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Problem of Caching

– group data used by the 
same computation

aaaddbb
• Our approach

– fuse computation on the 
same data: 4 reuses

adbaabd• Cache management
– LRU: 1 reuse
– Belady: 2 reuses

adbaabd• An example
– 7 accesses
– single-element cache

a d b ...Memory
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Computation Fusion

  Function Initialize:
   read input[1:N].data1
   read input[1:N].data2
  End Initialize

  Function Process:
   //Step_A
   A_tmp[1:N].data1 
      input[1:N].data1
   
   //Step_B
   B_tmp[1:N].data1 
      input[1:N].data2
   ...
  End Process

 //Fused_step_1
 for each i in [1:N]
    read input[i].data1
    A_tmp[i].data1 
        input[i].data1
 end for

 //Fused_step_2
 for each i in [1:N] 
    read input[i].data2
    B_tmp[i].data1 
       input[i].data2
 end for
   ...
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Data Grouping

 //Fused_step_1
 for each i in [1:N]
    read group1[i].data1
    group1[i].data2 
        group1[i].data1
 end for

 //Fused_step_2
 for each i in [1:N] 
    read group2[i].data1
    group2[i].data2 
       group2[i].data1
 end for
   ...
 

 //Fused_step_1
 for each i in [1:N]
    read input[i].data1
    A_tmp[i].data1 
        input[i].data1
 end for

 //Fused_step_2
 for each i in [1:N] 
    read input[i].data2
    B_tmp[i].data1 
       input[i].data2
 end for
   ...
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      Transformed
 for each i in [1:N]
    read group1[i].data1
    group1[i].data2 
        group1[i].data1
 end for

 for each i in [1:N] 
    read group2[i].data1
    group2[i].data2 
       group2[i].data1
 end for
   ...
 

      Original
  Function Initialize:
   read input[1:N].data1
   read input[1:N].data2
  End Initialize

  Function Process:
   A_tmp[1:N].data1 
      input[1:N].data1
   
   B_tmp[1:N].data1 
      input[1:N].data2
   ...
  End Process

– Computation fusion recombines all functions
– Data grouping reshuffles all data
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• Programmers
• loss of modularity
• data layout depends on function

• Hardware/operating system
• limited scope
• run-time overhead

• Compilers
• global scope
• off-line analysis/transformation
• imprecise information

But How?
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Overall Fusion Process

for each statement in program

  find its data sharing predecessor

  try clustering them (fusion)

  if succeed

    apply fusion recursively

  end if

end for z=x+y

x=1x=1
z=x+y

y=2
y=2, x=1

z=x+y
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Difficulties
–incompatible shapes
–data dependence

Three cases of fusion
–between iteration & loop

• embedding 
–between iterations

• interleaving + alignment 
–otherwise

• iteration reordering, 
• e.g. loop splitting

Example Fusion

for i=2, N
  a[i] = f(a[i-1])
end for

a[1] = a[N]
a[2] = 0.0

for i=3, N
  b[i] = g(a[i-2])
end for 
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Example Fusion

for i=2, N
  a[i] = f(a[i-1])
end for

a[1] = a[N]
a[2] = 0.0

for i=3, N
  b[i] = g(a[i-2])
end for 

for i=2, N
  a[i]=f(a[i-1])
  if (i==3) 
    a[2]=0.0
  else if (i==N) 
    a[1]= a[N]
  end if
end for

for i=3, N
  b[i] = g(a[i-2])
end for 

• loop embedding
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Example Fusion

for i=2, N
  a[i]=f(a[i-1])
  if (i==3) 
    a[2]=0.0
  else if (i==N) 
    a[1]= a[N]
  end if
end for

for i=4, N
  b[i] = g(a[i-2])
end for 

b[3] = g(a[1])

for i=2, N
  a[i] = f(a[i-1])
end for

a[1] = a[N]
a[2] = 0.0

for i=3, N
  b[i] = g(a[i-2])
end for 

• loop embedding, loop splitting, 
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Example Fusion

for i=2, N
  a[i] = f(a[i-1])
end for

a[1] = a[N]
a[2] = 0.0

for i=3, N
  b[i] = g(a[i-2])
end for 

• loop embedding, loop splitting, interleaving+alignment 

for i=2, N
  a[i]=f(a[i-1])
  if (i==3) 
    a[2]=0.0
  else if (i==N) 
    a[1]= a[N]
  end if
  
  if (i>2 && i<N)
    b[i+1] = g(a[i-1])
  end if
end for

b[3] = g(a[1])



More on Fusion

• Features of single-level fusion
– reuse based
– shape independent

• Multi-level fusion
– gives priority to fusion at outer levels 

• Optimal fusion 
– hyper-graph formulation of data sharing
– an NP-hard problem

Loop 5

Arrays: A, B, C, D, E, F
Scalar: sum

A,D,E,F

A,D,E,F

A,D,E,F

B,C,D,E,F

B,C,sumA,sum X

Loop 2

Loop 1

Loop 3

Loop 4

Loop 6

Other Fusion Studies
• Early fusion studies

– first uses [Wolfe UIUC’82, Allen & Kennedy IEEE TC’86]
– complexity [Kennedy&McKinley Rice’93, Darte PACT’99]
– heuristics [Gao+ LCPC’92, Kennedy ICS’01]
– implementation [McKinley+ TOPLAS’96, Manjikian&Abdelrahman 97, Lim

+ PPoPP’01]
– array contraction [Gao+ LCPC’92, Lim+ PPoPP’01, Song+ ICS’01]

• Aggressive loop blocking/tiling
– shackling and slicing [Kodukula+ PLDI’97, Pugh&Rosser LCPC’99, Yi+ 

PLDI’00]
– time skewing [Song PLDI’99, Wonnacott IPDPS’00]

• Recent work
– manual fusion in C programs [Pingali+ ICS’02]
– reuse-based fusion and array contraction in Intel Itanium compiler 

[Ng+ PACT’03]
• 12% average improvement for SPEC2K fp

– compiler fusion of loops containing array indirection [Strout+ 
PLDI’03]

Data Regrouping

[Ding&Kennedy LCPC’99 IPDPS’01
JPDC’04�

Data Regrouping

• Cache-block utilization
– high-end machines use large cache blocks
– use one integer in a 64-byte cache block

• 1/16 utilization of transfer bandwidth
• 1/16 utilization of cache space

• Data regrouping
– group “useful” data into the same cache block
– group two arrays if and only if they are always accessed 
together

• Basic questions
– what does “usefulness” mean in general?
– can we regroup data across array and object boundary?
– can we regroup data during execution?

• Systematic study on Thursday

Magi

– 26 attributes belong to 6 reference affinity groups
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NAS/SP

• Benchmark application from NASA
– computational fluid dynamics (CFD)
– class B input, 102x102x102
– 218 loops in 67 loop nests, distributed into 482 loops
– 15 global arrays, split into 42 arrays

• Optimizations
– fused into 8 loop nests
– grouped into 17 new arrays, e.g.

• {ainv[n,n,n], us[n,n,n], qs[n,n,n], u[n,n,n,1-5]}
• {lhs[n,n,n,6-8], lhs[n,n,n,11-13]}
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0

0.58

1.16

1.74

2.32

exe. time L1 misses L2 misses TLB misses

no optimization fusion only
fusion+grouping grouping only

NAS/SP

8.8x
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Software Techniques Summary
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Overall Comparison

Limit of Computation Fusion

• Ding and Kennedy, IPDPS 2001 (best paper), JPDC 2004

23

0

1,250

2,500

3,750

5,000

0 4 16 64 256 1K 4K 16K 64K 256K 1M

original

potential

reuse-based fusion

%
 re

fe
re

nc
es

reuse distance

04/02/2008 Chen Ding 24

Summary

• Global transformations
– Combining both computation and data reordering at a large 
scale

• Dynamic transformations
– Combining compile-time and run-time analysis and 
transformation

• Compiling for locality
– splits and regroups global computation and data
– for the whole program and at all times
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Transforming Loops to Recursion for Multi-
Level Memory Hierarchies

Qing Yi', Vikram Adve* and Ken Kennedy'

' Rice University

*University of Illinois, Urbana-Champaign

Qing Yi
Assist. Prof., U. Texas San Antonio

Ph.D. Rice 2002
M.S. ICS 1995

B.S. Shandong U.
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Computation Regrouping: Restructuring 
Programs for Temporal Data Cache 

Locality

Venkata K. Pingali
Sally A. McKee

Wilson C. Hsieh
John B. Carter

School of Computer Science
University of Utah

Best student paper, ICS 2002
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Problem: Memory Performance

!  60-80% of execution time spent in memory stalls 
(generated by Perfex)
!  194 MHz, R10K Processor, 32K L1D, 32K L1I, 2MB L2
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Application Analysis

• Bad memory behavior
• Working set larger than L2 
• Data dependent accesses
• Hard to optimize using compiler

29

Related Work
• Compiler approaches
• Loop, data and integrated restructuring:Tiling, 

permutation, fusion, fission [CarrMckinley94]
• multi-level fusion [DingKennedy01], Compile-time 

resolution[Rogers89]
• Prefetching
• Hardware or software based, simple,efficient models: Jump 

pointers, prefetch arrays[Karlsson00], dependence-based 
[Roth98]

• Cache-conscious, application-level approaches
• Algorithmic changes: Sorting [Lamarca96], query 

processing, matrix multiplication
• Data structure modifications: Clustering, coloring, 

compression [Chilimbi99]
• Cohort Scheduling [Larus02] 
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Computation Regrouping

• Idea: compute when the data is available in the cache
• Spend extra computation to achieve this: computation is 

cheap

• Logical operations 
• Short streams of independent computation performing unit 

task
• Examples: R-Tree query, FFTW column walk, Processing 

one ray in Ray Trace 
• Application-dependent optimization
• Techniques: deferred execution, early execution, filtered 

execution, computation merging 
• Preliminary performance improvements encouraging
• Range from 1.26 to 3.03, modest code changes
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Regrouping

Problem: Too Many 
Objects Accessed 

Per Logical Operation ! 

…
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Regrouping

…
.
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Regrouped 
computations
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Filtered Execution: IRREG

! Simplified CFD code 

! Series of indirect accesses

! If index vector random, working set is as large as data array

! Memory stall accounts for more than 80% of execution time

! Logical operation: set of remote accesses

for all i {
   sum += data[index[i]];
}

Unoptimized

INDEX
DATA

34

Filtered Execution: IRREG

! Defer accesses to data outside the window

! Significant additional computation cost : n loops instead of 1 

! Tradeoff: window size vs. number of passes

for k = 0,n step block {
   for all i {
      if (index[i] >= k && index[i] < (k+block)){
             sum += data[index[i]];
       }
    }
} Optimized

+

Pass 1 Pass 
2
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Deferred Execution: R-Tree

• Height balanced tree
• Branching factor 2-15
• Used for spatial searches
• Problem: data dependent 

accesses, large working set of 
queries/deletes
• Logical operation: insert, 

delete, query 

Query 1
Query 2

36

Deferred Execution: R-Tree
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R-Tree Regrouping Query 1
Query 2
Query 3
Query 4
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R-Tree Performance Characteristics
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Regrouping: Perfex Estimates
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Locality Grouping (LG) 

• Locality groups: User identified groups of tasks that 
share objects
• Library interface
• Runtime scheduling
• Simple abstraction

• lg *createlg(), void deletelg(lg *) 
• void addtolg(lg *, void *data, void (*proc)(void *))
• void flushlg(lg *)

41

Summary

• Regrouping exploits (1) low cost of 
computation (2) application-level 
parallelism

• Improves temporal locality 

• Changes small compared to overall 
code size

• Hand-optimized applications show 
good performance improvements 

Sally McKee
Cornell University

�!$ �������

፷对共享缓存的程序改进？



Defensive Loop Tiling for 
Shared Cache

  Bin Bao, Chen Ding
  University of Rochester              

2013 International Symposium on Code Generation and 
Optimization (CGO), Shenzhen, China

Bird and Program

44

“Unlike a bird, which can learn to fly better and 
better, existing programs are sort of dumb---the 
one millionth run of a program is typically not a 
bit better than the first-time run.”   --- Professor 
Xipeng Shen @ W&M

Peer Interaction

Peers: threads, tasks, and independent programs

45

Interfering

Limited resources

Collaborative

Parallel tasks

Co-Run Program Optimization

Existing shared-cache optimization

Cache partitioning

Job scheduling

Task throttling

Compiler optimization?
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Loop Tiling --- A Matrix Multiplication Example

47

Figure 1 shows the simulated miss counts for square tile
sizes up to the size of the private L1 cache (256KB). To ease
the comparison, we link the miss counts into curves. The best
tile size is given by the lowest point of a curve. Comparing
the two curves, we see that the best tile size differs by a
factor of 10 because of cache interference. If we use in best
tile size from the solo run in the co-run, the program would
incur 10 times as many cache misses. The dramatic increase
is entirely due to cache interference, in particular, inclusion
victim misses.

