earlier time range. For ex-
ample, the time range of node x is from x.prev.time + 1 to x.time. The last
and most important attribute is capacity, which sets the upper bound of the
node size and in turn determines the size of the tree and the precision of the
approximation.

Let the current access be to datum d . The main routine, ReuseDistance shown
in Figure 3, is called given as input the last and current access time. As the
first step, it calls the subroutine TreeSearchDelete, which finds the host node

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:7

Fig. 3. Approximate analysis with a relative precision 1 − e. Part I.

containing the last access of d and traverses the search path backward to cal-
culate the approximate reuse distance using the sum of the subtree weights as
in the Olken algorithm.

Since the last access of d is changed, TreeSearchDelete removes the last
record by decrementing the size attribute of the host node and the weight at-
tribute of all parent nodes. Subroutine TreeInsert is then called to add a new
node into the tree representing the new last access, the current access. It rebal-
ances the tree as needed. The insertion procedure is not shown since it depends
on the type of search tree being used.

The loss of precision occurs at the host node. It contains a group of last
accesses but we cannot know which is the last access of d . To prevent overesti-
mating, we assume it is the last one in the group. The error is at most size − 1,
which is at most capacity − 1, since size ≤ capacity.

The initial capacity of a new node is 1. As tree nodes become dated, their
capacity is adjusted by the subroutine TreeCompression, shown in Figure 4.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:8 • Y. Zhong et al.

Fig. 4. Approximate analysis with a relative precision 1 − e. Part II.

It uses the prev link to traverse tree nodes in reverse chronological order and
assigns the capacity of each node x to distance ∗ e

1−e + 1, where e is the error
bound (0 < e < 1), and distance is the number of distinct data accessed after x ’s
time range. Since the maximal error at node x is x.capacity − 1, the maximal
relative error is x.capacity−1

distance+x.capacity−1 = e. TreeCompression will also merge adjacent
time ranges as long as the combined size does not exceeds the capacity. The size
of the tree is minimized for the error bound.

In the main routine, ReuseDistance, tree compression is triggered when the
number of tree nodes exceeds the threshold 4 log 1

1−e
N + 4, where N is the

number of distinct elements that have been accessed. The following theorem
shows that the compression always removes at least half of the tree nodes.

THEOREM 1. For a trace of T accesses to N data elements, the approximate
reuse distance measurement with a bounded relative error e (0 < e < 1) takes
O(T log2 N) time and O(log N) space, assuming it uses a balanced tree.

PROOF. Since the tree is compressed whenever it grows to 4 ∗ log 1
1−e

N + 4
nodes, the number of tree nodes cannot exceed O(log N). We next show that
every time it is invoked, TreeCompress removes at least half of the tree nodes.

Since the compression routine marches backward in time, we number the
compressed nodes in reverse chronological order as n0, n1, . . . , and nr , with n0
being the latest node. Assume r is an odd number (if r were even, we could add
a zero-size node). Consider each pair n2i and n2i+1, i = 0, . . . , r−1

2 . Let sizei be
the combined size of n2i and n2i+1 and sumi =

∑
j=0,...,i size j be the total size of

nodes up to and including n2i+1.
Since the capacity of the node n2i is set to %sumi−1 ∗ e

1−e &+1 by the algorithm,
the combined size of the node pair, sizei, must be at least %sumi−1 ∗ e

1−e & + 2;
otherwise the ith node pair should have been merged into a single node. We
now have size0 ≥ 1 and sizei > sumi−1 ∗ e

1−e . Since sumi = sizei + sumi−1, by

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:9

induction we have sumi > (1+ e
1−e)i or i < log 1

1−e
sumi. Let Mcompressed be the size

of the tree after compression. Since Mcompressed = r + 1 ≤ 2i + 2 and sumi = N ,
Mcompressed < 2 ∗ log 1

1−e
N + 2. Comparing to the starting size, we see that each

compression must cut out half of the tree nodes.
Now we consider the time cost. Assume that the tree is balanced and has

M tree nodes (M ≤ 4 log 1
1−e

N + 4). The time for the tree search, deletion,
and insertion is O(log M) per access. Tree compression happens periodically
after a tree growth of at least 2 log 1

1−e
N + 2 or M/2 tree nodes. Since one tree

node is added for each access, the number of accesses between successive tree
compressions is at least M/2 accesses. Each compression takes O(M) time
because it examines each node in a constant time, and the tree construction
from an ordered list takes O(M) time. Hence the amortized compression cost
is O(1) for each access. The total time is therefore O(log M + 1), or O(log2 N)
per access.

2.2 Approximation with Absolute Precision

For a cut-off distance c and a constant error bound b, the absolute-precision
algorithm divides the access trace into two parts: the precise trace records the
last c elements accessed, and the approximate trace stores older accesses in
a tree where the capacity of each tree node is set to b + 1. As a result, the
measurement is accurate for reuse distances up to c and approximate for larger
distances with an error no more than b. Periodically, the algorithm transfers
data from the precise trace to the approximate trace.

We have described a detailed algorithm and its implementation using a
B-Tree for both the precise and approximate trace [Zhong et al. 2002]. Here
we generalize it to a class of algorithms. The precise trace can use a list, a vec-
tor, or any type of tree, and the approximate trace can use any type of tree, with
two requirements. First, the size of the precise trace is bounded by a constant.
Second, a minimal occupancy of each tree node is guaranteed. To satisfy the
first requirement, we transfer the last accesses of c data elements from the pre-
cise trace to the approximate trace when the size of the precise trace exceeds
2c. To ensure minimal occupancy, we merge two consecutive tree nodes if their
total size falls below the capacity of the succeeding node. The merge operation
guarantees at least half utilization of the capacity b at each node. Therefore,
the number of nodes in the approximate tree is at most 2N

b .
We have implemented a splay tree [Sleator and Tarjan 1985] version of the

algorithm and will use only the approximate trace (c = 0) in the analyzer for
runtime locality analysis (i.e., distance-based sampling in Section 3.5) because
the analyzer has the fastest speed, as shown later in Section 4.1.

2.3 Comparison with Related Concepts and Algorithms

Mattson et al. [1970] showed that buffer memory could be modeled as a stack,
if the method of buffer management satisfied the inclusion property in that a
smaller buffer would hold a subset of data held by a larger buffer. They showed
that the inclusion property is satisfied when a buffer is managed by common
replacement policies including least recently used (LRU), least frequently used

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:10 • Y. Zhong et al.

Table I. The Asymptotic Complexity of Reuse-Distance Measurement

Measurement Algorithms Time Space
trace as a stack (or list) [Mattson et al. 1970] O(T N) O(N)
trace as a vector (interval tree) O(T log T) O(T)
[Bennett and Kruskal 1975; Almasi et al. 2002]
trace as a search tree [Olken 1981] O(T log N) O(N)
[Sugumar and Abraham 1993; Almasi et al. 2002]
aggregate counting [Kim et al. 1991] O(Ts) O(N)
approximation using time O(T) O(1)
[Berg and Hagersten 2004; Shen et al. 2007]

approx. w/ relative precision O(T log2 N) O(log N)
approx. w/ absolute precision O(T log N

b) O(N
b)

T is the length of execution, N is the size of program data, s is the number of (measured)
cache sizes, b is the error bound.

(LFU), optimum (OPT), and a variant of random replacement. They defined a
collection of stack distances. These concepts formed the basis of storage system
evaluation and enabled much of the experimental research in virtual memory
management in the subsequent decades.

Stack distance is also used extensively in studies of cache memory. But it is
not a favorable metric in low-level cache design because it does not model is-
sues such as write-backs, cache-line prefetch, and queuing delays. Some of the
drawbacks have been remedied by techniques that modeling the effect of set as-
sociativity [Smith 1976; Hill and Smith 1989] and write-backs and subblocks for
fully associative [Thompson and Smith 1989] and set-associative caches [Wang
and Baer 1991].

Reuse distance is the same as the LRU stack distance. It is informative to
use the shorter name here because our primary purpose is program analysis.
Locality as a program property exists without the presence of buffer memory
or caches, so the notion of the stack is immaterial. In addition, reuse distance
can be measured directly and much more quickly using a tree (or a bit vector)
instead of a stack.

Since 1970, there have been steady improvements in reuse distance mea-
surement. We categorize previous methods by their organization of the trace.
The first three rows of Table I show methods using a stack, a bit vector, and a
tree. Mattson et al. [1970] gave the first algorithm, which used a stack. Bennett
and Kruskal [1975] observed that a stack was too slow to measure long reuse
distances in database traces. They used a bit vector and built an m-ary interval
tree on it. They also showed how to make the hash table smaller using multi-
pass analysis. Olken [1981] gave the first tree-based algorithm. He also showed
how to compress the bit vector and improve the Bennett-Kruskal algorithm to
the efficiency level of his tree-based algorithm. Sugumar and Abraham [1993]
showed that a splay tree [Sleator and Tarjan 1985] had better memory per-
formance and developed a widely used cache simulator, Cheetah. Almasi et al.
[2002] showed that by recording the empty regions instead of the last accesses
in the trace, they could improve the efficiency of vector and tree based methods
by 20% to 40%. They found that the modified Bennett-Kruskal algorithm was
faster than the Olken algorithm with AVL or red-black trees.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:11

Kim et al. [1991] gave an algorithm that stores the last accesses in a list and
embeds markers for cache sizes. It measures the miss rate precisely but not the
reuse distance. The space cost is proportional to the largest cache size, which
is N if we measure for caches of all sizes. Instead of reuse distance, the access
distance, that is, the logical time between the two consecutive accesses to the
same datum, has been used to estimate the miss rate for caches of all sizes
in StatCache [Berg and Hagersten 2004, 2005] and to statistically infer the
reuse distance in time-based prediction [Shen et al. 2007]. The two statistical
techniques have a linear time cost but do not guarantee the precision of the
result. In addition, Zhong and Chang [2008] used sampling analysis to reduce
the constant factor in the cost of reuse-distance measurement.

The literature on algorithm design has two related problems: finding the
number of distinct elements in a sequence of m elements each of which is be-
tween 0 and n, and finding the number of 1’s in a window of m binary digits. The
goal of streaming algorithms is to solve these problems incrementally without
storing the entire sequence. Alon et al. [1996] gave a simple proof (Proposi-
tion 3.7) of the previously known result that any such algorithm must use !(n)
memory bits. For counting the number of 1’s over a sliding window of size m,
Datar et al. [2002] gave a deterministic algorithm with optimal space complex-
ity O(log2 m) bits. They extended it to count the number of distinct values in a
sliding window “with an expected relative accuracy of O(1√

n) using O(n log2 m)
bits of memory”, based on probabilistic counting [Flajolet and Martin 1983]. The
relative precision algorithm in this paper can solve the same sliding-window
problem deterministically with constant relative precision using O(n log m) bits
in the hash table and O(log n log m) bits in the scale tree.

The approximate measurement is asymptotically faster than exact algo-
rithms. The space cost of the search tree is reduced from linear to logarithmic.
The time cost per access, O(log2 N), is effectively constant for any practical
data size N . The improvement is important when analyzing a program at the
data-element granularity like we do in program locality analysis. Next we show
a lower bound result for the space cost, which suggests that approximation is
necessary to obtain this level of efficiency.

2.4 A Lower Bound Result

The following theorem gives the minimal space needed by an exact algorithm.

THEOREM 2. The space cost for accurately measuring reuse distance is
!(N log N) bits, where N is the largest reuse distance.