The figure shows the importance of considering cache in-
terference in loop tiling. On machines with inclusive cache,
it is far from sufficient to tile for the private cache. Defensive
tiling must minimize the number of inclusion victim misses,
a problem we solve in this paper. We call the program opti-
mization defensive tiling.

In the following, Section 2 describes a model of inclusion
victim misses, the compiler technique for defensive tiling, its
integration in the Open64 compiler, and a compiler analysis
of interference. Section 3 evaluates defensive tiling using the
PLUTO [3] benchmarks by testing the effect in solo- and co-
run tests. The remaining sections discuss related work and
conclude.

2. Defensive Tiling

In this section we describe loop tiling, the effect of inclusion
victim and its amelioration by defensive tiling.

2.1 Loop Tiling

Figure 2a shows the kernel code of matrix multiplication and
Figure 2b the tiling transformation that we will use as an
example throughout this section, where N = 2048.

for(i = 0; i < N ; i = i+ 1)
for(j = 0; j < N ; j = j + 1)
for(k = 0; k < N ; k = k + 1)
C[i][j] = beta ⇤ C[i][j] + alpha ⇤A[i][k] ⇤B[k][j];

(a) Original code

for(jj = 0; jj < N ; jj = jj +Bj)
for(kk = 0; kk < N ; kk = kk +Bk)
for(i = 0; i < N ; i = i+ 1)
for(j = jj; j < min(jj +Bj , N); j = j + 1)
for(k = kk; k < min(kk +Bk, N); k = k + 1)
C[i][j] = beta ⇤ C[i][j] + alpha ⇤A[i][k] ⇤B[k][j];

(b) Tiled code

Figure 2: Loop tiling in matrix multiplication

The results presented in Figure 1 show the relation be-
tween loop tiling and cache performance. For ease of presen-
tation, it shows results for only square tiles (Bj = Bk = B)
for B from 10 to 180, with an increment of 10. The x-
axis shows the 18 data points with the tile size measured
by the reuse distance of B[k][j] in i-loop from about 1KB to

256KB. In this experiment, the machine has private 8-way
256KB L1 and shared 16-way 2MB L2.

When the matrix multiplication is running alone, the L1
miss count goes down as the tile size increases, due to the
greater utilization of the L1 cache. However, the benefit di-
minishes when B grows larger than 160, and the reuse dis-
tance of B[k][j] larger than 200KB. This is due to partly ca-
pacity, not enough L1 space is left for other data, and partly
conflict, interference among data tiles. Such phenomenon is
well known.

When the same matrix multiply is co-running with a
stream benchmark, larger private-cache usage decreases the
number of misses only until B = 50 or reuse distance of
24KB, after which the miss count increases rapidly. The best
tile size occupies less than 10% of the private cache in this
co-run case, in sharp contrast to near 80% in the solo-run
case. The reason is the interference from the peer program
in the shared cache, which we model in the next section.

2.2 Inclusion Victim Modeling

The execution of a tiled program has a regular set of data
being reused: the data tiles. The program computes on them
for a duration before moving to the next set of tiles. In
general, it may access other data blocks that are not reused.
We introduce two metrics to represent this type of cache
usage:

• Reused data, which is the volume of data being reused;
• Active period, which is the duration of the time the same

amount of data is reused.

While a tiled program runs, peer programs bring their
data into the shared cache and evicts the data tiles. We model
the interference using the following metric:

• Survival window, which the time taken for peer programs
to access the amount of data equal to the size of the
shared cache.

Consider a data tile that fits inside the private cache. Its
copy in shared cache would be evicted by the end of the
survival window and has to be reloaded, incurring inclusion
victim misses in the amount of the reused data. The follow-
ing example demonstrates the three metrics:

prog. 1: a b c a b d a b e ...

prog. 2: p q u v w x y z p q u v ...

The first program reuses two data blocks repeatedly. The
reused data is two. The active period is the length of the
execution. The second program repeatedly traverses 8 data
blocks. Assuming the shared cache is of size 8, the survival
window is 8. After every 8 accesses of program 2, program 1
incurs two inclusion victim misses to reload the two reused
data blocks.

The frequency of the reloads equals to how many times
the reuse data do not survival in shared cache, i.e. the ra-

2

Tiling Strategy for Shared Cache

48

Tile for whole
shared cache

Tile for part of 
shared cache

Tile for private 
cache only



Inclusion Victim Problem

Inclusive cache

E.g. L3 cache in Intel Nehalem processor

Inclusive victim [Jaleel et al. MICRO’10]

A toy example: L1 cache size 2; L2 cache size 8

49

Defensive Loop Tiling for Shared Cache

Abstract

Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance in
co-run environments. The goal of the transformation is to
optimize the use of the cache while at the same time guard
against interference. It is entirely a static technique and does
not require program profiling. The paper shows how it can be
integrated into a production-quality compiler and evaluates
its effect on a set of tiling benchmarks for both program
co-run and solo-run performance, using both simulation and
testing on real systems.

1. Introduction

Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in
loop tiling is the selection of the best tile shape and size.
The best strategy in the past utilizes the most space that
does not cause data conflicts due to limited associativity (for
examples in [4, 9, 14, 20, 32, 33]). However, these methods
do not consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when running by
itself. However, when running with other programs, sharing
leads to interference. The portion of LLC occupied by a pro-
gram’s data can be hard to ascertain. If a program uses more
than its share of cache, its performance can drop. The prob-
lem is especially serious for a tiled program since it depends
on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, interference in shared LLC can cause eviction in
private cache.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose

Tile size in terms of B[j][k] reuse distance
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Private cache misses in solo−run
Private cache misses in  co−run

Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of
L1 (256KB), the figure shows the total miss count of solo
execution and of co-run with another program. The best tile
size for the solo run incurs 10 times as many misses in the
co-run execution, showing the dramatic impact of inclusion
victim misses.

we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [16], we call such a cache miss an inclusion victim.

The following shows the co-run traces and the private-
cache misses incurred by program 1. The first miss is com-
pulsory (c), while the other two are inclusion victims (v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [16]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [23] and compare it with the
solo-run of the same matrix multiplication.

1

Matrix Multiplication Results on a Cache Simulator
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Defensive Loop Tiling for Shared Cache

Abstract

Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance in
co-run environments. The goal of the transformation is to
optimize the use of the cache while at the same time guard
against interference. It is entirely a static technique and does
not require program profiling. The paper shows how it can be
integrated into a production-quality compiler and evaluates
its effect on a set of tiling benchmarks for both program
co-run and solo-run performance, using both simulation and
testing on real systems.

1. Introduction

Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in
loop tiling is the selection of the best tile shape and size.
The best strategy in the past utilizes the most space that
does not cause data conflicts due to limited associativity (for
examples in [4, 9, 14, 20, 32, 33]). However, these methods
do not consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when running by
itself. However, when running with other programs, sharing
leads to interference. The portion of LLC occupied by a pro-
gram’s data can be hard to ascertain. If a program uses more
than its share of cache, its performance can drop. The prob-
lem is especially serious for a tiled program since it depends
on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, interference in shared LLC can cause eviction in
private cache.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose
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Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of
L1 (256KB), the figure shows the total miss count of solo
execution and of co-run with another program. The best tile
size for the solo run incurs 10 times as many misses in the
co-run execution, showing the dramatic impact of inclusion
victim misses.

we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [16], we call such a cache miss an inclusion victim.

The following shows the co-run traces and the private-
cache misses incurred by program 1. The first miss is com-
pulsory (c), while the other two are inclusion victims (v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [16]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [23] and compare it with the
solo-run of the same matrix multiplication.
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Defensive Loop Tiling for Shared Cache

Abstract

Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance in
co-run environments. The goal of the transformation is to
optimize the use of the cache while at the same time guard
against interference. It is entirely a static technique and does
not require program profiling. The paper shows how it can be
integrated into a production-quality compiler and evaluates
its effect on a set of tiling benchmarks for both program
co-run and solo-run performance, using both simulation and
testing on real systems.

1. Introduction

Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in
loop tiling is the selection of the best tile shape and size.
The best strategy in the past utilizes the most space that
does not cause data conflicts due to limited associativity (for
examples in [4, 9, 14, 20, 32, 33]). However, these methods
do not consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when running by
itself. However, when running with other programs, sharing
leads to interference. The portion of LLC occupied by a pro-
gram’s data can be hard to ascertain. If a program uses more
than its share of cache, its performance can drop. The prob-
lem is especially serious for a tiled program since it depends
on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, interference in shared LLC can cause eviction in
private cache.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose
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Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of
L1 (256KB), the figure shows the total miss count of solo
execution and of co-run with another program. The best tile
size for the solo run incurs 10 times as many misses in the
co-run execution, showing the dramatic impact of inclusion
victim misses.

we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [16], we call such a cache miss an inclusion victim.

The following shows the co-run traces and the private-
cache misses incurred by program 1. The first miss is com-
pulsory (c), while the other two are inclusion victims (v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [16]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [23] and compare it with the
solo-run of the same matrix multiplication.
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tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multipli-
cation (Figure 2b), the footprint of i, j, and k loop are de-
noted as Fi, Fj and Fk respectively. The formulas are: Fi =
8⇤(N⇤Bk+Bj⇤Bk+N⇤Bj), Fj = 8⇤(Bk+Bj⇤Bk+Bj),
Fk = 8 ⇤ (Bk +Bk + 1).

Next the compiler computes the cache requirement of
each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(2)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (3)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 4 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (4)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the
cache requirement is close to the cache size. The second
penalizes if the requirement exceeds the cache size (the term
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tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the
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tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the
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tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the
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tio of the active period to the survival window. The follow-
ing equation shows how the three metrics, the active period
ap(p1), the reused data reuse(p1) of program 1 and the sur-
vival window from program 2 sw(p2), compute the number
of inclusion victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
⇤ reuse(p1) (1)

The model has several limitations. It assumes stable data
reuse and negligible effect in shared cache from the other
data accessed by program 1. The two assumptions are valid
for tiled programs but not true in general. Second, the time
is logical not actual. The unit of the active period may not
match that of the survival window. This is not a serious prob-
lem because our goal is to defend against as much interfer-
ence as possible not some specific interference that we can
know in advance.

Finally, there is mutual interaction between the co-run
programs, as studied by Xiang et al. using a recursive equa-
tion and a fixed solution [35]. In this paper, we treat the in-
teraction only qualitatively, in particular, its important effect
in determining the “friendliness” of defensive tiling as dis-
cussed at the end of Section 2.4.

Next we show how to estimate the above three factors
inside a compiler, without profiling or knowing the exact
execution sequence of the compiled program.

2.3 Compiler Enhancement of Defensiveness

The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al. [33]. Part
of the description (Section 3.2) deals with the problem of
tile-size selection. The description is more intuitive than it is
precise. Our design is based on the current Open64 design,
which we review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for

an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount of
active data, and the relation with the survival window. Once
we extend the cost function to include cache interference,
defensive tiling is accomplished by the same search proce-
dure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multiplica-
tion (Figure 2b), the footprint of i, j, and k loop are denoted
as Fi, Fj and Fk respectively. The formulas are:

Fi = 8 ⇤ (N ⇤Bk +Bj ⇤Bk +N ⇤Bj) (2)

Fj = 8 ⇤ (Bk +Bj ⇤Bk +Bj) (3)

, Fk = 8 ⇤ (Bk +Bk + 1).
Next the compiler computes the cache requirement of

each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is loop j, we denote the
requirement of loop i as Rj , the cache required for one
iteration of i:

Rj = Fj + (di � 1) ⇤ Fi � Fj

N � 1
(4)

Part of the required cache space holds the reused data.
The amount is

reusej = Fj � (Fi � Fj)/N (5)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i has N instances of loop
j, but Fi is smaller than N ⇤ Fj . The difference is due to the
reuse of the data tile in this case of size Bj ⇤Bk. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 6 as follows.

CMj =
Fi

N

+(↵⇤ Ri

ecsz

+� ⇤ |Ri � ecsz|+

ecsz

)⇤ reusej (6)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.

↵ and � are factors used to model program induced cache
conflict and capacity misses. The former penalizes if the
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cache requirement is close to the cache size. The second
penalizes if the requirement exceeds the cache size (the term
is 0 if Ri  ecsz). They are computed as a fraction by which
the data reuse is not realized as cache reuse.

Now we are ready to introduce the cache interference
model. Assuming each iteration of loop i is a loop j, the
amount of data reused in private cache is reusej and the
length of the active period is the duration of loop i. The evic-
tion frequency is the ratio of the active period to the survival
window. Both terms are time and difficult to estimate inside
the compiler. Instead, we convert the time ratio into the data
ratio. In particular, we assume it is proportional to ratio of
the footprint of loop i to a fraction of the shared cache size.
The formula is given by Equation 7 as follows:

IVj =
Fi

scsz/�

⇤ reusej (7)

We should note the distinction between ecsz, which is the
effect size of the private cache, and scsz, which is the size of
the shared cache. � is a number greater than 1. It represents
the defensiveness. The larger is the number, the shorter is the
survival window. Ideally, the defensiveness is tuned based on
the co-run cache interference. In implementation, we control
� using a compiler option “-LNO:blocking defensiveness”.
We will experimentally study the effect of � in Section 3.

The revised formula for the miss estimate, CM

0
j is then

CM

0
j = CMj + IVj (8)

Given this cost function, defensive tiling continues by search-
ing for the tile sizes that minimize CM

0
j , employing loop in-

terchange and other loop nest transformations as before [33].
In the above description we have used the matrix multi-

plication as an example. The main assumption is that loop j

is one iteration of loop i. The i, j distinction helps to clarify
when we describe the formulas that use both the metrics for
the loop and the metrics for one of its iterations. The formu-
las for a generic loop i are the same except that we replace
the metrics for loop j with those for an iteration of loop i.

2.4 Compiler Analysis of “Friendliness”

A program’s role in cache interference is two sided. The
first is the effect due to the interference from others. This
is often called sensitivity. Defensive tiling is to minimize the
sensitivity. The second is the program’s interference to oth-
ers. It has been called friendliness [17] and politeness [29].
Friendliness has been estimated using on-line measurements
(e.g. [41]), profiling (e.g. [36, 37] in linear and real time),
and simulation and modeling [28, 34].

In this section, we describe as far as we know the first
compiler analysis that estimates the friendliness. Through
this we may see the impact of defensive tiling on friend-
liness and identify any conflict between the optimizing for
defensiveness and optimizing for friendliness.
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Figure 3: Locality metrics calculation.

We start with reuse distance, which has been shown
amenable to static analysis through dependence analysis [5,
6] and reuse distance equations [2]. Given a loop nest, reuse
distance is a histogram showing the distribution of reuse dis-
tances. For an execution of matrix multiply, the top graph
in Figure 3 shows that one third of references have a reuse
distance of 24B, 2.4KB and 178KB respectively.

Compiler analysis produces a histogram parameterized
by the loop trip counts. For tiled matrix multiply in Fig-
ure 2b, the reuse distances for different references are given

4

! is the defensiveness parameter



Defensiveness and Politeness

Defensive tiling generates code that is less 
sensitive to cache interference

Politeness: how intrusive the transformed 
program is

Static politeness analysis

A Higher Order Theory of Locality [Xiang et 
al. ASPLOS’13]
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reuse distance sampling[59], and multicore reuse dis-
tance analysis[38]. Sampling can drastically reduce the
cost if sampled windows accurately reflect the behavior
of other windows[45-47].

SLO has been developed by Beyls and D’Holla-
nder[30]. It instruments a program to skip every k
accesses and take the next address as a sample. A
bounded number of samples are kept in a sample reser-
voir — hence the name reservoir sampling. To capture
the reuse, SLO checks each access to see if it reuses
some sample data in the reservoir. The instrumenta-
tion code is carefully engineered in GCC to have just
two conditional statements for each memory access (one
for address and the other for counter checking). Reser-
voir sampling reduces the time overhead from 1000-fold
slow-down to only a factor of 5 and the space overhead
to within 250 MB extra memory. The sampling accu-
racy is 90% with 95% confidence. The accuracy is mea-
sured in reuse time, not reuse distance or miss rate.

To accurately measure reuse distance, a record must
be kept to count the number of distinct data that ap-
peared in a reuse window. Zhong and Chang[59] de-
veloped the bursty reuse distance sampling, which di-
vides a program execution into sampling and hiber-
nation periods. In the sampling period, the counting
uses a tree structure and costs O(log log M) per access.
If a reuse window extends beyond a sampling period
into the subsequent hibernation period, counting uses
a hash-table, which reduces the cost to O(1) per access.
Multicore reuse distance analysis by SchuÆ et al.[38] uses
a similar scheme for analyzing multi-threaded code. Its
fast mode improves over hibernation by omitting the
hash-table access at times when no samples are being
tracked. Both methods track reuse distance accurately.

StatCache by Berg and Hagersten[45] is based on un-
biased uniform sampling. After a data sample is se-
lected, StatCache puts the page under the OS protec-
tion (at page granularity) to capture the next access to
the same datum. It uses the hardware counters to mea-
sure the time distance until the reuse. OS protection
is limited by the page granularity. Two other systems,
developed by Cascaval et al.[58] and Tam et al.[60], use
the special support on IBM processors to trap accesses
to specific data addresses. To reduce the cost, these
methods use a small number of samples. Cascaval et
al.[58] used the Hellinger A±nity Kernel to infer the ac-
curacy of sampling. Tam et al.[60] predicted the miss
rate curve in real time.

3.2.7 Parallel Analysis

SchuÆ et al.[38] combined sampling and parallel
analysis for parallel code on multicore. At the IPDPS
conference in 2012, three groups of researchers reported
that they made the analysis of even sequential pro-

grams many times faster with parallel algorithms. Niu
et al.[61] parallelized the analysis to run on a computer
cluster, while Cui et al.[62] and Gupta et al.[63] paral-
lelized it for GPU.

Unlike the reuse distance, the footprint can be eas-
ily sampled and analyzed in parallel using shadow
profiling[64-65]. By measuring the footprint and con-
verting it to reuse distance, we have shown the equiva-
lent of parallel sampling analysis for reuse distance,
which can be done in near real-time, with just 0.5% vis-
ible cost on average[10]. We note that the accuracy of
footprint conversion is conditional[10], but direct (para-
llel) measurements are always accurate.

3.2.8 Compiler Analysis

Reuse distance can be analyzed statically for sci-
entific code. Cascaval and Padua[66] used the depen-
dence analysis[67], and Beyls and D’Hollander[68] de-
fined reuse distance equations and used the Omega
solver[69]. While they analyzed conventional loops,
Chauhan and Shei[70] analyzed MATLAB scripts us-
ing dependence analysis. Unlike profiling whose re-
sults are usually input specific, static analysis can
identify and model the eÆect of program parameters.
Beyls and D’Hollander[68] used the reuse distance equa-
tions for cache hint insertion, in particular, conditional
hints, where the caching decision is based on program
run-time parameters. Shen et al.[71] used static and
lightweight reuse analysis in the IBM compiler for ar-
ray regrouping and structure splitting.

Using the static reuse distance analysis and the
footprint theory, Bao and Ding demonstrated a com-
piler technique for analyzing the program footprint
and discussed the potential use in peer-aware program
optimization[72-73]. In [72], they used the tiled matrix
multiply (Fig.5) as an example to show the reuse dis-
tance computed at the source level (Table 1). They also

for (jj = 0; jj < N ; jj = jj + Bj)

for (kk = 0; kk < N ; kk = kk + Bk)

for (i = 0; i < N ; i = i + 1)

for (j = jj; j < min(jj + Bj , N); j = j + 1)

for (k = kk; k < min(kk + Bk, N); k = k + 1)

C[i][j] = beta £ C[i][j] + alpha £A[i][k]£B[k][j];

Fig.5. Loop nest of tiled matrix multiply.

Table 1. Reuse Distance as a Function of the Loop Bounds

Loop Array Reuse Distance (Bytes)

k C[i][j] 8£ 3

j A[i][k] 8£ 1 + 8£Bk + 8£Bk

i B[k][j] 8£Bj + 8£Bk + 8£Bk £Bj

kk C[i][j] 8£N £Bj + 8£N £Bk + 8£Bk £Bj

jj A[i][k] 8£N £Bj + 8£N £N + 8£N £Bj
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Figure 3: Locality metrics calculation.

im(c) =
1

mr(c)
(8)

The fourth step computes the lifetime. Once a program
loads a data block into the cache, the lifetime of the block
is how long before the program accesses c other data blocks
and evicts this block (if it has not been accessed again). The
expected lifetime is the average length of time the program
takes to fill up an empty cache.

Lifetime and inter-miss time are related in the following
way. First we let a program run for lf(c) time and access c

data blocks. Then we let the program continue to run until
it touches a new data block. This is the time lf(c + 1). The
interval from time lf(c) to time lf(c + 1) is the average
time before the next capacity or compulsory miss, that is,
the inter-miss time im(c). Therefore, the lifetime lf(c + 1)
can be computed:

lf(c + 1) = im(c) + lf(c) (9)

Using the same relation to compute lf(c), lf(c� 1), . . . and
observing im(0) = lf(1)� lf(0) = 1, we have

lf(c) = ⌃c�1
i=1 im(i) + 1 (10)

The friendliness of a program is given by its lifetime
function lf(c), which is the average time it fills the cache
of size c with newly accessed data and evicts the data from
peer programs that have not been used in the last lf(c) time
period. In other words, the data access of this program leads
to the survival window of lf(c) in size-c cache for the data
of the peer programs.

Combining the preceding equations, we have the (static)
model of the survival window sw as computed from the
reuse distance.

sw(c) = lf(c) = ⌃c�1
i=0 im(i) = ⌃c�1

i=0

1
⌃1i=crd(i)

(11)

Consider the extreme cases as a sanity check. The least
friendly program loads a new data block at each access,
so rd(1) = 1. The survival window it gives to others is
sw(c) = c. The most friendly program uses a single data
block, so rd(1) = 1

l , where l is the length of the memory
access trace. The survival window is sw(c) = l. A real
program is somewhere in between these two extremes. Tiled
programs have few long distance reuses. As a result, they are
among the friendliest programs. Figure 3 shows the lifetime
of matrix multiply increases rapidly with the cache size,
making it an amicable player in shared cache.