PROOF. The trace may contain accesses to N distinct data elements. Assum-
ing prior to a logical time k, all N elements have been accessed, the reuse dis-
tance at k depends on the relative order of the last accesses of N elements. The
number of possible orders is the number of permutations of N elements or N !.

An accurate method must be able to distinguish between any two different
permutations. Otherwise, let us assume that there exists an accurate measure-
ment that does not distinguish between two permutations Q and R, and datum
x is last accessed at a different point in Q than in R. If given the two traces Qx

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:12 • Y. Zhong et al.

and Rx, the method would not be able to show that the reuse distance of the
last access (of x) is different in the two traces. This contradicts the assumption
that the method is accurate. Since an exact method must distinguish between
all N ! permutations, it must store !(log N !) or !(N log N) bits.

The lower bound result has two significant implications. First, the
!(N log N) lower bound differs from the !(N) lower bound of counting the
number of 1’s in a sliding window [Alon et al. 1996], so the problem of reuse
distance measurement is inherently harder than the sliding window problem
in streaming. Second, we observe that in the method of Olken [1981], both the
hash table and the search tree have O(N) entries of O(log T) bits per entry, so
the space cost, O(N log T) bits, is close to optimal. To match the time efficiency
of the approximate algorithm, an exact algorithm must process O(N) items of
information in O(log2 N) steps for each access, which seems improbable. Hence
the lower bound result suggests that we may not improve exact measurement
much beyond Olken’s result. For a greater efficiency we may have to resort to
approximation, as we have done using the scale tree.

3. LOCALITY PREDICTION

Locality prediction has three steps: dividing reuse distances into groups, ana-
lyzing their length in training executions, and constructing a statistical model
to predict their length in all executions. The only parameter of the model
is the input size. In Section 3.5, we define the input size computationally using
a technique called distance-based sampling. In most cases it is equivalent to N ,
the size of the data touched by an execution. We therefore use the terms input
size and program data size interchangeably.

3.1 Decomposing the Locality Signature

As we divide reuse distances into groups, it is desirable to control the range of
reuse distances in a group and the size of the group. Metaphorically speaking,
the range and the size can be considered the two dimensions that control an
inspection lens’s resolution. The range should not be too large because it may
include reuse distances representing different locality. The size should not be
too small because it would increase the computational cost without improving
accuracy.

We represent the locality signature using two types of histograms. In a reuse-
distance histogram (or distance histogram), the x-axis gives the length of reuse
distance in consecutive ranges or bins, and the y-axis shows the percentage of
all reuse distances that fall in each range. For each bin in the histogram, we
call the range of reuse distances its width and the frequency of reuse distances
its size. The width may grow in a linear scale, for example, [0, 2k), [2k, 4k),
[4k, 6k), · · · ; a logarithmic scale, for example, [0, 1), [1, 2), [2, 4), [4, 8), · · · ; or a
log-linear scale, for example, the ranges below 2048 are logarithmic and the
rest are linear. Figure 5(a) shows the logarithmic scale histogram of a fluid
dynamics simulation program.

Alternatively, we can sort all reuse distances, divide them into equal-size
partitions, line the groups up along the x-axis, and show the average reuse

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:13

Fig. 5. Example histograms for program SP with input size 283. (a) The log-scale distance his-
togram shows the percentage of reuse distances (the y-axis) that fall into ranges of base-2 logarith-
mic scale (the x-axis). (b) The reference histogram shows the average reuse distance (the y-axis)
for each 1% of reuse distances sorted by increasing length (the x-axis).

distance of each group on the y-axis. We call this a reference histogram and
each bin a reference partition. Figure 5(b) shows the reference histogram in 100
partitions for the same example program. The first bin shows that the average
length is 0 for the shortest 1% of reuse distances. The two histograms can be
explained using nomenclature from probability theory. If we view reuse dis-
tance as a random variable, the distance histogram, for example, Figure 5(a), is
the density function, and the reference histogram, for example, Figure 5(b), is
the transpose of the cumulative density function.

The two types of histograms have complementary properties for behavior
decomposition. With distance histograms, we can easily control the range of
the reuse distances in each group but not the size of the group. With reference
histograms, all groups have the same size but the range of reuse distances in a
group can be arbitrarily large.

For locality prediction, the reference histogram has two important advan-
tages over the distance histogram. First, it isolates the effect of nonrecurrent
computations such as the initialization code before the main computation loop.
When the input size is sufficiently large, the effect of the nonrecurrent computa-
tion diminishes into a single partition in the reference histogram. The second is
to balance between information loss and modeling efficiency. When many reuse
distances have a similar length, the reference histogram may divide them to
increase precision. When a few reuse distances cover a wide spread in length,
the reference histogram uses large ranges to reduce the number of groups. The
size of the group determines the granularity and the cost of prediction. A group
size of 1% means that we analyze only 100 bins, and the error in a bin does not
affect more than 1% of the overall accuracy.

In our implementation, we generated the distance histogram using a log-
linear scale. The bins’ sizes were powers-of-2 up to 2048 and each remaining
bin had a size of 2048. We compute the average distance of each bin and use
it to convert the log-linear distance histogram to the reference histogram. Our

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:14 • Y. Zhong et al.

reference histogram has 1000 bins. We will evaluate prediction accuracy using
the three types of histograms: the reference histogram, the log-linear distance
histogram, and the logarithmic distance histogram. The last type is usually one
or two orders of magnitude more compact than the first two types.

3.2 Constant, Linear, and Sublinear Patterns

Patterns are defined for each group of reuse distances. Let the groups be
〈g1, g2, . . . , gB〉 for one execution and 〈 ĝ1, ĝ2, . . . , ĝB〉 for another, where B
is the number of groups. Let the average reuse distances of gi and ĝi be di and
d̂ i. Let s and ŝ be the input size of the two executions. We find the closest linear
function that maps the input size to the reuse distance. Specifically, we find the
two coefficients, ci and ei, that satisfy the following two equations.

di = ci + ei ∗ fi(s) (1)
d̂ i = ci + ei ∗ fi(ŝ), (2)

where fi is the pattern function. Once we define common patterns fi, the prob-
lem becomes one of linear regression.

Since the largest reuse distance cannot exceed the size of program data, the
pattern function fi can be at most linear and cannot be a general polynomial
function. We consider the following five choices of fi:

0; s; s1/2; s1/3; s2/3.

We call the first, 0, the constant pattern. A group of reuse distances has a
constant pattern if their average length does not change with the input. We
call the second, s, the linear pattern. A bin i has a linear pattern if the average
distance changes linearly with the program input size, i.e. di−ci

d̂ i−ci
= ei

s
ŝ , where

ci and ei are constants. Constant and linear patterns are the lower and upper
bound of the reuse distance changes. Between them are three sub-linear pat-
terns. The pattern s1/2 happens in two-dimensional problems such as matrix
computations. The other two happen in three-dimensional problems such as
ocean simulation. We could consider higher dimensional problems in the same
way, although we did not find a need in our test programs.

3.3 Single-Model Prediction

In single-model prediction, each group has a single pattern. For a group of reuse
distances, we calculate the ratio of their average distance in two executions,
di/d̂ i, and pick fi to be the pattern function that is closest to di/d̂ i. We take
care not to mix sublinear patterns from a different number of dimensions. In
our experiments, the dimensionality was given as an input to the analyzer. This
can be automated by trying all choices and using the best fit.

Using more than two training inputs may produce a better prediction, be-
cause more data may reduce the noise from imprecise reuse distance measure-
ment and histogram construction. We consider more inputs as follows. For each
bin, instead of two linear equations, we have as many equations as the number
of training runs. We use least square regression to determine the best values

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:15

Fig. 6. An example of multimodel prediction. Part (a) is the standard histogram of input s0. Part (b)
and (c) show the composition of the constant and linear patterns in the standard histogram. Given
a new input 8 ∗ s0, the constant part remains unchanged, shown in (d). The distance of the linear
part increases by a factor of eight, shown in (e). The prediction combines (d) and (e) to produce (f).

for the two unknowns. We will evaluate the relation between the number of
training inputs and the prediction accuracy.

3.4 Multimodel Prediction

Modelmodel prediction allows a group of reuse distances to have mixed pat-
terns. For example, some fraction of a group has one pattern, and the rest has
a different pattern. In multimodel prediction, the size of the ith group, hi(s), is
as follows.

hi(s) = ϕm1 (s, i) + ϕm2 (s, i) + · · · + ϕm j (s, i), (3)

where s is the size of the input, and ϕm1 · · · ϕm j are all possible pattern functions.
To ground the calculation on a single basis, we arbitrarily pick the result of

one of the training runs as the standard histogram. In single-model prediction,
one group in one histogram corresponds to one group in another histogram. In
multimodel prediction, one group in one histogram may correspond to a piece
in every group in another histogram.

We illustrate the process of multimodel prediction through an example in
Figure 6. The standard histogram is shown in Part (a). The size of its input

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:16 • Y. Zhong et al.

is s0. Other histograms are not shown, although they are used by the analysis
to compute the mixing of patterns in the standard histogram. The standard
histogram has 12 bins, and each bin has two models—the constant and the
linear pattern. The two patterns are separated into two pieces shown in Part
(b) and (c). Given another input size, 8 ∗ s0, we predict the reuse distance
according to the patterns. The constant pattern remains unchanged, shown in
Part (d). The distance in the linear pattern is octupled by moving the bars right
by 3 units along the x-axis, shown in Part (e). Finally, the prediction process
combines the constant and linear pieces and produces the predicted histogram
for input size 8 ∗ s0 in Part (f).

We show how to derive the composition of patterns in the standard histogram,
again through an example. Let s0 be the size of the standard input, and s1 = 3s0
be the size of another training input. Let ϕ(s, r) be the portion of reuse distances
in range r at input s. For this example we again assume only two patterns and
use ϕc for the constant pattern and ϕ# for the linear pattern. We use logarithmic
scale ranges. The first four are [0, 1〉, [1, 2〉, [2, 4〉, [4, 8〉. The analysis assumes
that reuse distances are distributed over a range continuously.

We compute the composition of the range [4, 8〉 in the histogram of s1 = 3s0
from the standard s0 histogram as follows. The size of the bin [4, 8〉 in histogram
s1 consists of constant and linear parts. The size of the constant part is the same
in s1 as in s0. The size of the linear part comes from the range [4

3 , 8
3 〉 in s0. The

relations are shown in the next three equations.

ϕ(s1, [4, 8〉) = ϕc(s1, [4, 8〉) + ϕ#(s1, [4, 8〉)
ϕc(s1, [4, 8〉) = ϕc(s0, [4, 8〉)

ϕ#(s1, [4, 8〉) = ϕ#

(
s0,

[
4
3

,
8
3

〉)
= ϕ#(s0,

[
4
3

, 2
〉
+ ϕ#

(
s0,

[
2,

8
3

〉)
.

We assume the reuse distance has uniform distribution in each bin. Hence,

ϕ#

(
s0,

[
4
3

, 2
〉)

=
(

2 − 4/3
2 − 1

)
ϕ#(s0, [1, 2〉) = 2

3
ϕ#(s0, [1, 2〉)

ϕ#

(
s0,

[
2,

8
3

〉)
=

(
8/3 − 2
4 − 2

)
ϕ#(s0, [2, 4〉) = 1

3
ϕ#(s0, [2, 4〉).

Therefore,

ϕ(s1, [4, 8〉) = ϕc(s0, [4, 8〉) + 2
3

ϕ#(s0, [1, 2〉) + 1
3

ϕ#(s0, [2, 4〉).