The “friendliness” analysis presented in this section
helps to understand the use of defensive tiling. First, dif-
ferent levels of defensiveness are needed depending on how
friendly the co-run programs are. We can now quantify this
friendliess. In the evaluation, we will test self co-run and
co-run with the streaming benchmark and see the effect of
friendliness.

Second, the aggregate interference from multiple peer
programs can be computed by combining the data growth in
their lifetime functions. Given two programs A, B, the com-
bined lifetime lfA+B(c) is such that lfA(cA) = lfB(cB) =
lfA+B(c) and cA+cB = c. The window of survival shortens
with every additional program in the mix.

Third, the lifetime for tiled programs can be parameter-
ized by the tile sizes just as the reuse distance is. Since tiling
reduces the reuse distance, it increases the lifetime. As a re-
sult, it makes a program friendlier. On the other hand, be-
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im(c) =
1

mr(c)
(8)

The fourth step computes the lifetime. Once a program
loads a data block into the cache, the lifetime of the block
is how long before the program accesses c other data blocks
and evicts this block (if it has not been accessed again). The
expected lifetime is the average length of time the program
takes to fill up an empty cache.

Lifetime and inter-miss time are related in the following
way. First we let a program run for lf(c) time and access c

data blocks. Then we let the program continue to run until
it touches a new data block. This is the time lf(c + 1). The
interval from time lf(c) to time lf(c + 1) is the average
time before the next capacity or compulsory miss, that is,
the inter-miss time im(c). Therefore, the lifetime lf(c + 1)
can be computed:

lf(c + 1) = im(c) + lf(c) (9)

Using the same relation to compute lf(c), lf(c� 1), . . . and
observing im(0) = lf(1)� lf(0) = 1, we have

lf(c) = ⌃c�1
i=1 im(i) + 1 (10)

The friendliness of a program is given by its lifetime
function lf(c), which is the average time it fills the cache
of size c with newly accessed data and evicts the data from
peer programs that have not been used in the last lf(c) time
period. In other words, the data access of this program leads
to the survival window of lf(c) in size-c cache for the data
of the peer programs.

Combining the preceding equations, we have the (static)
model of the survival window sw as computed from the
reuse distance.

sw(c) = lf(c) = ⌃c�1
i=0 im(i) = ⌃c�1

i=0

1
⌃1i=crd(i)

(11)

Consider the extreme cases as a sanity check. The least
friendly program loads a new data block at each access,
so rd(1) = 1. The survival window it gives to others is
sw(c) = c. The most friendly program uses a single data
block, so rd(1) = 1

l , where l is the length of the memory
access trace. The survival window is sw(c) = l. A real
program is somewhere in between these two extremes. Tiled
programs have few long distance reuses. As a result, they are
among the friendliest programs. Figure 3 shows the lifetime
of matrix multiply increases rapidly with the cache size,
making it an amicable player in shared cache.

The “friendliness” analysis presented in this section
helps to understand the use of defensive tiling. First, dif-
ferent levels of defensiveness are needed depending on how
friendly the co-run programs are. We can now quantify this
friendliess. In the evaluation, we will test self co-run and
co-run with the streaming benchmark and see the effect of
friendliness.

Second, the aggregate interference from multiple peer
programs can be computed by combining the data growth in
their lifetime functions. Given two programs A, B, the com-
bined lifetime lfA+B(c) is such that lfA(cA) = lfB(cB) =
lfA+B(c) and cA+cB = c. The window of survival shortens
with every additional program in the mix.

Third, the lifetime for tiled programs can be parameter-
ized by the tile sizes just as the reuse distance is. Since tiling
reduces the reuse distance, it increases the lifetime. As a re-
sult, it makes a program friendlier. On the other hand, be-
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im(c) =
1

mr(c)
(8)

The fourth step computes the lifetime. Once a program
loads a data block into the cache, the lifetime of the block
is how long before the program accesses c other data blocks
and evicts this block (if it has not been accessed again). The
expected lifetime is the average length of time the program
takes to fill up an empty cache.

Lifetime and inter-miss time are related in the following
way. First we let a program run for lf(c) time and access c

data blocks. Then we let the program continue to run until
it touches a new data block. This is the time lf(c + 1). The
interval from time lf(c) to time lf(c + 1) is the average
time before the next capacity or compulsory miss, that is,
the inter-miss time im(c). Therefore, the lifetime lf(c + 1)
can be computed:

lf(c + 1) = im(c) + lf(c) (9)

Using the same relation to compute lf(c), lf(c� 1), . . . and
observing im(0) = lf(1)� lf(0) = 1, we have

lf(c) = ⌃c�1
i=1 im(i) + 1 (10)

The friendliness of a program is given by its lifetime
function lf(c), which is the average time it fills the cache
of size c with newly accessed data and evicts the data from
peer programs that have not been used in the last lf(c) time
period. In other words, the data access of this program leads
to the survival window of lf(c) in size-c cache for the data
of the peer programs.

Combining the preceding equations, we have the (static)
model of the survival window sw as computed from the
reuse distance.

sw(c) = lf(c) = ⌃c�1
i=0 im(i) = ⌃c�1

i=0

1
⌃1i=crd(i)

(11)

Consider the extreme cases as a sanity check. The least
friendly program loads a new data block at each access,
so rd(1) = 1. The survival window it gives to others is
sw(c) = c. The most friendly program uses a single data
block, so rd(1) = 1

l , where l is the length of the memory
access trace. The survival window is sw(c) = l. A real
program is somewhere in between these two extremes. Tiled
programs have few long distance reuses. As a result, they are
among the friendliest programs. Figure 3 shows the lifetime
of matrix multiply increases rapidly with the cache size,
making it an amicable player in shared cache.

The “friendliness” analysis presented in this section
helps to understand the use of defensive tiling. First, dif-
ferent levels of defensiveness are needed depending on how
friendly the co-run programs are. We can now quantify this
friendliess. In the evaluation, we will test self co-run and
co-run with the streaming benchmark and see the effect of
friendliness.

Second, the aggregate interference from multiple peer
programs can be computed by combining the data growth in
their lifetime functions. Given two programs A, B, the com-
bined lifetime lfA+B(c) is such that lfA(cA) = lfB(cB) =
lfA+B(c) and cA+cB = c. The window of survival shortens
with every additional program in the mix.

Third, the lifetime for tiled programs can be parameter-
ized by the tile sizes just as the reuse distance is. Since tiling
reduces the reuse distance, it increases the lifetime. As a re-
sult, it makes a program friendlier. On the other hand, be-
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Experimental Results

PLUTO benchmarks

Platform

Pin-based cache simulator

256KB private L1, 2MB shared L2

Intel Nehalem processor

32KB private L1, 256KB private L2, 8MB 
shared L3
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We tile loops only for the private cache and do not consider
tiling for TLB.

Test Suite We have compiled all 25 benchmarks dis-
tributed with the PLUTO compiler [3]. 5 programs are not
included because Open64 can not tile the imperfect loops in
them, for example, the one in dsyrk. 2 more programs cannot
be tiled for other reasons. Another 13 are excluded because
they do not show a significant problem of inclusion victim
misses, that is, their solo-run and co-run miss counts do not
differ much. A common reason seems to be that the amount
of data reuse is relatively small. For instance, the mvt bench-
mark is a matrix-vector multiplication kernel which the reuse
only happens on the vector data. According to the model in
Section 2.3, when the reused data are few, the number of in-
clusion victim misses is low relative to the number of misses
caused by the matrix data. Indeed when measured in simu-
lation, the number of L1 misses increases by less than 0.1%
from the solo- to the co-run. After removing these programs,
we have 5 remaining programs which have significant data
reuse in private cache and for which Open64 can perform
the tiling transformation.

Next we evaluate defensive tiling first on a cache sim-
ulator to measure the cache effect and on real hardware to
measure the performance effect.

3.1 The Effect on Cache

For simulation, we have extended the basic cache simulator
in Intel Pin tool [22] to simulate a multi-level CMP cache.
The simulator is designed similar to CMP$im[15] (CMP$im
is not publicly available). One difference is that our simula-
tor does not include an L1 cache as they did, because the L1
cache does not significantly affect the interference between
L2 and L3, which we model using our simulator. L1 has a
performance impact, which we will include when testing on
a real system. Other than L1, we use the same cache con-
figuration used by Jaleel et al.: 2-core CMP, each has 8-way
256KB unified private cache, and both share inclusive 16-
way 2MB unified cache [16].

Our CMP simulator is Pin-based and trace-driven. The
simulator reads the same binaries as those running on the
real machine. Then Pin will instrument binaries and run the
cache simulation. The cache sharing is implemented through
process shared memory. With the cache simulator, we can
measure the total number of misses in the private cache. For
this experiment, we set the cache parameters in the Open64
compiler according to the simulated cache configuration:
private 256KB cache and shared 2MB cache.

We test the 5 PLUTO benchmarks in solo-run and in co-
run with a STREAM benchmark on the neighboring core.
We test five versions of each program: original Open64 tiling
and defensive tiling with the defensiveness level (�) set to
1, 2, 4 and 8. Figures 4a and 4b show the relative number
of private cache misses. The former is for the 5 versions
when the program co-runs with STREAM, and the latter
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Figure 4: Private cache miss comparison between the orignal
Open64 loop tiling and the defensive tiling for single run and
co-run cases.

for the 5 program versions when the program runs alone.
In each program, the number of misses is normalized to that
of the default Open64 tiling, so the first bar in each group in
Figure 4b is always 1.

The default tiling is vulnerable to program co-run. We
see in Figure 4a that the number of private cache misses (the
first bar in each group) increases by 321% to 449% in the
first four programs, corcol, covcol, dct, matmul, and 26% in
the last program tce. Inclusion victim is the culprit as it is
the only way the STREAM benchmark can affect the private
cache of the tiled program.

Defensive tiling reduces the number of misses by as much
as 80% for corcol and matmul, near 60% for covcol, over
40% for dct, and less than 5% for tce. For the first four pro-
grams, the defensiveness (“-LNO:blocking defensiveness”)
of 2 gives consistently good cache performance. The best
performance is seen when the defensiveness is either 2 or 4.

The effect of defensive tiling on solo runs is shown in
Figure 4b. As tiling become more defensive, there is a steady
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corcol covcol dct matmul tce
default tiling [105,105,220] [90,90,240] [56,56,320] [60,60,272] [5,5,5,5,36]
defensiveness=1 [56,56,160] [60,60,204] [32,32,280] [36,36,224] [6,6,6,6,25]
defensiveness=2 [42,42,126] [50,50,168] [26,26,231] [30,30,180] [6,6,6,6,25]
defensiveness=4 [20,20,91] [40,40,136] [21,21,182] [25,25,136] [6,6,6,6,18]
defensiveness=8 [20,20,91] [30,30,104] [17,17,144] [20,20,105] [5,5,5,5,15]

Table 2: Tile sizes generated by Open64
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Figure 5: Speedup of defensive tiling over Open64 default tiling as measured on Intel Nehalem. Each benchmark co-runs with
1 to 3 STREAM benchmarks. The four graphs show defensive tiling with � = 1, 2, 4, 8.

improvements based on our simulation, which is the case
except for the 1.18x speedup.

Symmetric Co-runs We have tested each PLUTO bench-
mark running with one, two, or three of its own replicas.
Figure 6 shows the result for the solo- and co-run tests when
the defensiveness level is set to 4. The baseline is the default
tiling in the solo run and in 2 to 4 symmetric co-runs. The
first bar in each group shows the same speedup as those in
Figure 5c.

All tests show improvements, although most are small
and lower than the solo-run improvement. The results for
other defensiveness levels are similar, thus we omit them for
brevity.