After processing each bin of all training inputs in a similar manner, we obtain
an equation group. The unknown variables are the size of the patterns in the
standard histogram. Regression techniques are used to find the mixing that fits
training results with the least error.

3.5 Distance-Based Sampling

Distance-based sampling is a heuristic for quickly estimating the input size by
analyzing only the beginning of an execution. It takes samples of long reuse

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:17

distances and selects one to represent the input size. The rationale behind this
scheme is the assumption that the change in input size is often proportional to
the change in long reuse distances.

The sampling analysis uses a reuse-distance analyzer to monitor long-
distance reuses. When a reuse distance is above a qualification threshold, the
accessed memory location is taken as a data sample. Subsequent accesses to
a data sample are recorded as access samples if the reuse distance is over a
temporal threshold. To avoid picking too many data samples, it requires that
a new data sample be at least a certain spatial distance away in memory from
existing data samples. This is the spatial threshold. The sampling scheme re-
quires certain manual effort to select the three thresholds for each program,
although the threshold selection can be automated [Shen et al. 2007].

In a sequence of access samples, we define a peak as a time sample whose
value is greater than that of its preceding and succeeding time samples. The
analysis records the first k peaks of the first m data samples. A user evaluates
these peaks in locality prediction and chooses the best one to represent the
input size. The choice is program dependent but identical for all executions of
the same program.

For most programs we have tested, it is sufficient to take the first peak of
either the first or the second data sample. In one program, Apsi, all executions
initialize the same amount of data but use a different amount in computation.
We use the second peak as the input size. In some other programs, early peaks do
not show a consistent relation with the input size, or the best peak appears near
the end of an execution. We identify these cases during training and instruct
the predictor to predict only the constant pattern.

Distance-based sampling can enable online prediction for an unknown input
as follows. It first builds the offline model parameterized by the input size.
When the execution of the test input starts, the sampling tool creates a twin
copy of the program to collect the reuse distances. The sampled version runs in
parallel with the original version until it detects the input size. For sampling
to work, it requires that the input of the program be replicated, and that the
sampled version not produce side effects.

3.6 Limitations

Although the analysis can handle any sequential program, this generality
comes with several limitations. For programs with high-dimensional data, cur-
rent pattern prediction requires that the shape of the data be similar in train-
ing and prediction. It should be possible to combine the pattern analyzer with
a compiler and incorporate the shape of the data as parameters in the locality
model. Note that locality prediction is useful only if the program is too complex
for compiler analysis; otherwise, compiler analysis should be used or combined
with locality prediction (see Section 5 for a review of related techniques). An
important assumption in locality prediction is that the percentage size of a
group of reuse distances is the same in all executions of a program. For exam-
ple, the group of the 1% shortest reuse distances in one execution corresponds
to the group of the 1% shortest reuse distances in other executions of the same

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:18 • Y. Zhong et al.

Fig. 7. A comparison of eight reuse-distance analyzers.

program. There is no logical reason that this relation has to hold in a program.
We will use empirical validation by examining the accuracy of the prediction for
a wide range of test programs. Finally, predicting locality does not mean pre-
dicting execution speed or execution time. The prediction gives the percentage
of cache misses but not the effect on overall performance nor the total number
of cache misses.

4. EVALUATION

For program analysis, we measure and predict reuse distance at the granular-
ity of data elements. Analyzing data access at the finest granularity requires
the highest efficiency and precision. The result shows the temporal locality in-
dependent of data layout. The same methods can be used to analyze temporal
and spatial locality at larger data granularity such as cache blocks and memory
pages (see Section 6 for a review of such studies).

4.1 Reuse Distance Measurement

Figure 7 compares the speed and accuracy of eight analyzers based on the al-
gorithms described in Section 2. Cheetah [Sugumar and Abraham 1993] imple-
ments the Olken algorithm using a splay-tree. BK-2, BK-16, and BK-256 are the
bit-vector algorithm by Bennett and Kruskal [1975], implemented using k-ary
trees with k = 2, 16, 256. These four measure reuse distance accurately. KHW
is our implementation of Kim et al. [1991] with three markers at distances of
32, 16K, and the size of analyzed data. It classifies each reuse distance in three

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:19

bins. We test three approximate analyzers. 99% is the relative-precision ap-
proximation with 99% accuracy. Sampling and ZDK-2k are absolute-precision
approximations with maximal error b = 2048. Sampling uses a splay tree and
only an approximate trace. ZDK-2k uses a B-tree and a mixed trace [Zhong
et al. 2002]. The test program traverses N data elements twice with reuse dis-
tance equal to N/100. To measure only the cost of reuse-distance analysis, the
hashing step is bypassed by pre-computing the last access time in all analyz-
ers (except for KHW, which does not need the access time). The programs are
compiled using gcc with full optimization (flag -O3) and tested on a 1.7 GHz
Pentium 4 PC with 800 MB main memory.

Among the five accurate analyzers, the bit-vector methods are the slowest,
Cheetah achieves an initial speed of 4 million memory references per second,
and KHW with three markers is fastest (7.4 million memory references per sec-
ond) for small data sizes. The accurate analyzers start to run out of the physical
memory at 100 million data elements, so the three approximate analyzers be-
come the fastest, with Sampling at 7 million references per second, ZDK-2k
over 3 million references per second, and 99% over 1 million references per
second. Sampling and ZDK-2k do not analyze beyond 4 billion data elements
since their implementation uses 32-bit integers.

Among the eight, the 99% precise approximate analyzer shows the most
scalable performance. We use 64-bit integers in the program and test it for up
to 1 trillion data elements. The asymptotic cost, O(log2 N) per access, should be
effectively linear in practice. We tested data sizes up to the 1 trillion because it
is in the order of the length of a light year measured in miles. In the experiment,
the analyzer ran at a near constant speed of 1.2 million references per second
from 100 thousand data elements to 1 trillion data elements. The consistent
high speed is remarkable considering that the data size and reuse distance
differ by eight orders of magnitude. The speed was so stable that we could
predict how much time our tests would take.

The lower graph of Figure 7 compares the accuracy of the approximation
on a partial histogram of FFT. The y-axis shows the percentage of memory
references, and the x-axis shows the distance on a linear scale between 55K
and 66K with an increment of 2048. The 99.9% and 99% analyzers produce
histograms that closely match the accurate histogram. The overall error is about
0.2% and 2% respectively. The analyzer with the constant error bound 2048,
shown by the histogram marked ZDK-2k, misclassifies under 4% of the memory
references at the far end of the histogram. If we compare the space overhead,
accurate analyzers need 67 thousand tree or list nodes, ZDK-2k needs 2080
tree nodes (of which 32 nodes are in the approximate tree), 99.9% needs 5869,
and 99% needs 823. The results show that approximate analyzers can greatly
reduce the space cost without a significant loss of precision, and the cost and
the accuracy are adjustable.

4.2 Locality Prediction

We begin by testing program locality prediction using reference histograms
with 1000 bins, first for one benchmark program and then for all 15 programs.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:20 • Y. Zhong et al.

Fig. 8. Program locality prediction for Spec2K/Lucas.

Then we compare our full set of prediction methods and finally discuss a few
notable features of whole-program locality analysis.

4.2.1 Single-Model Prediction Based on Reference Histograms. An illus-
trative example is the program Lucas from the SPEC 2000 benchmark suite.
Based on the Lucas-Lehmer lemma, it tests the primality of very large
numbers—numbers up to 21000. The program performs many large-number
multiplications through specialized fast Fourier transforms coded using the
C language. The program is difficult for a compiler to analyze.

The SPEC 2000 benchmark suite provides three inputs for the program. The
smaller two are “test” and “train” inputs. Respectively they make 5 million
reuses of 6 thousand data elements and 40 million reuses of 41 thousand data
elements. The first two sets of bars in Figure 8 show their locality signatures
in logarithmic scale distance histograms. The bars in the left half of their sig-
natures show a similar distribution of short reuse distances. The bars in the
right half show much longer reuse distances in “train” than in “test.”

Single-model locality prediction measures the log-linear distance histogram
for the two inputs, partitions the reuse distances into 1000 reference partitions,
identifies constant and linear patterns, and builds a locality model parameter-
ized by the input size measured using distance-based sampling. To test on-line
prediction, we ran the third “ref” input. The execution has 644 billion accesses
to 21 million data elements. After 0.4% of the execution time, distance-based
sampling detected the input size. Substituting this in the model, we predicted
the locality signature shown by the third group of bars in Figure 8. To compare,
we measured the locality signature for the entire “ref” run, shown by the fourth
set of bars.

Comparing the last two sets of bars in Figure 8, we see that the prediction
largely agrees with the measurement. The two signatures match. The right
half of the “ref” signature has no overlap with “test” and “train” signatures,
yet the predicted signature is correct in shape and height, demonstrating the

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:21

ability by our method to predict large-scale behavior changes across the input
of this program. The “ref” execution is four orders of magnitude longer and
uses three orders of magnitude more data than “train” and “test” combined.
The accurate prediction shows that the model is successful in characterizing
the locality property at the program level, not just in a few executions.

We define prediction accuracy as follows. Let xi and yi be the size of ith bar
in predicted and measured histograms. The accuracy is

accuracy = 1 −
∑

i | yi − xi|
2

.

It measures the overlap between the two signatures, which ranges from 0% for
no match to 100% for a complete match. For example, the prediction of Lucas
in Figure 8 is 95% accurate.

Tables II and III list all the programs in our test set and summarize the
accuracy and coverage of the single-model prediction. The test set consists of
15 benchmarks, including 9 floating-point programs and 6 integer programs. All
programs came from SPEC 1995 and SPEC 2000 benchmark suites except for
SP from the NAS benchmark suite and a textbook version of a two-dimensional
FFT kernel. In experiments, we reduced the number of iterations in a program
if it did not affect the overall pattern. Most experiments used DEC Alpha sys-
tems. We compiled the test programs with the DEC compiler using the default
optimization (-O3). We used Atom [Srivastava and Eustace 1994] to instrument
the binary code to collect the addresses of all loads and stores and fed them to
our analyzer. The tool treated each distinct memory address as a data element.

The two tables have the same format, reporting each program in one row. The
first two columns give the name and a short description of the program. The
next column lists its reuse distance patterns, which can be constant, linear, or
sublinear. Floating-point programs generally have more patterns than integer
programs do. The fourth column shows the inputs used. They are all different
as shown in the next three columns in terms of the number of distinct data
elements, the number of data reuses per element, and the average reuse dis-
tance. The programs are listed in decreasing order of the average reuse distance.

Most inputs we used were standard test, train, and reference inputs from
SPEC, with the following exceptions. For GCC, we picked the largest and two
random inputs from the 50 files in its “ref” directory. Tomcatv and Swim had
only two different data sizes. We added more inputs. The test input of Twolf had
26 cells and was too small. We randomly removed half of the cells in its train
data set to produce a test input of 300 cells. Applu had a long execution time, so
we replaced the reference input with a smaller one. Finally, the inputs of Apsi
used high-dimensional data of different shapes, for which our predictor could
not make an accurate prediction. We changed the shape of its largest input. We
should also mention that all inputs of Hydro2d had a similar data size, but we
did not make any change. SP and FFT did not come from SPEC, so we randomly
picked their input sizes.

Columns 5 to 7 of the two tables show a range of data sizes from 14 thou-
sand to 36 million data elements, average reuse frequency from 6 to over
300 thousand reuses per element, and average reuse distance from 15 to over

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:22 • Y. Zhong et al.

Ta
bl

e
II

.
P

re
di

ct
io

n
A

cc
ur

ac
y

an
d

C
ov

er
ag

e
fo

r
N

in
e

F
lo

at
in

g-
P

oi
nt

P
ro

gr
am

s

N
um

.
A

vg
.

A
vg

.
A

cc
ur

ac
y

A
cc

ur
ac

y
da

ta
re

us
es

pe
r

di
st

.p
er

w
/d

at
a

w
/s

am
pl

e
C

ov
er

-a
ge

B
en

ch
m

ar
k

D
es

cr
ip

ti
on

P
at

te
rn

s
In

pu
ts

el
em

.
el

em
.

el
em

.
si

ze
(%

)
si

ze
(%

)
(%

)
L

uc
as

L
uc

as
-L

eh
m

er
te

st
co

ns
t

re
f

20
.8

M
62

1
2.

49
E

-1
85

.0
95

.1
99

.6
(S

pe
c2

K
)

fo
r

pr
im

al
it

y
li

ne
ar

tr
ai

n
41

.5
K

97
1

2.
66

E
-1

85
.9

81
.8

10
0

te
st

6.
47

K
61

9
2.

17
E

-1
A

pp
lu

so
lu

ti
on

of
fiv

e
co

ns
t

45
3

9.
33

M
15

3
1.

62
E

-1
91

.9
92

.1
99

.4
(S

pe
c2

K
)

co
up

le
d

no
nl

in
ea

r
3r

d
ro

ot
s

tr
ai

n(
24

3
)

1.
28

M
15

0
1.

62
E

-1
94

.1
94

.1
99

.4
P

D
E

’s
li

ne
ar

te
st

(1
23

)
12

7K
14

6
1.

57
E

-1
S

w
im

fin
it

e
di

ff
er

en
ce

co
ns

t
re

f(
51

22
)

3.
68

M
33

.1
4.

00
E

-1
94

.0
94

.0
99

.8
(S

pe
c9

5)
ap

pr
ox

im
at

io
ns

fo
r

2n
d

ro
ot

40
02

2.
26

M
33

.0
4.

00
E

-1
98

.7
98

.7
99

.8
sh

al
lo

w
w

at
er

eq
ua

ti
on

li
ne

ar
20

02
56

8K
32

.8
3.

99
E

-1
S

P
co

m
pu

ta
ti

on
al

flu
id

co
ns

t
50

3
4.

80
M

13
2

1.
05

E
-1

90
.3

90
.3

99
.9

(N
A

S
)

dy
na

m
ic

s
(C

F
D

)
3r

d
ro

ot
s

32
3

1.
26

M
12

4
1.

01
E

-1
95

.8
95

.8
99

.9
si

m
ul

at
io

n
li

ne
ar

28
3

85
0K

12
5

9.
78

E
-2

To
m

ca
tv

ve
ct

or
iz

ed
m

es
h

co
ns

t
re

f(
51

32
)

1.
83

M
20

8
1.

71
E

-1
92

.4
92

.4
99

.5
(S

pe
c9

5)
ge

ne
ra

ti
on

2n
d

ro
ot

40
02

1.
12

M
10

4
1.

67
E

-1
77

.3
99

.2
99

.3
li

ne
ar

tr
ai

n(
25

72
)

46
0K

10
4

1.
67

E
-1

H
yd

ro
2d

hy
dr

od
yn

am
ic

co
ns

t
re

f
1.

10
M

13
.4

K
2.

23
E

-1
98

.5
98

.5
10

0
(S

pe
c9

5)
eq

ua
ti

on
s

co
m

pu
ti

ng
tr

ai
n

1.
10

M
1.

35
K

2.
23

E
-1

98
.5

98
.4

10
0

ga
la

ct
ic

je
ts

te
st

1.
10

M
13

9
2.

20
E

-1
F

F
T

fa
st

Fo
ur

ie
r

co
ns

t
51

22
1.

05
M

63
.7

7.
34

E
-2

72
.6

72
.8

99
.6

tr
an

sf
or

m
at

io
n

2n
d

ro
ot

25
62

26
3K

57
.5

8.
13

E
-2

95
.5

95
.5

99
.5

li
ne

ar
12

82
65

.8
K

51
.4

9.
04

E
-2

M
gr

id
m

ul
ti

gr
id

so
lv

er
co

ns
t

re
f(

64
3
)

95
6K

35
.6

K
6.

81
E

-2
96

.4
96

.4
10

0
(S

pe
c9

5)
in

3D
po

te
nt

ia
l

3r
d

ro
ot

s
te

st
(6

43
)

95
6K

1.
42

K
6.

76
E

-2
96

.5
96

.5
99

.3
fie

ld
li

ne
ar

tr
ai

n(
32

3
)

13
2K

32
.4

K
7.

15
E

-2
A

ps
i

po
ll

ut
an

t
di

st
ri

bu
ti

on
co

ns
t

12
8x

1x
12

8
25

.0
M

6.
35

1.
60

E
-3

27
.2

91
.6

97
.8

(S
pe

c2
K

)
fo

r
3r

d
ro

ot
s

tr
ai

n(
12

8x
1x

64
)

25
.0

M
14

6
2.

86
E

-4
27

.8
92

.5
99

.1
w

ea
th

er
pr

ed
ic

at
io

n
li

ne
ar

te
st

(1
28

x
1x

32
)

25
.0

M
73

.6
1.

65
E

-4

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:23

Ta
bl

e
II

I.
P

re
di

ct
io

n
A

cc
ur

ac
y

an
d

C
ov

er
ag

e
fo

r
S

ix
In

te
ge

r
P

ro
gr

am
s

N
um

.
A

vg
.

A
vg

.
A

cc
ur

ac
y

A
cc

ur
ac

y
da

ta
re

us
es

pe
r

di
st

.p
er

w
/d

at
a

w
/s

am
pl

e
C

ov
er

-a
ge

B
en

ch
m

ar
k

D
es

cr
ip

ti
on

P
at

te
rn

s
In

pu
ts

el
em

.
el

em
.

el
em

.
si

ze
(%

)
si

ze
(%

)
(%

)
C

om
pr

es
s

an
in

-m
em

or
y

ve
rs

io
n

co
ns

t
re

f
36

.1
M

62
8

4.
06

E
-2

86
.1

85
.9

92
.2

(S
pe

c9
5)

of
th

e
co

m
m

on
U

N
IX

li
ne

ar
tr

ai
n

27
9K

31
4

6.
31

E
-2

92
.3

92
.3

86
.9

co
m

pr
es

si
on

ut
il

it
y

te
st

14
2K

14
7

9.
73

E
-2

T
w

ol
f

ci
rc

ui
t

pl
ac

em
en

t
an

d
co

ns
t

re
f(

18
88

-c
el

l)
73

4K
17

7K
2.

08
E

-2
92

.6
94

.2
10

0
(S

pe
c2

K
)

gl
ob

al
ro

ut
in

g,
us

in
g

li
ne

ar
tr

ai
n(

75
2-

ce
ll

)
40

2K
11

1K
1.

82
E

-2
96

.2
96

.6
10

0
si

m
ul

at
ed

an
ne

al
in

g
37

0-
ce

ll
22

7K
8.

41
K

1.
87

E
-2

V
or

te
x

an
ob

je
ct

or
ie

nt
ed

co
ns

t
re

f
7.

78
M

4.
60

K
4.

31
E

-4
95

.1
95

.1
10

0
(S

pe
c9

5)
da

ta
ba

se
te

st
2.

58
M

53
0

3.
25

E
-4

97
.2

97
.2

10
0

(S
pe

c2
K

)
tr

ai
n

50
1K

71
.3

K
4.

51
E

-4
G

C
C

ba
se

d
on

th
e

co
ns

t
ex

pr
71

1K
13

7
2.

75
E

-3
98

.2
98

.2
10

0
(S

pe
c9

5)
G

N
U

C
co

m
pi

le
r

cp
-d

ec
l

70
5K

19
0

2.
65

E
-3

98
.6

98
.6

10
0

ve
rs

io
n

2.
5.

3
ex

pl
ow

32
1K

68
.3

3.
69

E
-3

96
.1

96
.1

10
0

tr
ai

n(
am

pt
jp

)
46

7K
22

1
3.

08
E

-3
98

.7
98

.7
10

0
te

st
(c

cc
p)

45
6K

23
3

3.
25

E
-3

L
i

co
ns

t
re

f
87

.9
K

32
8K

2.
19

E
-2

85
.6

82
.7

10
0

(S
pe

c9
5)

X
li

sp
in

te
rp

re
te

r
li

ne
ar

tr
ai

n
44

.2
K

1.
86

K
3.

11
E

-2
85

.8
86

.0
10

0
te

st
14

.5
K

37
.0

K
2.

56
E

-2
G

o
an

in
te

rn
at

io
na

ll
y

co
ns

t
re

f
10

9K
12

4K
3.

78
E

-3
96

.5
96

.5
10

0
(S

pe
c9

5)
ra

nk
ed

go
-p

la
yi

ng
te

st
10

4K
64

.6
K

3.
78

E
-3

96
.9

96
.9

10
0

pr
og

ra
m

tr
ai

n
86

.1
K

2.
68

K
2.

02
E

-3
av

er
ag

e
88

.6
93

.5
99

.1

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:24 • Y. Zhong et al.

5 million. The longest trace is generated by the third input of Twolf and has
over 130 billion memory references. No two inputs are similar in data size or
execution length. The maximal reuse distance is very close to the data size in
all programs.

We use three different input sizes for all programs except for GCC. Based
on the two smaller inputs, we predict the largest input. We call this forward
prediction. The prediction also works backwards: based on the smallest and the
largest inputs, we predict the middle one. Locality in all executions can be thus
predicted by extrapolation and interpolation. The prediction accuracy is shown
by the 8th and 9th columns. The former, marked “Accuracy w/ data size,” gives
the prediction accuracy when using the number of distinct data elements as
the input size. The latter, marked “Accuracy w/ sample size,” gives the accuracy
when using distance-based sampling.

For most benchmarks, the two columns give comparable results, which in-
dicates a proportional relation between the input size and the data size. One
exception is Apsi in Table II. For different input parameters, the program ini-
tializes the same amount of data but uses different portions of the data in
computation. The prediction accuracy is only 27% using the data size but over
91% using distance-based sampling. In general, prediction based on sampling
yields a higher accuracy.

Both forward and backward predictions are fairly accurate. Backward pre-
diction is generally better except for Lucas—because the largest input is three
orders of magnitude larger than the medium-size input—and for Li—because
only the constant pattern is considered by the prediction. Among all prediction
results, the highest accuracy is 99.2% for the medium-size input of Tomcatv,
and the lowest is 72.8% for the large-size input of FFT. The average accuracy
is 93.5%.

The last column shows the prediction coverage. The coverage is 100% for
programs with only constant patterns because they need no sampling. For the
others, the coverage starts after the input size is found in the execution trace.
Let T be the length of the execution trace, and P be the logical time of the
discovery; the coverage is 1 − P/T . For programs using a reduced number of
iterations, T is scaled up to the length of the full execution. To be consistent with
other SPEC programs, we let programs SP and FFT have the same number of
iterations as Tomcatv. Data sampling uses the first peak of the first two data
samples for all programs with non-constant patterns except for Compress and
Li. Compress needs 12 data samples. It is predictable in this test because it
repeats compression multiple times. The results from program phase analysis
show that Gzip, which uses the same algorithm as Compress, has the same
locality when compressing files of different sizes and content [Shen et al. 2007].
Li has random peaks that cannot be consistently sampled. We predict Li based
only on the constant pattern. The average coverage across all programs is 99.1%.