Defensive tiling seems not effective since in all programs
the lead over the default tiling is narrowed, often signif-
icantly. For explanation we need to examine the friendli-
ness as defined and discussed in Section 2.4. The tiled pro-
grams have excellent locality, so they are among the friendli-
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improvements based on our simulation, which is the case
except for the 1.18x speedup.

Symmetric Co-runs We have tested each PLUTO bench-
mark running with one, two, or three of its own replicas.
Figure 6 shows the result for the solo- and co-run tests when
the defensiveness level is set to 4. The baseline is the default
tiling in the solo run and in 2 to 4 symmetric co-runs. The
first bar in each group shows the same speedup as those in
Figure 5c.

All tests show improvements, although most are small
and lower than the solo-run improvement. The results for
other defensiveness levels are similar, thus we omit them for
brevity.

Defensive tiling seems not effective since in all programs
the lead over the default tiling is narrowed, often signif-
icantly. For explanation we need to examine the friendli-
ness as defined and discussed in Section 2.4. The tiled pro-
grams have excellent locality, so they are among the friendli-

Defensiveness parameter ! = 4

Symmetric Co-runs

Each benchmark co-runs with its replica (! = 4)
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Figure 6: Speedup of the defensive tiling over the default
tiling for the solo-run and symmetrical co-runs with 2 to 4
replicas. The defensiveness level is 4.
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Figure 7: Speedup of cache oblivious matrix multiplica-
tion by Qing et al. [39] over default tiling

cache first, and then continues to transform inter-tile loops
for the L2 cache if it is profitable. Kodukula et al. formulated
tiling and other transformations as high-dimensional opti-
mization called data shackling [19]. Mitchell et al. [24] pro-
posed global multi-level cost functions to guide the choice
of optimal tile size and shape. Rivera and Tseng explored
the impact of multi-level caches on data locality transfor-
mations [27]. For loop tiling, they pointed out that simply
targeting the L1 cache often gives near best performance.
Renganarayana and Rajopadhye [26] formalized the tile se-
lection problem as Geometric Programming, and multi-level
tiling could be solved recursively.

Auto-tuning of Loop Tiling Rather than static tile selec-
tion, auto-tuning searches through different versions of com-
piled code at the installation time and find the best choice for
the host machine. It is known as iterative compilation. Com-
piler models and heuristics were used to guide auto-tuning.
Kisuki et al. [18] implemented an iterative compilation sys-
tem which finds good tile sizes and unrolling factors in a
trimmed optimization space. Chen et al. [7] included more
optimizations such as unroll-and-jam and prefetching. They
also considered optimizing across multiple cache levels. A
system like PTile [1] generates parameterized code to facili-
tate the search. A recent adaptive tiling system called Evol-
veTile [30] enabled dynamic variation of the tile size through
parameterized tiling.

Tiling for Parallel Programs Loop tiling can also be used
to reduce the communication overhead between processors[12,
21, 25, 38]. Zhou et al. [40] showed hierarchical overlapped
tiling can reduce communication overhead without introduc-
ing much redundant computation and can be used to trans-
form OpenCL programs. Chen et al. [8] applied tiling to
pipeline MapReduce applications on multicore. The nature
of parallel-loop tiling is collaborative rather than defensive.
The transformation in one task knows the access pattern of
other threads. Defensive tiling deals with unknown peers

that share cache. The specific problem of inclusion victim
has not been considered in prior compiler analysis.

5. Summary

This paper has presented compiler analysis of friendliness
and defensiveness of loop-based programs. Based on these
analyses, it has developed an entirely static framework for
peer-aware program optimization. The framework has been
implemented in a production-quality compiler, and has been
shown to significantly reduce slowdowns caused by inclu-
sion victim misses on today’s multicore machines.
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Figure 7: Speedup of cache oblivious matrix multiplica-
tion by Yi et al. [50] over default tiling.

est peers and do not yield much room for improvement
by defensive tiling. More importantly, as discussed at the
end of Section 2.4, in these tests the default tiling produces
friendlier code than defensive tiling. Hence the default tiling
co-runs better and regains some of the losses we see in the
solo-run test.

The Defensiveness of Cache Oblivious Algorithms Cache
oblivious algorithms recursively divide the computation [12].
For example, a matrix multiplication can be broken into
eight sub-matrix multiplications, and the subproblems can
be further divided until a threshold size is reached. The re-
cursion in effect tiles the computation for all possible cache
levels. Yi et al. [50] developed a compiler transformation to
convert loop nests into a recursive form. Our test suite and
theirs have one overlap—the matrix multiply.

Figure 7 shows the performance comparison between
cache oblivious algorithms and the default Open64 tiling in
the solo- and co-run tests with 1 to 3 STREAM benchmarks.
The numbers are reported for different threshold sizes from
as small as 16 to as large as 256. When the termination size
is 16 and 32, the recursive version shows 20% and over 40%
improvements in the high cache-contention cases (2 and 3
streaming peers). The largest improvement exceeds that of
defensive tiling. Open64 shows better performance in other
cases. The results suggest that although the recursive version
has a higher overhead in the solo run, there can be signifi-
cant benefits gained from being defensive. While a detailed
analysis is beyond the scope of the paper, we note that the
higher improvements in small threshold sizes are consistent
with our model and technique of defensive tiling, which also
seek to reduce the size of data reuse.

4. Related Work

Peer-Aware Program Optimization QoS-Compile from
Tang et al. [36] is the first compiler solution to mitigate
memory hierarchy contention for independent co-located

programs on multicore processors. The optimization first re-
quires a profiling pass to identify contentious code regions.
Once the high-interference regions of a program are found
through profiling and modeling, the compiler will pad non-
memory instructions and insert intermittent sleep in those
regions to throttle back the program’s memory request rate.
The two transformations are done at the binary level.

Defensive tiling differs in several aspects. First, it im-
proves the performance of the transformed code, instead of
slowing it down to make its peer run faster. Second, it is a
static technique at the loop level and does not require any
profiling information. The static notions of defensiveness
and friendliness are new, so is the model of cache inclusion
victim misses. However, defensive tiling is limited to cer-
tain kinds of applications, while QoS-Compile is generally
applicable.

Single-level Tiling For a single-level cache, loop tiling has
been used to reduce capacity miss [5, 18, 25, 39]. Temam et
al. [11, 38] showed that the number of conflict misses in
numerical code can be modeled and data locality optimiza-
tions should consider conflict misses. Coleman and McKin-
ley [10] developed a Tile Size Selection algorithm which
eliminates self-interference misses and minimizes cross-
interference misses. Ghosh et al. [13] proposed Cache Miss
Equations which consider both loop structure and data lay-
out, including loop tiling and array padding. Hsu and Kre-
mer [16] gave several algorithms to combine tile selection
and array padding. Huang et al. combined loop tiling with
data tiling and showed robust performance by a single tile
size for different problem sizes [17].

Multi-level Tiling Open64 uses a combined model to unify
several loop optimizations including loop tiling [40]. Unified
transformations have been studied with unimodular trans-
formation to maximize reuse [47], in data shackling using
high-dimensional optimization [24], and for multiple loop
nests, through loop fusion enabled by loop tiling and array

Comparison with QoS-Compile
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[Tang et al. CGO’12]
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Cache sharing modeling for MPI programs
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[Ding&Kennedy PLDI’99�
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Unknown Access

“Every problem can be solved by adding one more level of 
indirection.”

• Irregular and dynamic applications
• Irregular data structures are unknown until run time
• Data and their uses may change during the computation

• For example
• Molecular dynamics
• Sparse matrix

• Problems
• How to optimize at run time? 
• How to automate?
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Example packing

 f[1]    f[2]   f[3]   ...
original 
array

f[8], f[800], f[8], f[2], ...
data 

access

 f[8]   f[800]  f[2]   ...
transformed

array

Software remapping: 

f[t[i]]  f[remap[t[i]]]  f[t’[i]]

f[i]  f[remap[i]]  f[i]
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Dynamic Optimizations

• Locality grouping & Dynamic packing
• run-time versions of computation fusion & data grouping
• linear time and space cost

• Compiler support
• analyze data indirections
• find all optimization candidates
• use run-time maps to guarantee correctness
• remove unnecessary remappings

• pointer update
• array alignment

• The first set of compiler-generated run-time transformations

Chen Ding, DragonStar lecture, ICT 2008
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packing Directive: apply packing using interactions

for each pair (i,j) in interactions
   compute_force( force[i], force[j] )
end for

for each object i
   update_location( location[i], force[i] )
end for
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apply_packing(interactions[*],force[*],inter_map[*])
for each pair (i,j) in interactions
   compute_force( force[inter_map[i]], 
                  force[inter_map[j]] )
end for

for each object i
   update_location(location[i],force[inter_map[i]])
end for

indirections

Chen Ding, DragonStar lecture, ICT 2008
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apply_packing(interactions[*],force[*],
              inter_map[*], update_map[*])
update_indirection_array(interactions[*],
                         update_map[*])
transform_data_array(location[*],update_map[*])

for each pair (i,j) in interactions
   compute_force( force[i], force[j] )
end for

for each object i
   update_location( location[i], force[i] )
end for
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Indirection Analysis

pointer 4

data 1data 5

alignmentindirect-
access

data 2 data 4

pointer 2

pointer 5
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DoD/Magi

• A real application from DoD Philips Lab
• particle hydrodynamics
• almost 10,000 lines of code
• user supplied input of 28K particles
• 22 arrays in major phases, split into 26

• Optimizations
• grouped into 6 arrays
• inserted 1114 indirections to guarantee correctness
• optimization reorganized 19 more arrays
• removed 379 indirections in loops
• reorganized 45 arrays 4 times during execution

Chen Ding, DragonStar lecture, ICT 2008
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original data regrouping base packing
opt packing
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Comparison with SGI Compiler

L2 misses TLB misses Speedupprograms
NoOpt SGI New NoOpt SGI New over SGI

Moldyn 1.00 0.99 0.19 1.00 0.77 0.10 3.02

Mesh 1.00 1.34 0.39 1.00 0.57 0.57 1.20

Magi 1.00 1.25 0.76 1.00 1.00 0.36 1.47

NAS/CG 1.00 0.95 0.15 1.00 0.97 0.03 4.36

Average 1.00 1.13 0.37 1.00 0.83 0.27 2.51
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Dynamic Locality Improvement

• Other studies
• inspector-executor [Das+ ASM’92]

• run-time dependence testing [Pugh&Wonnacott Maryland’94, 
Rauchwerger+ ICS’95, Strout+ PLDI’03]

• graph partitioning [Al-Furaih&Ranka IPDPS’98, Han&Tseng LCR’00]

• bucket partitioning [Mitchell+ PACT’99]

• space-filling curve ordering [Mellor-Crummey+ ICS’99]

• sparse tiling [Strout+ PLDI’03]

• Mellor-Crummey et al. and Strout et al. found consecutive 
data packing most effective
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Improving the Computational Intensity of
Unstructured Mesh Applications

Brian S. White, Sally A. McKee
Computer Systems Lab
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Bronis R. de Supinski, Brian Miller,
Daniel Quinlan, Martin Schulz
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ABSTRACT

Although unstructured mesh algorithms are a popular means
of solving problems across a broad range of disciplines—from
texture mapping to computational fluid dynamics—they are
often dominated not by computation, but by mesh overhead.
Our study of an object-oriented mesh-based benchmark re-
veals that 72% of its execution time is spent on mesh-related
operations, such as iterating over faces or chasing pointers.
We report a series of optimizations—some traditional, some
novel—that dramatically improve the benchmark’s compu-
tational intensity—the ratio of floating point operations to
memory accesses. This improvement is attributable to an
eight-fold reduction in memory operations and results in a
4.7× speedup in execution time.

Our work demonstrates that common subexpression elim-
ination and code motion are important optimizations for
mesh-based codes. However, conservative analysis prevents
their application. We discuss these barriers to analysis and
argue that an understanding of mesh semantics complements
more traditional analyses, such as pointer alias analysis, and
certifies the correctness of these optimizations. Our identifi-
cation of overheads in mesh-based codes, optimizations that
address them, and limitations of current compiler analyses
are required for our eventual goal of automating these opti-
mizations in a semantics-aware compiler.

1. INTRODUCTION

The flexibility of unstructured meshes, or unstructured
grids, is reflected in their application across a wide cross-
section of important scientific challenges: meshes facilitate
the study of gravitational collapse to black holes and are used
to simulate blood flowing through the heart. Even within a
narrow domain, mesh solvers can be parameterized accord-
ing to equation (e.g., Navier-Stokes or Euler); assumptions
(e.g., the ideal gas law or van der Waals equation of state);
and fluid (e.g., water or a monatomic gas).

Leveraging this flexibility to provide a problem-
independent framework that can be reused across physical

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
ICS’05 June 20-22, Boston, MA, USA.
Copyright 2005 ACM 1-59593-167-8/06/2005 ...$5.00.

simulations requires a code base that is generic, modular,
and extensible to the specifics of the domain in terms of
mesh structure, boundary conditions, operators, and physical
quantities represented as fields. Any general framework in-
tended to encompass such an extensive application space will
be large: even the simplified KOLAH mesh framework, studied
in this work as a representative of libraries used in Lawrence
Livermore National Laboratory’s more extensive production
codes, has 282 files and 68,000 lines of code. These consid-
erations are best addressed by an object-oriented design and
implementation.

With their heavy use of indirect addressing and pointer
chasing, unstructured grid codes are highly sensitive to mem-
ory performance [10]. Unlike structured grids, which use
a regular spatial decomposition that is easily traversed by
a stencil, unstructured grids employ an irregular mesh to
cover a volume using geometric mesh entities, including faces,
edges, and nodes. Object-oriented implementations exacer-
bate poor memory performance through the additional in-
direction induced by object-based indexing of fields, such as
momentum and pressure: where an imperative approach uses
a for loop with an integer induction variable to access an ar-
ray, these codes dereference mesh entity iterators and then
use the entity to index into field abstractions.

The resulting mesh overhead is significant. A hydro-
dynamic simulation within the KOLAH framework executes
nearly one and a half branches per floating point instruc-
tions and nine times as many loads. In contrast, mesh, an
unstructured grid benchmark written in C and popular in the
literature [7], has a relatively high computational intensity:
nearly one floating point instruction per memory access and
100 floating point instructions per branch.

Table 1 shows the execution-time distribution of a bench-
mark built within the KOLAH framework. We group
statements into three categories—mesh, memory, and
computation—decomposing compound statements as re-
quired. Computation statements are arithmetic operations
on local variables. Memory statements access operands for
computation statements or write their results to memory.
Mesh statements represent mesh-related overhead: iteration,
iterator dereferencing, and pointer chasing. The table shows
that mesh overhead dominates KOLAH’s execution time: 72%
of time is dedicated to mesh-related operations, while com-
putation consumes only 13%.

This significant overhead may seem surprising given the ef-
ficiency of STL and similar libraries that are the foundations
of KOLAH. Though the implementation of underlying abstrac-
tions is highly tuned, optimizing across library invocations
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Unstructured Mesh

• Library consisting 282 files and 68K lines of C++
• published in International Conf. on Supercomputing ‘05

• Data placement improves prefetching
• a mesh object larger than a cache block
• consecutive packing [DK PLDI’99] improves useful 

prefetches by 30% and reduce load latency from 3.2 to 
2.8 cycles

• Not all misses are equal
• iteration blocking reduces memory loads by 20% but 

interferes with hardware prefetching
• load latency rose to 4.4 cycles
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Xipeng Shen

Streamlining GPU Computations On the Fly

The College of William and Mary

Graphic Processing Units (GPU)

3

a SIMD group
(warp)

Graphic Processing Unit (GPU)

Each thread: a little work, a few data accesses.
But hundreds of thousands of them.



(from NVIDIA)

Great for 
regular 

computation!

Dynamic Irregularities

5

A[ ]:

P[ ] = { 0, 5, 1, 7, 4, 3, 6, 2}

... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   

 Degrade throughput by up to (warp size - 1) times.
     (warp size = 32 in modern GPUs)

memory

2 4 10 0 6 0 0A[ ]:

tid:    0   1  2   3  4   5   6   7   
if (A[tid]) {...}

control flow (thread divergence)

for (i=0;i<A[tid]; i++) {...}{

a mem seg.

P[ ] = { 0, 1, 2, 3, 4, 5, 6, 7}

Performance Impact
• Applications: Dynamic programming, fluid simulation, 

image reconstruction, data mining, ...

6

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap

3.6

1.8

2.75
2.51

1.51.46

5.27

Potential Speedup
Host: Xeon 5540.      

Device:  Tesla 1060. • Most sw solutions on Static Irregularities 
❖ [Baskaran+, ICS’08], [Lee+, PPoPP’09],[Yang+, PLDI’10], etc.

• Dynamic irregularity are more challenging

❖ Remain unknown until runtime  (e.g., A[P[tid]])

7

Prior Studies

Overview of this Work

8

• Analytic findings on properties of dyn. irreg. removal

• A software solution: G-Streamline library
❖ No profiling or hw ext.
❖ Transparent removal on the fly
❖ Jeopardize no basic efficiency
❖ Treat both types of irreg. holistically

9

Transformations

data 
reorder.

job 
swap.

hybrid

data reloc. ref. redirect.

Basic Insight: 
Both mem & control irreg. stem 

from inferior thread-data mappings.

Two basic mechanisms:
• data relocation
• reference redirection
• A[p[tid]] -> A[q[tid]]

Compose three 
transformations.

A unified treatment.



Trans-1: Data Reordering

10

P[ ] = {0,5,2,3,2,3,7,6}

... = A[P[tid]];

A[ ]:

tid:    0   1  2   3  4   5   6   7   

A’[ ]:

tid:    0   1  2   3  4   5   6   7   

<relocation>

original

... = A’[Q[tid]];

Q[ ] = {0,1,2,3,2,3,6,7}

<redirection>

transformed

tid: thread ID;                 : a thread;                 : data access;               : data swapping

maintain mapping 
between threads 

& data values

(for mem irreg only)
Trans-2: Job Swapping (for mem)

• Job = operations + data elements accessed

11

newtid = Q[tid];
  . . .
... = A[P[newtid]];

Q[ ] = {0,4,2,3,1,5,6,7}

<redirection>

transformed

A[ ]:
... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   

original

P[ ] = {0,5,2,3,2,3,7,6}

A[ ]:

Both reduce 
1 mem trans.

1 more than 
the optimal....

tid:    0   1  2   3  4   5   6   7   

Trans-2: Job Swapping (for control)

12

D[ ] = {0,1,4,3,2,5,6,7}

newtid = D[tid];
if (B[newtid]) {...}

<redirection>

transformed

2 4 10 0 6 0 0B[ ]:

if (B[tid]) {...}

original

tid:    0   1  2   3  4   5   6   7   

tid:    0   1  2   3  4   5   6   7   

2 4 10 0 6 0 0B[ ]:

Mem ref. pattern changes.
Solution: A follow-up data reordering.

method 1

Trans-2: Job Swapping (for control)

13

if (B’[tid]) {...}

transformed

if (B[tid]) {...}

original

method 2 2 4 10 0 6 0 0B[ ]:

tid:    0   1  2   3  4   5   6   7   

<relocation>

2 4 10 0 600B’[ ]:

tid:    0   1  2   3  4   5   6   7   

newtid = Q[tid];
if (B’[tid]-newtid) {...}

Q[ ] = {0,1,4,3,2,5,6,7}

if (B[tid]-tid) {...}

Job integrity

Trans-3: Hybrid

• Job swap     + 
Data reorder

• Data reorder +     
Job swap

14

A’[ ]:
... = A’[Q[tid]];

Q[ ] = {4,5,2,3,2,3,7,6}

<redirection>
<relocation>

A[ ]:

P[ ] = {0,5,2,3,2,3,7,6}

... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   original

tid:    0   1  2   3  4   5   6   7   

A’[ ]:

data
reordering

job
swapping

transformed

ntid = R[tid];
... = A’[Q[ntid]];

R[ ] = {4,5,2,3,0,1,6,7}

<redirection>

tid:    0   1  2   3  4   5   6   7   Optimal 
achieved.

Single opt 
reduces 1 

mem trans.

1 more than 
optimal.

Comparisons
• Irreg. Mem

• Diff. applicability of reordering and job swapping 

• Hybrid: largest potential

• Irreg. Control

• Job swapping by redirection

• lower overhead, but with side effects

• Job swapping by relocation

• higher overhead, no side effects

15
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Efficiency control
Adaptive CPU-GPU pipelining

Three-level efficiency-driven 
adaptation

overhead hiding &
minimization

guidance for
transformations

Transformations

data reloc. ref. redirect.

data 
reorder.

job 
swap.

hybrid

Optimality & approximation

Complexity analysis

Approximating optimal layouts 
and mappings

• NP-Complete

• Layout: 3D matching

• Mapping: Partition Problem

• Approx.

• Duplication/padding

• Sharing

How to determine 
optimal layouts / thread-data mapping?

G-Streamline

[ASPLOS’11, PPOPP’13]
0

1

2

3

4

5

6

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap
0.270.30.380.45

1.1
1.429

2.49

3.6

1.8
1.6

2.51

1.51.46

5.27

Sp
ee
du
p

After Transformation

17

❖ Benchmark Suites: Rodinia, Tesla Bio, and etc. 
❖ Host: Xeon 5540.      Device: Tesla 1060

Without Overhead
With Overhead

How to minimize or hide overhead?

18

Efficiency control

Adaptive CPU-GPU pipelining

Three-level efficiency-driven 
adaptation

overhead hiding &
minimization

• CPU-GPU pipelining

• Kernel splitting 

• Partial transf. and overlap.

• Two-level adaptive control

❖ Automatically balance benefits and overhead

❖ Transparent, on-the-fly

❖ No perf. degradation

❖ Adaptive to pattern changes

❖ Resilient to dependence

G-Streamline CPU-GPU Pipelining

19

• Utilize Idle CPU Time
❖ Transform on CPU while computing on GPU
❖ Automatic shutdown when necessary

GPU

1

GPU

2

GPU

63

GPU

4

GPU

5

GPU

for i=1:n

gpu_kernel(i);
end

CPU

MEM

GPU

cpu_transform( )

copy_to_gpu

gpu_kernel

MEMCPU

CPU MEM

CPU MEM

CPU MEM

CPU MEM

async_transform (i+2);
async_copy (i+2);

20

Dependence or No Loop

for i=1:iterations
   ... 
   cuda_compute_flux(...); // write A, read B
   cuda_time_step(...); // read A, write B
   ...
end

CFD 
(grid Euler solver)

main (){
   ... ...
   gpu_fix_errors1();
   ... ...
}

CUDA-EC 
(DNA error correction)

Kernel Splitting

21

gpuKernel_org<<<...>>>(pData,...);

gpuKernel_org_sub<<<...>>>(pData,0, (1-r)*len, ...);

gpuKernel_opt_sub<<<...>>>(pData,(1-r)*len+1, len, ...);

split

• Also enables partial transformation for 
overhead control

pipeline

opt. ratio



Adaptive Efficiency Control

22

• Pipelining

• CPU & GPU with kernel-splitting

• Used for both transformation & data copying

• Adaptively determine the best opt. ratio

• Runtime profiling

• Adaptive feedback-driven control

• Automatically shutting down optimizations when 
not beneficial

Final Speedup

0

1

2

3

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap

3.6

1.8

2.75

2.51

1.51.46

5.27

2.08

1.11.08

1.8

1.2

1.4

2.5

0.270.3
0.380.45

1.1

1.4

2.5

Sp
ee
du
p
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Basic transformation
w/ efficiency control
full potential
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• Removing dyn. irreg. is critical & feasible for 
GPU.