The actual coverage is smaller because the instrumented program (for sam-
pling) runs slower than the original program. Our fastest analyzer causes a
slowdown of 20 to 100 times. In the worst case, we need a coverage of at least
99% to finish prediction before the end of the execution. Fortunately, the low
coverage happens only in Compress. Without Compress, the average coverage

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:25

Table IV. Five Methods of Locality Prediction

Models Single Single Multiple Multiple Multiple
histogram reference reference distance distance reference
histogram x-axis log-linear log-linear logarithmic log-linear log-linear
num. inputs 2 3+ 3+ 3+ 3+
num. patterns per bin 1 1 2+ 2+ 2+

Table V. Comparison of the Accuracy of Five Prediction Methods

Single Model Multi-model, 3+ Inputs
ref. hist. ref. hist. dist. hist. Total

Bench-mark 2 inputs 3+ inputs logarithmic log-linear ref. hist. Inputs
Applu 92.06 97.40 93.65 93.90 90.83 6
Swim 94.02 94.05 84.67 92.20 72.84 5
SP 90.34 96.69 94.20 94.37 90.02 5
FFT 72.82 93.30 93.22 93.34 95.26 3
Tomcatv 92.36 94.38 94.70 96.69 88.89 5
GCC 98.61 97.95 98.83 98.91 93.34 4
Avg. 90.04 95.63 93.21 94.90 88.53 4.7

is 99.73%, suggesting 73% time coverage in online prediction on average. Even
without a fast sampler, the prediction is still useful for long running programs
and programs with mainly constant patterns. Six programs (or 40% of the test
suite) do not need sampling.

4.2.2 Multimodel Prediction. Multimodel prediction allows us to examine
three aspects of locality prediction in more depth: the use of multimodel predic-
tion and all three types of histograms, the effect of using more than two training
inputs, and prediction using very small inputs.

We compare five prediction methods listed in Table IV. The first two are
single-model prediction using two training inputs and more than two inputs.
Both use reference histograms computed from log-linear distance histograms.
The next three are multimodel prediction using all three types of histograms:
the reference histogram and the distance histogram in logarithmic and log-
linear scale. All methods use sampling to measure the input size.

We restrict our attention to six test programs in Table V, which have
multiple inputs and have some significant errors in single-model prediction.
The second and third columns show that regression analysis on multiple
inputs improves prediction accuracy. The largest improvement is from 73%
to 93% in the case of FFT. Across the six programs, the average accuracy is
raised from 90.0% to 95.6%.

The multimodel prediction using the logarithmic histogram is the most effi-
cient among all methods, using merely 20 or fewer bins. The average accuracy,
93%, is comparable to the accuracy obtained from much larger histograms.
However, low accuracy may result because the logarithmic scale produces large
ranges that may hide important details. In one execution of Swim, 12% of
the reuse distances occupy a narrow range between 260 and 280. Our predic-
tion method assumes a uniform distribution in each range, so the accuracy is
only 85% with logarithmic ranges, compared with 92% with log-linear ranges.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:26 • Y. Zhong et al.

Table VI. Accuracy for SP with Small-Size Inputs

Largest Testing Single-Model Single-model Multi-model Multi-model
Training Size 2 Inputs 3+ Inputs Log Scale Log-linear Scale
83 103 79.61 79.61 85.92 89.50

123 79.72 75.93 79.35 82.84
143 69.62 71.12 74.12 85.14
283 64.38 68.03 76.46 80.30

103 123 91.25 87.09 84.58 90.44
143 81.91 83.20 78.52 87.23
163 77.28 77.64 76.01 84.61

163 283 75.93 74.11 77.86 83.50

Multimodel prediction with reference histograms has the lowest average ac-
curacy among the five methods, although it makes the best prediction for one
program, FFT.

4.2.3 Prediction Using Small Inputs. An important assumption in all our
prediction methods is that the composition of patterns remains constant across
all executions. The assumption appears operable as shown by the accurate
prediction we have observed so far. If we decrease the input size, the effect of
nonrecurrent parts in a program, for example the initialization before a loop,
becomes significant. Next we pick one program, SP, artificially reduce the input
size, and evaluate our four best performing predictors.

Table VI shows the prediction accuracy when the size of the largest training
run is reduced to 1.6%, 3%, and 13% of the size used previously in Table II.
The two multimodel methods are up to 16% more accurate than the two single-
model methods. Multimodel prediction using log-linear distance histograms
is the most accurate, with accuracy ranging from 80% to 90%. The average
accuracy is 7% higher than the next best method. Multimodel prediction using
the logarithmic scale histogram does not perform as well for small inputs.

The ability of multimodel prediction to use very small inputs is useful in two
cases. First, the training time is proportional to the size of the training runs, so
very small training runs lead to very fast locality analysis. Second, it is often
unclear how to determine when an input size is large enough, so the prediction
is more reliable if it can maintain good accuracy across most input sizes.

4.3 Understanding Whole-Program Locality

Locality is considered a fundamental concept in computing because to under-
stand a computation we must understand its use of data. The predictive models
described in this article provide a new definition of locality that is quantitative,
verifiable, whole-program based and applicable to any sequential system. It
opens new ways to examine the active data usage in complex computations. We
discuss several unique features of this work that have significant implications
in how a programmer can better understand this important yet often elusive
concept.

4.3.1 Quantifying Locality as Patterns of Change. Profiling has long been
used to find invariant program properties. Examples include most used vari-
ables and functions [Wall 1991] and recurring program path [Hsu et al. 2002]

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:27

for feedback-guided optimization, “hot” memory instruction streams for run-
time optimization [Chilimbi 2001b], and function-level [KleinOsowski and Lilja
2002] and general statistics [Eeckhout et al. 2002] for workload characteriza-
tion. The constant pattern in this article represents invariant locality. In 15
programs, 4 have only the constant pattern. Its presence in the other 11 pro-
grams ranges from 28% in Apsi to 84% in Twolf. The average is 55%. For local-
ity analysis, however, the constant pattern may be the least important because
reuse distances in a constant pattern are usually short and do not cause misses
in a large cache.

To fully characterize locality, locality prediction extends the use of profiling
analysis to capture behavioral variations between executions. The analysis is
aided by the property that reuse distance measures the recurrence independent
of the instruction and data addresses involved in the data access.

A careful reader may have noticed that for a number of programs, Tables II
and III display a near identical number in the “average distance per element”
column for different inputs. For example the number is 0.4 for all three inputs
of Swim, which means that the average distance is 40% of the data size. The
reason is that when the input size is sufficiently large, the total distance is
dominated by reuse distances in the linear pattern. The same average distance
is the result of the constant size of the linear pattern.

4.3.2 Relation between a Program and Its Input. The locality of the GNU
C Compiler, GCC, is predicted with 96% to 99% accuracy, which is higher than
people would normally expect. The program is large and complex—this version
has 222,182 lines of source code in 120 files. More importantly, the data usage
of the compiler should depend largely on the input. However, when measured
using reuse distance, GCC manifests surprisingly regular locality. Figure 9
shows the locality signature of five executions of GCC when compiling some of
its largest program files. The five signatures overlap by over 98%, which makes
prediction accurate and trivial.

A compiler belongs to the general class of service-oriented programs. It pro-
cesses input requests as a sequence of tasks, which in this case are the functions
to be compiled. Shen et al. [2007] found that the compilation tasks go through
the same sequence of phases in each task even though the length of the task is
input dependent and unpredictable.

The input files we used for GCC have hundreds of functions. The signature
might be showing the locality of compiling an “average” function. The consis-
tency across inputs might be due to consistency in programmers’ coding style,
for example, the distribution of function sizes. To understand this more, we
tested an extreme input, 166.i, provided by the benchmark set. It contains two
functions each with over one thousand lines of code. Distance-based sampling
shows that long reuse distances are two orders of magnitude greater in 166.i
than in other inputs. The locality of compiling 166.i is around 70% identical to
the locality signatures shown in Figure 9(a), which suggests that the locality in
GCC is 30% due to the input and 70% due to the program code.1 This example

1Since the Alpha cluster has been replaced by a PC cluster at the time, we used the x86 binary
instead of the Alpha binary.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:28 • Y. Zhong et al.

Fig. 9. Locality signatures of GCC and Latex. The average locality is predictable even though the
execution is largely input driven. The two programs have very similar signatures, which indicates
common data usage patterns in compilation and type setting.

also suggests a general method—by testing a program on extreme inputs and
measuring the deviance from the average—for exploring the range of variability
in program locality.

4.3.3 Relation between Programs. With the whole-program locality model,
we can now conduct comprehensive comparisons of the locality in different
programs. In most cases, the locality signature is consistent in the same pro-
gram but differs from one program to another. One interesting exception is the
pair of programs GCC and Latex. Latex is a typesetting program commonly
used in scientific publishing (including this article). Four locality signatures of

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

Chen Ding

Program Locality Analysis Using Reuse Distance • 20:29

Latex, measured by Cheng [Cheng and Ding 2005] and shown in Figure 9(b), are
strikingly similar to the locality signatures of GCC shown in the same figure.
Intuitively, the result is expected since GCC and Latex are both language pro-
cessors, one for the C programming language and the other for a type-setting
language. However, it is significant that an automatic method can identify and
quantify this similarity using an objective metric.

The two programs were developed independently, Latex by Knuth, Lamport,
and other people mostly in universities, and GCC by a large group of open-
source developers. In the introduction we mentioned that reuse distance is
independent of localized transformations of a program or its execution. Here
is an demonstration that the metric captures inherent similarity between two
programs that share no code and have completely different data structures and
program organization.

There may be practical uses in comparing program locality. A customer who
is serious about performance may use locality as a metric in evaluating software
from different vendors. A software company may be interested in maintaining
performance (not just correctness) in new versions its products. The comparison
can reveal changes in locality in different software versions and confirm or
repudiate locality as a factor in complex performance problems. We have tested
two versions of GCC, one in SPEC 1995 and the other in SPEC 2000 benchmark
set, and found that their locality signatures overlap by 89%.

4.4 Summary

Compared to precise algorithms, approximate algorithms have faster perfor-
mance and the performance scales better with the size of data. Relative-
precision approximation provides unprecedented scalability, maintaining a
constant speed regardless of the size of data and the length of reuse distance. At
99% accuracy, it measures the length of reuse distance in trillions at the same
speed as exact solutions measure the length in millions. The scale tree it uses is
orders of magnitude more space efficient than precise representations. A user
can further improve the measurement speed by specifying a lower precision.

Using two training inputs, single-model prediction is 94% accurate on aver-
age for 15 benchmark programs, and its accuracy can be improved by 6% using
more training data. Distance-based sampling can detect the input size after
seeing less than 1% of an execution. The log-linear histograms always provide
the most precise information for locality prediction, either in single-model and
multimodel prediction.

Multimodel prediction can use logarithmic distance histograms and conse-
quently be an order of magnitude more space efficient. Space efficiency is neces-
sary for fine-grained analysis such as analyzing individual program instruction
or data. In addition, multimodel prediction is 90% accurate with one fiftieth of
the training data. However, the two efficiency boosts—logarithmic histograms
and small inputs—should not be used at the same time.