• Nature:                      thread-to-data mapping

• Unified treatment:           mem. & control flow

• Transform:    data reordering & job swapping

• Efficiency:                       pipeline & adaptivity

• Tool:                                           G-streamline

Takeaways

Improving Memory Hierarchy 
Performance For Irregular 

Applications
John Mellor-Crummey*    David Whalley*    

Ken Kennedy*

*Dept. of Computer Science              
Florida State University

*Dept. of Computer Science   
Rice University

First published in International Conference of Supercomputing, 2000 and 
then in International Jouranl of Parallel Programming, 2001
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Exploiting Deep Memory Hierarchies

• Principal strategies
— loop transformations to improve data reuse

– register and cache blocking, loop fusion

— data prefetching

• Limitations
— fail to deal with irregular codes

– loop transformations depend on predictable subscripts

– prefetching can help, but at higher overhead

— primarily focused on latency reduction

– but bandwidth is critical on modern machines
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Irregular Codes
Indirect references have poor temporal and spatial locality

— poor spatial locality ! low utilization of bandwidth consumed

— poor temporal locality ! more bandwidth needed

Memory

L1 Cache 32 Bytes
25 % Utilization

L2 Cache 128 Bytes6.25 % Utilization

Register 8 Bytes
100 % Utilization
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Space-Filling Curves

• Continuous, non-smooth curves through n-D space

•Mapping between points in space and those along the curve

• Recursive structure preserves locality

Fifth-order Hilbert curve in 2 dimensions

Chen Ding, DragonStar lecture, ICT 2008 111

Space-Filling Curve Data Reordering

•  Points nearby in space are nearby (on average) on the curve

−   ordering data along the curve co-locates neighborhoods
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Effects of Multi-Level Blocking

10K 
L1 misses

1M 
L1 misses

100K 
L1 misses

L1 miss patterns for Moldyn using dynamic multi-level blocking
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Moldyn Results

0

0.3

0.6

0.9

1.2

1.5

L1 Misses L2 Misses TLB Misses Cycles

FD
HD
HC
BC
FD + HC
HD + HC
HD + BC

FD = first touch data order  HD = Hilbert data order
HC = Hilbert computation order BC = Blocked 

Computation
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MAGI Results

0.0833

0.1694

0.2556

0.3417

0.4278

0.5139

0.6000

L1 Misses L2 Misses TLB Misses Cycles

FD + FC
HD + HC
HD/FD + HC/FC

FD = first touch data order  HD = Hilbert data order
FC = First-touch computation  HC = Hilbert 

Computation



Chen Ding, DragonStar lecture, ICT 2008 115

Difficulty with Multi-Level Blocking

• Must choose a blocking parameter for each MH level

• appropriate blocking parameter dependent on 
• volume and number of arrays referenced in core 

loop
• cache size
• cache associativity

• A way around the dilemma

• recursive blocking
• block for all possible memory hierarchy sizes 

simultaneously
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Conclusions

•Matching data and computation order improves performance 
— data reordering: improves spatial locality

— computation reordering: boosts spatial and temporal reuse 

— big improvements with coordinated approaches

– factor of 4 reduction in cycles for Moldyn 

– factor of 2.3 reduction in cycles for MAGI

• Implications for other codes
— space-filling curve reorderings for “neighborhood-based” computations

— dynamic multi-level blocking: regularize memory hierarchy use of any 
explicitly-specified computation order

The Hardness of Cache 
Conscious Data Placement

Erez Petrank 
Technion – Israel Institute of Technology

Joint work with Dror Rawitz  (Technion)

ACM Conference on Principles of Programming Languages 

Portland, Oregon

January 16, 2002
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Computers today
Memory speed falls behind processor speed, 
and gap still increasing.

Solution: use a fast cache between memory 
and CPU.

Implication: program cache behavior has a 
significant impact on program efficiency.

CacheMem CPU
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How do we place data (or 
code) optimally? 
Step 1:  Discover future accesses to data. 
Step 2:  Find placement of data that 
minimizes the cache misses. 

Step 3:  Rearranged the data in memory. 
Step 4:  Run program.

  Some “minor” problems: 
  In Step 1: We cannot tell the future
  In Step 2: We don’t know how to do that
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Step 1:  Discover future 
accesses to data
Static analysis. 
Profiling.  
Runtime monitoring. 

This work:
Even if future accesses are known exactly,
Step 2 (placing data optimally) is extremely 

difficult. 
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Our results

Can we (efficiently) find the optimal 
placement? 

No!      Unless, P=NP. 
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Our results
Can we (efficiently) find an “almost” optimal 
placement?  
Almost = # misses is twice the optimum 

No!      Unless, P=NP. 

Can we (eff.) find “fairly” optimal placement?  
Fairly = # misses is 100 times the optimum 

No!      Unless, P=NP. 
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Our results
Can we (eff.) find a “reasonable” placement?  
reasonable = # misses [ log(n) the optimum 

No!      Unless, P=NP. 

Can we (eff.) find an “acceptable” placement?  
Acceptable = # misses is n0.99 times the optimum 

No!      Unless, P=NP. 
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The Main Theorem

Let e be any real number, 0< e <1. 
If there is a polynomial time algorithm that 
finds a placement which is within a factor of 
n(1- e) from the optimum, then P=NP.

(Theorem holds for caches with > 2 blocks)
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An Open Question:
Can we classify programs for which 

the problem becomes simpler? 

An extended version of the paper: 
http://www.cs.technion.ac.il/~erez/

publications.html
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Reference Affinity



• Memory hierarchy is organized as blocks

• cache blocks, cache, VM pages, disk tracks
• 64-byte, 128-byte, 4KB, ...

• block utilization ⇒ cache/memory utilization

• Basic problem

• what data are being used together?
• Reference affinity

• a group of data have reference affinity if they are always 
accessed close together

• the term was coined by late Ken Kennedy

Reference Affinity

127

• Data are accessed together if

• their accesses are linked by a short distance
• Linked path & link length
 A linked path from xi to yj (x to y) with link length k iff.

          ∃ m accesses x1, x2, x3,  …, xm s.t.
1) dis(x,x1) ≤ k ∩ dis(x1,x2) ≤ k ∩ … ∩ dis(xm,y) ≤ k

2) x , x1, x2, … , xm, y are all different data elements

The Concept of Links

w   x     w    x    u    y   z   … 
w1   x1   w2    x2   u1   y1   z1  …

A linked path from 
w1 (to x2) to y1 

with link length 2.  
w, x, y are distinct 

elements.1 2
128
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Properties

• Consistency
• A unique partition of program data
• a,b ∈G and b,c ∈G ⇒ a,c ∈G

• Hierarchical structure
• shorter link length ⇒ finer partition
• k = ∞ ⇒ all data are in one group
• k = 0 ⇒ each element is in one group
• reducing k ⇒ sharpening the focus

• Bounded volume distance
• any element of G is accessed, all other elements will be 

accessed within |G|*k elements
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 w x w x u y z  … z y z y v x w w x … 

An Affinity Hierarchy

• k = ∞, affinity group {u, v, w, x, y, z}

• k = 3, affinity group {w, x, y, z}, {u}, and {v}

• k = 1, affinity groups {w, x}, {y, z}, {u}, and {v}

• k=0, affinity groups {w}, {x}, {y}, {z}, {u}, and {v}

• Data of the same group may be accessed in a 
different order with a different frequency

• Affinity holds for the entire trace
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• Source-level data
• arrays and structures account for data

• The layout of object fields

• array allocation in Fortran orstructure allocation in C
• neither is sensitive to the access pattern

• Array regrouping [Ding&Kennedy LCPC’99 JPDC’04]

• compiler analysis
• Structure splitting [Chilimbi+ PLDI’99 ’01, Rabbah&Palem 

TECS’03, Zhong+ PLDI’04]

• pointer and array based implementation
• safety, nested structures

Data Regrouping/Splitting

• Number of choices
• 7 fields, 210 layouts
• Swim has 14 arrays

• 6 million possible layouts

• Different platforms/compilers
• Optimal data layout unreachable

• Petrank & Rawitz, POPL 2001
• Affinity-based layout 

• ties or wins 97% cases against 7 methods
• never loses more than 1% or 0.004 second
• larger structures ⇒ larger improvements

Structure Splitting/Array Regrouping

132
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Evaluation

• 8 Data layout schemes compared

• Original
• K-distance with k = 256, 64
• K%-distance with k = 1%, 0.1%
• X-means [Pelleg & Moore, ICML’00]
• Frequency-based [Chilimbi, PLDI’99]
• Static analysis [Ding & Kennedy, LCPC’99]
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Affinity Relations Among Tree Data

• Set k to be 256

• data are used within 2KB of data access
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Machines Programs Orig X-means k%-dist. 
k=1%

k%-dist. 
k=0.1%

k-dist. 
k=256

Intel 
Pentium 4

Swim 52.3 39.3 47.0 53.2 37.9Intel 
Pentium 4

Tomcatv 45.4 37.7 36.4 36.4 36.4

Intel 
Pentium 4

TSP 17.8 16.9 17.0 14.9 14.9

IBM 
Power 4

Swim 25.3 26.5 27.9 26.0 23.5IBM 
Power 4

Tomcatv 21.7 20.6 20.7 20.7 20.7

IBM 
Power 4

TSP 41.7 41.2 40.5 40.4 40.3

Array Regrouping / Structure Splitting 

1.12X avg

1.05X avg

• larger structures ⇒ larger improvements
• ties or wins 97% cases against 8 methods for 9 

programs on two machines
• never loses more than 1% or 0.004 seconds
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Dendrogram for Swim
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Reference Affinity

• A new theoretical model [Zhang+ POPL’06]
• theoretical properties
• recursive data placement, sampling, code layout
• the first trace-based hierarchical locality model

• Empirical evidence [Zhong+ PLDI’04]
• the link length is critical
• array regrouping and structure splitting
• strict affinity seems to approximate optimum

• Implementation in IBM compiler [Shen+ ICS’05]
• compiler analysis and light-weight profiling
• effective for SPEC2Kfp programs 
• trace-based models useful for compiler design

Soft-OLP: Improving Hardware Cache Performance Through Software-Controlled
Object-Level Partitioning

Qingda Lu1, Jiang Lin2, Xiaoning Ding1, Zhao Zhang2, Xiaodong Zhang1, P. Sadayappan1

1 Dept. of Computer Science and Engineering 2Dept. of Electrical and Computer Engineering
The Ohio State University Iowa State University

{luq,dingxn,zhang,saday}@cse.ohio-state.edu {linj, zzhang}@iastate.edu

Abstract—Performance degradation of memory-intensive
programs caused by the LRU policy’s inability to handle weak-
locality data accesses in the last level cache is increasingly
serious for two reasons. First, the last-level cache remains in
the CPU’s critical path, where only simple management mecha-
nisms, such as LRU, can be used, precluding some sophisticated
hardware mechanisms to address the problem. Second, the
commonly used shared cache structure of multi-core processors
has made this critical path even more performance-sensitive
due to intensive inter-thread contention for shared cache
resources. Researchers have recently made efforts to address
the problem with the LRU policy by partitioning the cache
using hardware or OS facilities guided by run-time locality
information. Such approaches often rely on special hardware
support or lack enough accuracy. In contrast, for a large
class of programs, the locality information can be accurately
predicted if access patterns are recognized through small
training runs at the data object level.