Whole-program locality shows aggregate data usage in general sequential
code. Our results show that a high degree of regularity in locality is a com-
mon phenomenon of collective behavior in complex code. The measurement and

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

20:30 • Y. Zhong et al.

prediction techniques are useful in observing and understanding these emer-
gent effects, for example in understanding the relationships both between pro-
gram code and input and between different programs.

5. RELATED WORK

This section discusses related work in program locality analysis. See Section 2.3
for related work in reuse distance measurement.

Training-Based Analysis. Independent of our work, Marin and Mellor-
Crummey [2004, 2005] solved the same problem in the context of building a
performance modeling toolkit. It uses compiler analysis to identify groups of
related memory references for reuse-distance profiling. Given two histograms,
their method first finds leading bins that have identical reuse distances and
classifies them as constant patterns. Then it recursively divides the remain-
ing group by its average reuse distance until the two halves show the same
pattern of change in the two histograms, measured by the ratio between the
average reuse distances. It uses quadratic programming to determine the best
pattern parameters (because they model both locality and computation). A pat-
tern function is a linear combination of base functions, which can include user
supplied formula.

Recursive partitioning produces the minimal number of patterns with no
loss of accuracy. By analyzing one reference group at a time, it can identify
individual patterns that are difficult to separate in whole-program analysis.
Recursive partitioning, however, is costly in data collection because it needs to
store all reuse distances. In comparison, histograms with fixed-size bins are
much more efficient to store, but they lose information about the distribution
of reuse distances inside a bin. Multimodel prediction alleviates the problem
by statistically estimating the mixing of patterns in the same bin.

Fang et al. [2005] solved the problem of measuring and analyzing the lo-
cality of every memory operation in a program. They used log-linear bins in
data collection and experimented with different assumptions about the distri-
bution within a bin. They found that a linear distribution worked well for both
floating-point and integer programs while a uniform distribution (which we
use in this work) worked well only for floating-point code. To improve efficiency,
their method merges bins that have a similar distribution of reuse distances.
The adaptive merging has a similar effect to Marin and Mellor-Crummey’s
recursive partitioning and makes the model compact without sacrificing its
precision.

A common assumption in locality prediction is that a fixed fraction of reuse
distances belong to each pattern in every locality signature. Marin and Mellor-
Crummey [2004] tested heuristics not limited to this assumption but did not
find them as stable and accurate. Our results in Section 4.2.2 showed that the
assumption is mostly valid even for very small training inputs.

Static Analysis. Cascaval and Padua [2003] extended dependence analy-
sis to estimate the reuse distances and the locality signature in scientific pro-
grams. Beyls and D’Hollander [2005] developed reuse distance equations, which

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:31

precisely compute the reuse distance in polyhedral loops using the Omega li-
brary [Kelly et al. 1996] as a fast symbolic but worst-case exponential-time
solver. There are a number of compiler techniques that estimate the miss rate of
a program [Porterfield 1989; Ferrante et al. 1991; Ghosh et al. 1999; Chatterjee
et al. 2001; Xue and Vera 2004]. Compared to the miss rate, reuse distance is
machine independent. Furthermore, it can be used to derive the miss rate. Beyls
and D’Hollander [2005] compared compiler analysis with profiling by testing
the effect of their use in cache-hint insertion.

A basic task of dependence checking is to analyze repeated accesses to
data [Allen and Kennedy 2001; Wolfe 1996; Banerjee 1988]. Large-scale data
usage can be summarized by various types of array section analysis [Havlak
and Kennedy 1991], including linearization for high-dimensional arrays [Burke
and Cytron 1986], linear inequalities for convex sections [Triolet et al. 1986],
regular array sections [Callahan et al. 1988a], and reference lists [Li et al.
1990]. Other locality analyses include the matrix model [Wolf and Lam 1991;
Kandemir 2005], memory ordering [McKinley et al. 1996], a number of later
studies using high-dimensional discrete optimization [Cierniak and Li 1995;
Kodukula et al. 1997], transitive closures [Song and Li 1999; Wonnacott 2002;
Yi et al. 2000], and integer equations [Adve and Mellor-Crummey 1998].

Locality affects the fundamental balance between computation and memory
transfer. Callahan et al. [1988b] defined the concept of program balance and
machine balance. Techniques for matching the two balances have benefits from
improving memory performance on conventional systems [Carr and Kennedy
1994; Ding and Kennedy 2004] to accelerating the design-space exploration in
hardware-software co-design [So et al. 2002]. Whole-program locality can be
used to estimate program balance in general-purpose applications.

Pure program analysis has a limited effect on general-purpose code because
of the difficulty in analyzing complex control flow and indirect data accesses
and characterizing aggregate program behavior. However, for regular loop nests
with linearly indexed array references, static analysis can precisely model the
iteration space and the data space. It can analyze locality in high-dimensional
data, which is difficult for training-based analysis. In addition, compiler anal-
ysis is sound in that the result can be used to reorder program execution, for
example, to change the program balance. Locality prediction is probabilistic.
It measures common behavior but not all behavior. It cannot observe program
behavior that does not occur in training runs. One solution is to combine com-
piler and profiling analysis, as demonstrated by Marin and Mellor-Crummey
[2005]. Another solution is speculative program optimization. For example,
Kelsey et al. [2009] proposed a software system that creates a FastTrack, which
is a copy of a program optimized for the common behavior. The original code
is run in parallel as a fallback in case the FastTrack code produces incorrect
results.

Reuse Frequency and Data Streams. Access frequency gives the first model
of data usage [Knuth 1971; Cocke and Kennedy 1974]. Later refinements in-
clude the lifetime of single objects [Seidl and Zorn 1998] or the affinity between
data pairs [Thabit 1981; Calder et al. 1998; Chilimbi et al. 1999]. Chilimbi and

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

20:32 • Y. Zhong et al.

his colleagues extended the notion of affinity using hot data streams, which are
repeated sequences of data accesses up to 100 elements long [Chilimbi 2001a,
2001b]. Streams and distances are complementary concepts. Hot streams show
frequent repetitions, while the locality signature shows common recurrences.
A stream contains order information that can be used for data prefetching. The
locality signature provides a way to relate data by their aggregate locality (as
used in reference affinity analysis described in Section 6).

Runtime Analysis. Saltz and his colleagues pioneered dynamic paralleliza-
tion with the approach known as inspector-executor, where the inspector ex-
amines and partitions the data and computation at run time [Das et al. 1994].
Similar strategies were used to improve dynamic program locality [Ding and
Kennedy 1999; Mellor-Crummey et al. 2001; Strout et al. 2003; Han and Tseng
2006]. Knobe and Sarkar [1998] included runtime data analysis in array static-
single assignment (SSA) form. To reduce the overhead of runtime analysis,
Arnold and Ryder [2001] developed a software framework for periodic sam-
pling, which Chilimbi and Hirzel [2002] extended to discover hot data streams
for data prefetching. Liu et al. [2004] developed a dynamic optimization sys-
tem by leveraging hardware monitoring support for very low-cost sampling. In
addition to sampling based on program code and hardware events, Ding and
Kennedy [1999] sampled accesses to a subset of data in an array. Ding and
Zhong [2002] extended the scheme for use on dynamic data. Distance-based
sampling is a form of data-based sampling as it uses the reuse distance to
select data samples.

While runtime analysis can identify patterns unique to the current execution,
it is not as thorough as off-line training analysis. On the other hand, offline
models and online analysis can be combined to help each other, as this article
has shown in combining training analysis and distance-based sampling.

6. FIVE DIMENSIONS OF LOCALITY

Reuse distance has uses in numerous studies. As an imprecise and incomplete
count, a keyword search in the ACM Digital Library shows 91 publications
since 2003 that contain the phrase “reuse distance” in addition to the words
“locality” and “cache” in conferences and journals in the area of programming
systems, computer architecture, operating systems, and embedded systems. In
this section, we present a taxonomy that classifies representative problems,
solutions and uses of locality analysis in five mostly orthogonal dimensions:
input, code, data, time, and execution environment.

Whole-Program Locality. Locality affected by the program input. The
simple-model prediction described in this article has been used to predict
the capacity miss rate for a set of programs across cache sizes, program in-
puts [Zhong et al. 2007], and program phases [Shen et al. 2004b]. Fang et al.
[2005] extended whole-program prediction to predict the locality of each pro-
gram instruction as a function of the input size. They defined a general concept
called memory distance to include reuse, access, and value distance. Marin
and Mellor-Crummey [2004] considered cache associativity and computational

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:33

characteristics and predicted performance across machine platforms. On paral-
lel systems, the scalability of a program depends on the ratio of computation to
communication. Locality determines the amount of communication. Rothberg
et al. [1993] used simulation and curve fitting to derive the program locality for a
SPLASH benchmark program, Barnes-Hut, which was too difficult for symbolic
analysis.

Locality in Program Code. Beyls and D’Hollander [2002, 2005] used the lo-
cality signature of each instruction to generate cache hints, which guide cache
replacement decisions in hardware so that the data loaded by low-locality in-
structions do not evict the data loaded by high-locality instructions. They re-
ported performance improvements for both integer and floating-point bench-
marks on Intel Itanium, demonstrating the first distance-based technique to di-
rectly improve performance. In a program, the locality of statements, loops, and
functions can be analyzed using training analysis [Fang et al. 2005], compiler
analysis (for scientific code) [Cascaval and Padua 2003; Beyls and D’Hollander
2005], or their combination [Marin and Mellor-Crummey 2004]. Beyls and
D’Hollander [2005] compared profiling analysis and compiler analysis (called
reuse distance equations) in generating cache hints.

Beyls and D’Hollander [2006a, 2006b] developed a program tuning tool SLO,
which identifies the cause of long distance reuses and gives improvement sug-
gestions for restructing the code. Using the tool, they were able to double the
average speed of five SPEC 2000 benchmarks on four machine platforms. Fur-
thermore, they used sampling analysis to reduce the profiling overhead from a
1000 times slowdown to a 5 times slowdown.

Locality in Program Data. As an optimization problem, data placement is
theoretically intractable in general [Petrank and Rawitz 2002]. In practice, a
useful metric is reference affinity, which identifies data that are used together.
Zhong et al. [2004] defined reference affinity using reuse distance and showed
its use in array regrouping and structure splitting. Zhang et al. [2006] showed
formally that reference affinity uncovers the hierarchical locality in data from
the access pattern in computation. Shen et al. [2005] developed a static analysis
of reference affinity and tested its use in the IBM compiler. Zhao et al. [2007]
included affinity in the Forma framework for automatic array reshaping in the
IBM compiler.

Spatial locality measures the quality of a data layout. Three studies have
defined spatial locality as the change in locality when the granularity of data
increases from data elements to cache blocks [Berg and Hagersten 2005; Gu
et al. 2009] or from data elements to memory pages [Bunt and Murphy 1984].
Gu et al. [2009] ranked program functions by (the lack of) spatial locality to aid
program tuning.

Locality over Time. Batson and Madison [1976] defined a phase as a period
of execution accessing a subset of program data. Denning [1980] stated that a
proper model must account for the tranquility of phases as well as disruptive
transitions. Shen et al. [2004a, 2007] built a model by effectively converting
an execution to a signal, that is, a sequence of reuse distances, and applying

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:34 • Y. Zhong et al.

wavelet analysis to separate gradual changes from disruptive ones. Many sub-
sequent studies considered wavelets and locality phases in modeling temporal
behavior in a system.

For cache and memory management, a basic problem is predicting the time
of future data access. Increasing evidence shows that the last reuse distance is
an effective predictor. It has been used in memory management [Smaragdakis
et al. 2003; Chen et al. 2005; Zhou et al. 2004] and file caching [Zhou et al.
2001; Jiang and Zhang 2002]. Kelly et al. [2004] found reuse distance to be a
powerful predictor of response time in server systems. Almeida et al. [1996]
showed that the locality signature of web reference streams follows log-normal
distributions, in which the logarithm is normally distributed.

Interaction between Programs. When multiple running programs share a
cache, the performance of one program is influenced by the locality of others.
The effect can be modeled by inflating the reuse distance of the program with
the footprint of its peers [Suh et al. 2001; Chandra et al. 2005]. Jiang et al.
[2008] formulated the problem of optimal coscheduling on shared cache. For
memory sharing, Yang et al. [2006] studied cooperative interaction between
heap management in the Java virtual machine and memory management in
the operating system. The key metric is the LRU reference histogram, which is
equivalent to the locality signature in this article.

7. CONCLUSIONS

Locality has become increasingly important in the design of algorithms, com-
pilers, operating systems, and computer architectures. In this article we have
presented training-based whole-program locality analysis, which consists of
two approximate algorithms for measuring reuse distance and five prediction
methods for modeling whole-program locality. The approximate algorithms are
faster and more scalable than exact solutions while guaranteeing an absolute
or relative precision. The precision and cost are adjustable. The asymptotic
cost of the relative-precision algorithm is effectively linear in the length of the
trace. The five prediction methods decompose reuse distances using either ref-
erence histograms or distance histograms in logarithmic or log-linear scales.
Each locality component can have a single pattern or multiple patterns. For
15 floating-point and integer benchmark applications, single-model prediction
using two inputs shows 94% accuracy and 99% coverage. The accuracy can be
improved by using more inputs and multimodel prediction. The efficiency can
be improved by using compact histograms or very small inputs.

Locality is a fundamental aspect of computation. The new locality models
in this article are quantitative yet they are not tied to any specific machine
and are unaffected by irrelevant aspects of program construction. The results
show that through them locality can be quantified for complex applications. The
decomposition of locality as done in this work is orthogonal to the traditional
decomposition of program code and data and hence provides a new dimension in
program analysis. It provides a systematic model of application data behavior
and a quantitative basis for understanding and managing dynamic data usage
at different levels of a computing system.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Chen Ding

Chen Ding

Chen Ding

Program Locality Analysis Using Reuse Distance • 20:35

ACKNOWLEDGMENTS

The authors wish to thank Grant Farmer, Wei Jiang, Roland Cheng, and
Matthew Nettleton for their help in implementation and testing; Trishul
Chilimbi, Sandhya Dwarkadas, Steve Dropsho, Xiaoming Gu, Matthew Hertz,
Mark Hill, Bryan Jacobs, Gabriel Marin, John Mellor-Crummey, Joseph
Modayil, Mitsu Ogihara, Michael Scott, Zhenlin Wang, Xiaoya Xiang, Mihalis
Yannakaki, the anonymous reviewers of this journal, the LCR’02 workshop,
PLDI’03 and LACSI’03 conferences for their comments, corrections and sugges-
tions on the work and its presentation. Our experiments mainly used machines
at Rochester purchased by several NSF Infrastructure grants and equipment
grants from DEC/Compaq/HP and Intel. John Mellor-Crummey and Rob Fowler
provided access to Rice Alpha clusters.

REFERENCES

ADVE, V. AND MELLOR-CRUMMEY, J. 1998. Using integer sets for data-parallel program analysis
and optimization. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation.

ALLEN, R. AND KENNEDY, K. 2001. Optimizing Compilers for Modern Architectures: A Dependence-
Based Approach. Morgan Kaufmann Publishers.

ALMASI, G., CASCAVAL, C., AND PADUA, D. 2002. Calculating stack distances efficiently. In Proceed-
ings of the ACM SIGPLAN Workshop on Memory System Performance.

ALMEIDA, V., BESTAVROS, A., CROVELLA, M., AND DE OLIVEIRA, A. 1996. Characterizing reference
locality in the WWW. In Proceedings of the International Conference on Parallel and Distributed
Information Systems (PDIS). 92–103.

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency
moments. In Proceedings of the ACM Symposium on Theory of Computing.

ARNOLD, M. AND RYDER, B. G. 2001. A framework for reducing the cost of instrumented code. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation.

BANERJEE, U. 1988. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, MA.

BATSON, A. P. AND MADISON, A. W. 1976. Measurements of major locality phases in symbolic ref-
erence strings. In Proceedings of the International Conference on Measurement and Modeling of
Computer Systems.

BENNETT, B. T. AND KRUSKAL, V. J. 1975. LRU stack processing. IBM J. Resear. Devel.
353–357.

BERG, E. AND HAGERSTEN, E. 2004. Statcache: A probabilistic approach to efficient and accurate
data locality analysis. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software. 20–27.

BERG, E. AND HAGERSTEN, E. 2005. Fast data-locality profiling of native execution. In Proceed-
ings of the International Conference on Measurement and Modeling of Computer Systems.
169–180.

BEYLS, K. AND D’HOLLANDER, E. 2002. Reuse distance-based cache hint selection. In Proceedings
of the 8th International Euro-Par Conference. Paderborn, Germany.

BEYLS, K. AND D’HOLLANDER, E. 2005. Generating cache hints for improved program efficiency. J.
Syst. Archit. 51, 4, 223–250.

BEYLS, K. AND D’HOLLANDER, E. 2006a. Discovery of locality-improving refactoring by reuse path
analysis. In Proceedings of the High-Performance Computing and Communications Council.
Springer. Lecture Notes in Computer Science, vol. 4208. 220–229.

BEYLS, K. AND D’HOLLANDER, E. 2006b. Intermediately executed code is the key to find refactor-
ings that improve temporal data locality. In Proceedings of the ACM Conference on Computing
Frontiers.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:36 • Y. Zhong et al.

BUNT, R. B. AND MURPHY, J. M. 1984. Measurement of locality and the behaviour of programs.
Comput. J. 27, 3, 238–245.

BURKE, M. AND CYTRON, R. 1986. Interprocedural dependence analysis and parallelization. In
Proceedings of the SIGPLAN Symposium on Compiler Construction.

CALDER, B., KRINTZ, C., JOHN, S., AND AUSTIN, T. 1998. Cache-conscious data placement. In Proceed-
ings of the 8th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIII).

CALLAHAN, D., COCKE, J., AND KENNEDY, K. 1988a. Analysis of interprocedural side effects in a
parallel programming environment. J. Paral. Distrib. Comput. 5, 5, 517–550.

CALLAHAN, D., COCKE, J., AND KENNEDY, K. 1988b. Estimating interlock and improving balance for
pipelined machines. J. Paral. Distrib. Comput. 5, 4, 334–358.

CARR, S. AND KENNEDY, K. 1994. Improving the ratio of memory operations to floating-point oper-
ations in loops. ACM Trans. Program. Lang. Syst. 16, 6, 1768–1810.

CASCAVAL, C. AND PADUA, D. A. 2003. Estimating cache misses and locality using stack dis-
tances. In Proceedings of the International Conference on Supercomputing. San Francisco,
CA.

CHANDRA, D., GUO, F., KIM, S., AND SOLIHIN, Y. 2005. Predicting inter-thread cache contention on
a chip multi-processor architecture. In Proceedings of the International Symposium on High-
Performance Computer Architecture. 340–351.

CHATTERJEE, S., PARKER, E., HANLON, P. J., AND LEBECK, A. R. 2001. Exact analysis of the cache
behavior of nested loops. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation.

CHEN, F., JIANG, S., AND ZHANG, X. 2005. CLOCK-Pro: An effective improvement of the CLOCK
replacement. In Proceedings of the USENIX Annual Technical Conference.

CHENG, R. AND DING, C. 2005. Measuring temporal locality variation across program inputs. Tech.
rep. TR 875, Department of Computer Science, University of Rochester.

CHILIMBI, T. M. 2001a. Efficient representations and abstractions for quantifying and exploit-
ing data reference locality. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation.

CHILIMBI, T. M. 2001b. On the stability of temporal data reference profiles. In Proceedings of the
International Conference on Parallel Architecture and Compilation Techniques.

CHILIMBI, T. M., HILL, M. D., AND LARUS, J. R. 1999. Cache-conscious structure layout.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation.

CHILIMBI, T. M. AND HIRZEL, M. 2002. Dynamic hot data stream prefetching for general-purpose
programs. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation.

CIERNIAK, M. AND LI, W. 1995. Unifying data and control transformations for distributed shared-
memory machines. In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation.

COCKE, J. AND KENNEDY, K. 1974. Profitability computations on program flow graphs. Tech. rep.
RC 5123, IBM.

DAS, R., UYSAL, M., SALTZ, J., AND HWANG, Y.-S. 1994. Communication optimizations for irregular
scientific computations on distributed memory architectures. J. Paral. Distrib. Comput. 22, 3,
462–479.

DATAR, M., GIONIS, A., INDYK, P., AND MOTWANI, R. 2002. Maintaining stream statistics over sliding
windows. SIAM J. Comput. 31, 6, 1794–1813.

DENNING, P. 1980. Working sets past and present. IEEE Trans. Softw. Engin. 6, 1.
DING, C. AND KENNEDY, K. 1999. Improving cache performance in dynamic applications through

data and computation reorganization at runtime. In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation.

DING, C. AND KENNEDY, K. 2004. Improving effective bandwidth through compiler enhancement
of global cache reuse. J. Paral. Distrib. Comput. 64, 1, 108–134.

DING, C. AND ZHONG, Y. 2002. Compiler-directed runtime monitoring of program data access. In
Proceedings of the ACM SIGPLAN Workshop on Memory System Performance.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:37

EECKHOUT, L., VANDIERENDONCK, H., AND BOSSCHERE, K. D. 2002. Workload design: Selecting repre-
sentative program-input pairs. In Proceedings of International Conference on Parallel Architec-
tures and Compilation Techniques.

FANG, C., CARR, S., ONDER, S., AND WANG, Z. 2005. Instruction-based memory distance analysis
and its application to optimization. In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques.

FERRANTE, J., SARKAR, V., AND THRASH, W. 1991. On estimating and enhancing cache effective-
ness. In Proceedings of the 4th International Workshop on Languages and Compilers for Parallel
Computing, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds. Springer-Verlag.

FLAJOLET, P. AND MARTIN, G. 1983. Probabilistic counting. In Proceedings of the Symposium on
Foundations of Computer Science.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1999. Cache miss equations: A compiler framework for
analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst. 21, 4.

GU, X., CHRISTOPHER, I., BAI, T., ZHANG, C., AND DING, C. 2009. A component model of spatial locality.
In Proceedings of the International Symposium on Memory Management.

HAN, H. AND TSENG, C.-W. 2006. Exploiting locality for irregular scientific codes. IEEE Trans.
Paral. Distrib. Syst. 17, 7, 606–618.

HAVLAK, P. AND KENNEDY, K. 1991. An implementation of interprocedural bounded regular section
analysis. IEEE Trans. Paral. Distrib. Syst. 2, 3, 350–360.

HILL, M. D. AND SMITH, A. J. 1989. Evaluating associativity in CPU caches. IEEE Trans. Com-
put. 38, 12, 1612–1630.

HSU, W., CHEN, H., YEW, P. C., AND CHEN, D. 2002. On the predictability of program behavior using
different input data sets. In Proceedings of the 6th Workshop on Interaction Between Compilers
and Computer Architectures (INTERACT).

JIANG, S. AND ZHANG, X. 2002. LIRS: An efficient low inter-reference recency set replacement to
improve buffer cache performance. In Proceedings of the International Conference on Measure-
ment and Modeling of Computer Systems.

JIANG, Y., SHEN, X., CHEN, J., AND TRIPATHI, R. 2008. Analysis and approximation of optimal co-
scheduling on chip multiprocessors. In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques. 220–229.

KANDEMIR, M. T. 2005. Improving whole-program locality using intra-procedural and inter-
procedural transformations. J. Paral. Distrib. Comput. 65, 5, 564–582.

KELLY, T., COHEN, I., GOLDSZMIDT, M., AND KEETON, K. 2004. Inducing models of black-box storage
arrays. Tech. rep. HPL-2004-108, HP Laboratories Palo Alto, CA.

KELLY, W., MASLOV, V., PUGH, W., ROSSER, E., SHPEISMAN, T., AND WONNACOTT, D. 1996. The Omega
Library Interface Guide. Tech. rep., Department of Computer Science, University of Maryland,
College Park.

KELSEY, K., BAI, T., AND DING, C. 2009. Fast track: A software system for speculative optimization.
In Proceedings of the International Symposium on Code Generation and Optimization.

KIM, Y. H., HILL, M. D., AND WOOD, D. A. 1991. Implementing stack simulation for highly-
associative memories. In Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems. 212–213.

KLEINOSOWSKI, A. AND LILJA, D. J. 2002. MinneSPEC: A new SPEC benchmark workload for
simulation-based computer architecture research. Comput. Archit. Lett. 1.

KNOBE, K. AND SARKAR, V. 1998. Array SSA form and its use in parallelization. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

KNUTH, D. 1971. An empirical study of FORTRAN programs. Softw. Pract. Exper. 1, 105–133.
KODUKULA, I., AHMED, N., AND PINGALI, K. 1997. Data-centric multi-level blocking. In Proceedings

of the SIGPLAN Conference on Programming Language Design and Implementation.
LI, Z., YEW, P., AND ZHU, C. 1990. An efficient data dependence analysis for parallelizing compilers.

IEEE Trans. Paral. Distrib. Syst. 1, 1, 26–34.
LIU, J., CHEN, H., YEW, P.-C., AND HSU, W.-C. 2004. Design and implementation of a lightweight

dynamic optimization system. J. Instruct.-Level Paral. 6.
MARIN, G. AND MELLOR-CRUMMEY, J. 2004. Cross architecture performance predictions for scien-

tific applications using parameterized models. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

20:38 • Y. Zhong et al.

MARIN, G. AND MELLOR-CRUMMEY, J. 2005. Scalable cross-architecture predictions of memory hi-
erarchy response for scientific applications. In Proceedings of the Symposium of the Las Alamos
Computer Science Institute.

MATTSON, R. L., GECSEI, J., SLUTZ, D., AND TRAIGER, I. L. 1970. Evaluation techniques for storage
hierarchies. IBM Syst. J. 9, 2, 78–117.

MCKINLEY, K. S., CARR, S., AND TSENG, C.-W. 1996. Improving data locality with loop transforma-
tions. ACM Trans. Program. Lang. Syst. 18, 4, 424–453.

MELLOR-CRUMMEY, J., WHALLEY, D., AND KENNEDY, K. 2001. Improving memory hierarchy perfor-
mance for irregular applications. Int. J. Paral. Program. 29, 3.

OLKEN, F. 1981. Efficient methods for calculating the success function of fixed space replacement
policies. Tech. rep. LBL-12370, Lawrence Berkeley Laboratory.

PETRANK, E. AND RAWITZ, D. 2002. The hardness of cache conscious data placement. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

PORTERFIELD, A. 1989. Software methods for improvement of cache performance. Ph.D. thesis,
Department of Computer Science, Rice University.

RAWLINGS, J. O. 1988. Applied Regression Analysis: A Research Tool. Wadsworth and Brooks.
ROTHBERG, E., SINGH, J. P., AND GUPTA, A. 1993. Working sets, cache sizes, and node granularity is-

sues for large-scale multiprocessors. In Proceedings of the International Symposium on Computer
Architecture. 14–25.

SEIDL, M. L. AND ZORN, B. G. 1998. Segregating heap objects by reference behavior and lifetime.
In Proceedings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems.

SHEN, X., GAO, Y., DING, C., AND ARCHAMBAULT, R. 2005. Lightweight reference affinity analysis. In
Proceedings of the 19th ACM International Conference on Super-Computing. 131–140.

SHEN, X., SHAW, J., MEEKER, B., AND DING, C. 2007. Locality approximation using time. In Pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
55–61.

SHEN, X., ZHANG, C., DING, C., SCOTT, M., DWARKADAS, S., AND OGIHARA, M. 2007. Analysis of input-
dependent program behavior using active profiling. In Proceedings of The 1st Workshop on Ex-
perimental Computer Science.

SHEN, X., ZHONG, Y., AND DING, C. 2004a. Locality phase prediction. In Proceedings of the Interna-
tional Conference on Architectual Support for Programming Languages and Operating Systems.
165–176.

SHEN, X., ZHONG, Y., AND DING, C. 2004b. Phase-based miss rate prediction. In Proceedings of the
International Workshop on Languages and Compilers for Parallel Computing.

SHEN, X., ZHONG, Y., AND DING, C. 2007. Predicting locality phases for dynamic memory optimiza-
tion. J. Paral. Distrib. Comput. 67, 7, 783–796.

SLEATOR, D. D. AND TARJAN, R. E. 1985. Self adjusting binary search trees. J. ACM 32, 3.
SMARAGDAKIS, Y., KAPLAN, S., AND WILSON, P. 2003. The EELRU adaptive replacement algorithm.

Perform. Eval. 53, 2, 93–123.
SMITH, A. J. 1976. On the effectiveness of set associative page mapping and its applications

in main memory management. In Proceedings of the 2nd International Conference on Software
Engineering.

SO, B., HALL, M. W., AND DINIZ, P. C. 2002. A compiler approach to fast hardware design space
exploration in FPGA-based systems. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation.

SONG, Y. AND LI, Z. 1999. New tiling techniques to improve cache temporal locality. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program analysis
tools. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation.

STROUT, M. M., CARTER, L., AND FERRANTE, J. 2003. Compile-time composition of runtime data
and iteration reorderings. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. 245–257.

SUGUMAR, R. A. AND ABRAHAM, S. G. 1993. Multi-configuration simulation algorithms for the eval-
uation of computer architecture designs. Tech. rep., University of Michigan.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

Program Locality Analysis Using Reuse Distance • 20:39

SUH, G. E., DEVADAS, S., AND RUDOLPH, L. 2001. Analytical cache models with applications
to cache partitioning. In Proceedings of the International Conference on Super-Computing.
1–12.

THABIT, K. O. 1981. Cache management by the compiler. Ph.D. thesis, Department of Computer
Science, Rice University.

THOMPSON, J. G. AND SMITH, A. J. 1989. Efficient (stack) algorithms for analysis of write-back and
sector memories. ACM Trans. Comput. Syst. 7, 1, 78–117.

TRIOLET, R., IRIGOIN, F., AND FEAUTRIER, P. 1986. Direct parallelization of CALL statements. In
Proceedings of the SIGPLAN Symposium on Compiler Construction.

WALL, D. W. 1991. Predicting program behavior using real or estimated profiles. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation.

WANG, W. AND BAER, J.-L. 1991. Efficient trace-driven simulation methods for cache performance
analysis. ACM Trans. Comput. Syst. 9, 3.

WOLF, M. E. AND LAM, M. 1991. A data locality optimizing algorithm. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation.

WOLFE, M. J. 1996. High-Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA.

WONNACOTT, D. 2002. Achieving scalable locality with time skewing. Int. J. Paral. Program. 30, 3.
XUE, J. AND VERA, X. 2004. Efficient and accurate analytical modeling of whole-program data

cache behavior. IEEE Trans. Comput. 53, 5.
YANG, T., BERGER, E. D., KAPLAN, S. F., AND MOSS, J. E. B. 2006. Cramm: Virtual memory support for

garbage-collected applications. In Proceedings of the Symposium on Operating Systems Design
and Implementation. 103–116.

YI, Q., ADVE, V., AND KENNEDY, K. 2000. Transforming loops to recursion for multi-level memory
hierarchies. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation.

ZHANG, C., DING, C., OGIHARA, M., ZHONG, Y., AND WU, Y. 2006. A hierarchical model of data lo-
cality. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages.

ZHAO, P., CUI, S., GAO, Y., SILVERA, R., AND AMARAL, J. N. 2007. Forma: A framework for safe
automatic array reshaping. ACM Trans. Program. Lang. Syst. 30, 1, 2.

ZHONG, Y. AND CHANG, W. 2008. Sampling-based program locality approximation. In Proceedings
of the International Symposium on Memory Management. 91–100.

ZHONG, Y., DING, C., AND KENNEDY, K. 2002. Reuse distance analysis for scientific programs.
In Proceedings of Workshop on Languages, Compilers, and Runtime Systems for Scalable Com-
puters.

ZHONG, Y., DROPSHO, S. G., SHEN, X., STUDER, A., AND DING, C. 2007. Miss rate prediction across
program inputs and cache configurations. IEEE Trans. Comput. 56, 3, 328–343.

ZHONG, Y., ORLOVICH, M., SHEN, X., AND DING, C. 2004. Array regrouping and structure splitting
using whole-program reference affinity. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation.

ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A., ZHOU, Y., AND KUMAR, S. 2004. Dynamic
tracking of page miss ratio curve for memory management. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems.

ZHOU, Y., CHEN, P. M., AND LI, K. 2001. The multi-queue replacement algorithm for second-level
buffer caches. In Proceedings of the USENIX Technical Conference.

Received September 2004; revised September 2005; accepted May 2007

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.

	Atikoglu+_SIGMETRICS12
	Ding+_JCST14
	DingK_JPDC04
	Improving effective bandwidth through compiler enhancement of global cache reuse
	Introduction
	The problem of limited memory bandwidth
	A two-step solution strategy

	Reuse-based computation fusion
	Reuse-based loop fusion
	Program model
	Pair-wise fusion
	Single-level sequential greedy fusion
	Multi-level fusion

	Optimal computation fusion
	Reuse-driven execution

	Affinity-based data regrouping
	Reference affinity
	Affinity-based array regrouping
	Program analysis
	Single-dimension regrouping
	Multidimensional regrouping
	Affinity-based structure splitting

	Partial and dynamic reference affinity
	Optimality

	Evaluation
	Implementation
	Experimental design
	Effect of transformations
	Program changes for SP
	Effect on Sun and Compaq systems

	Affinity-based structure splitting
	Comparison with traditional compiler optimization
	Summary

	Related work
	Related work in loop fusion
	Related work in improving cache spatial locality
	Comparison with other locality models

	Conclusion
	Acknowledgements
	References

	DingY_JOCES14
	JiangZ_TOC05
	Preview of “Balasubramonian+_MulticoreCacheHierarchies.pdf”
	Preview of “Gu_Dissertation13.pdf”
	Preview of “Meyer-Sansers-Sibeyn.pdf”
	Preview of “Scott_Book13.pdf”
	SunW_PER12
	Xiang+_ASPLOS13
	Zhong+_TOPLAS09