To achieve this goal, we present a system-software frame-
work referred to as Soft-OLP (Software-based Object-Level
cache Partitioning). We first collect per-object reuse dis-
tance histograms and inter-object interference histograms via
memory-trace sampling. With several low-cost training runs,
we are able to determine the locality patterns of data objects.
For the actual runs, we categorize data objects into different
locality types and partition the cache space among data objects
with a heuristic algorithm, in order to reduce cache misses
through segregation of contending objects. The object-level
cache partitioning framework has been implemented with a
modified Linux kernel, and tested on a commodity multi-core
processor. Experimental results show that in comparison with
a standard L2 cache managed by LRU, Soft-OLP significantly
reduces the execution time by reducing L2 cache misses across
inputs for a set of single- and multi-threaded programs from
the SPEC CPU2000 benchmark suite, NAS benchmarks and a
computational kernel set.

Keywords-Cache Partitioning, Software-Controlled Caching,
Reuse Distance, Page Coloring

I. INTRODUCTION

The performance gap between the processor and DRAM
has been increasing exponentially for over two decades.
With the arrival of multicore processors, this “memory
wall” problem is even more severe due to limited off-chip
memory bandwidth [1]. Reducing cache misses is a key to
achieving high performance on modern processors. In this
study, we design and implement effective software methods
to address a weakness of LRU-based hardware management
of shared last-level caches in modern processors. Most

cache designs are based on the LRU replacement policy
(its approximations in practice). While the LRU policy
offers high performance for workloads with strong data
locality, it does not identify weak-locality accesses with
long reuse distances and thus often incurs cache misses
with memory-intensive workloads due to mis-replacements
(weak-locality accesses pollute the cache by evicting strong
locality blocks). Previous studies have shown this signif-
icant problem with the LRU policy, and proposed a few
solutions. Despite their design differences, these hardware
proposals follow one of two directions: (1) Hybrid replace-
ment schemes such as [2], [3] that dynamically select from
multiple replacement policies based on runtime information,
and (2) Cache bypassing approaches [4], [5] that identify
weak-locality accesses and place them in a dedicated cache
(bypass buffer) to avoid cache pollution. These approaches
share one common limitation: they introduce both storage
overheads and latency penalties, being difficult to be adopted
by processors in practice. Instead of taking transparent
hardware solutions, some commercial designs have chosen
to partially address the problem by providing special caching
instructions such as the non-temporal store instruction on
Intel architectures [6]. However such hybrid approaches are
architecture-specific and limited to certain types of memory
accesses such as streaming writes, and it is often not feasible
for the programmer or the compiler to produce optimized
code versions across different cache configurations and
program inputs.

To address the above problem with the LRU policy, we
propose a software framework that partitions the cache at
the data object level to reduce cache misses for sequential
programs and data-sharing parallel programs. Our approach
is motivated by the following observation: many weak-
locality accesses at the whole program level may have strong
locality within one or a few data objects. A memory location
is said to have weak locality if the reuse distance (number
of distinct memory references between successive accesses
to the given location) is greater than the cache capacity.
By judiciously segregating objects that have interfering
access patterns, we can exploit strong locality within objects
in their own cache regions using the conventional LRU
policy. In this paper we focus on partitioning the last-
level cache space among large global and heap objects
for high-performance scientific applications. For a given

[Lu et al. PACT 2009]
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ASLOP: A field-access affinity-based structure data
layout optimizer
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Abstract By rearranging the data, data layout optimizations improve the utilization of a cache line between

two of its successive refills, thus reducing the total number of cache line refills and improving the performance

of a program. In this paper, we show that to enable structure data layout optimizations to be effective, two

parameters, namely intra-instance affinity and inter-instance affinity, need to be considered at the same time in

order to model the cache line utilization more accurately. We also propose a lightweight approach to measure

intra-instance affinity and inter-instance affinity to avoid complex memory trace analyses. A prototype, called

ASLOP, has been implemented in the Open64 compiler and evaluated using benchmarks from SPEC CPU 2000,

SPEC CPU 2006 and Olden benchmark suites that have extensive structure types. Our approach can achieve up

to 48.1% performance improvement over the original programs, and 11.9% over the optimized programs using

maximal reshaping, an existing approach that is known to produce close to the best results, on the two platforms

we tested.

Keywords compiler optimization, data-layout optimization, memory hierarchy, inter-instance affinity, intra-

instance affinity
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1 Introduction

Data layout optimizations have been very effective in reducing cache misses and memory bandwidth
requirement. By rearranging the data, data layout optimizations could improve the utilization of a cache
line between two of its successive refills. As the total amount of data a program accesses during its
execution is more or less fixed, improving the utilization of cache lines could thus reduce the total cache
line refills and improve the overall program performance. The objective of a data layout optimization is
to determine which data should be co-located in order to maximize the cache line utilization.

In many general-purpose application programs, a large amount of data is of the structure types. They
are usually organized in either an array form or a pointer-chasing form. Accessing these data structure
instances is a main contributor to the cache misses. The layout of these data structure instances has a
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ABSTRACT
Memory hierarchies in modern computer systems are com-
plex; often, they include multi-level caches and multiple
memory controllers on the same chip. Without careful de-
sign, programs su↵er from unnecessary data movement be-
tween caches and memory, degrading performance and in-
creasing energy consumption. Array regrouping can sig-
nificantly improve data locality by improving spatial reuse
of data and reducing cache contention. However, existing
techniques for identifying opportunities for array regroup-
ing are lacking in three ways. First, they provide inade-
quate information to guide regrouping. Second, the cost of
monitoring employed by prior tools to identify regrouping
opportunities limits the use of these methods in practice.
Third, existing metrics for quantifying the benefits of array
regrouping can lead to inappropriate transformations that
hurt performance. In this paper, we describe ArrayTool —
a lightweight profiler that guides array regrouping. Array-
Tool has three unique capabilities. First, it focuses attention
on arrays with significant access latency. Second, it identi-
fies the feasibility and quantifies the benefits of regroup-
ing arrays with lightweight array-centric profiling. Third,
it works on both shared-memory and distributed-memory
parallel programs. To illustrate the utility of ArrayTool, we
employ it to analyze three benchmarks. Using the guidance
it provides, we regroup program arrays, improving perfor-
mance from 25% to a factor of two.

Keywords
Array-centric profiling, array regrouping, data locality.

1. INTRODUCTION
Modern processors employ a hierarchy of caches to reduce

the average data access latency to memory. Usually, caches
farther from CPU have higher access latency and lower data
transfer bandwidth. To use the memory hierarchy well, one
needs to maintain good data locality in caches, avoid cache
contention, and prefetch data e↵ectively.
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for (i = 0; i < N; i++)
B[i] = A1[i] + A2[i] + ... + A

n

[i];

The original code uses independent arrays A1, A2 ... A
n

in a
loop.

for (i = 0; i < N; i++)
B[i] = Arr[i].A1 + Arr[i].A2 + ... + Arr[i].A

n

;

The optimized code regroups arrays A1, A2 ... A
n

into Arr.
Arr[i].A

m

represents A
m

[i] (1  m  n).

Figure 1: The code and data structures before and
after array regrouping.

Memory accesses that stage data into the fastest caches
and access it thoroughly before it is evicted are said to have
excellent data locality. There are two types of data locality:
spatial and temporal. An access pattern exploits spatial lo-
cality when it accesses a memory location and then accesses
nearby locations soon afterward. Typically, spatial locality
goes unexploited when accessing data with a large stride
or indirection. An access pattern exhibits temporal locality
when it accesses a memory location multiple times.
Access patterns with poor spatial locality cause useless

data to be loaded into cache. Such access patterns squan-
der much of a processors’s memory bandwidth loading val-
ues from main memory that will never be used before being
evicted. Access patterns are prefetch friendly if they are
regular or can be handled easily by software or hardware
prefetchers. For example, hardware stream prefetchers only
manage a limited number of streams.
Array regrouping is a technique that can enhance data

spatial locality [4], avoid poor memory bandwidth usage [5],
and improve data prefetching [21]. Figure 1 illustrates a
basic array regrouping transformation. Before regrouping,
each iteration may load as many as n cache lines into cache
as it reads an element of each of n distinct arrays. If n
is large, each iteration accesses many cache lines that may
conflict with one another and cause conflict misses. After
regrouping, all words are compressed into one or a few con-
tiguous cache lines, which improves spatial locality and re-
duces cache contention. Moreover, compacting accesses to a
few cache lines in each iteration can also reduce bandwidth
requests. Finally, the regrouping reduces the number of
prefetch streams from n to one. If n is larger than the num-
ber of streams that a prefetcher can handle, array regrouping
can make the access pattern more prefetch friendly [21].
Array regrouping has been studied for over a decade [4,

5, 11, 23, 28]. To the best of our knowledge, all existing
methods compute a metric known as array a�nity to guide
array regrouping. To identify regrouping opportunities, one

distributed memory parallelism. For threaded programs, we
need to evaluate an array’s access pattern across threads.
As ArrayTool already computes the address and time inter-
vals for array accesses in each thread, ArrayTool plots these
intervals according to thread IDs to show access patterns
across threads. Only arrays with the same access pattern
across threads are worth regrouping.
Moreover, distributed memory parallel programs allocate

arrays in di↵erent address spaces, which complicates iden-
tification of array regrouping opportunities. As far as we
know, there is no prior work that considers array regroup-
ing problems in distributed memory programs. We describe
the di�culties of analyzing such programs and how Array-
Tool addresses them. First, the number of arrays allocated
increases according to the program scale. To enable scalable
analysis, we aggregate the analysis of arrays allocated in dif-
ferent address spaces if they have the same name (for static
arrays) or allocation call path (for dynamic arrays). Second,
we add another condition to identify regrouping feasibility.
If two arrays are allocated in di↵erent address space (i.e.,
in di↵erent MPI processes), they cannot be regrouped. To
identify this case, we record the process ID that allocates
arrays. Each array has a vector to record these process IDs.
Only two arrays with the same vector can be regrouped.
Third, accesses to an array can be dispersed in di↵erent
MPI processes. ArrayTool aggregates all of these accesses
to construct the simplified mixed CCT across processes for
R

cw

calculation. Finally, like computing access patterns
across threads, ArrayTool computes access patterns across
processes by plotting address and time intervals collected
from all processes. Two arrays with the same patterns are
suitable for regrouping.
Finally, for hybrid programming models such as

MPI+threads, ArrayTool combines the analysis methods for
shared and distributed memory programs. The only unique
challenge for hybrid programs is large scalability. There
can be thousands to millions of processes/threads used in a
distributed-memory system. Showing all address and time
intervals for access pattern analysis from such large scale ex-
ecution is impractical. To solve this problem, ArrayTool can
sample a fraction of processes/threads for analysis. In the
next section, we will show how ArrayTool e↵ectively identi-
fies array regrouping opportunities.

5. CASE STUDIES
Our test platform is a single node server with four AMD

Magny-Cours processors, known as a non-uniform memory
access (NUMA) system. This machine has 48 cores and 128
GB memory. On this platform, we used AMD’s instruction-
based sampling as the foundation for address sampling by
ArrayTool’s profiler. To demonstrate ArrayTool’s utility, we
studied the following three memory-bound benchmarks for
our case studies. We ran these benchmarks using either a
shared or distributed memory programming model.

• LULESH [13], an application benchmark developed
by Lawrence Livermore National Laboratory (LLNL),
is an Arbitrary Lagrangian Eulerian code that solves
the Sedov blast wave problem for one material in 3D.
In this paper, we study a highly-tuned LULESH im-
plementation written in C++ with OpenMP. We run
LULESH with 48 threads on a 90 ⇥ 90 ⇥ 90 three-
dimensional mesh.

app native execution time ArrayTool’s overhead
LULESH 296s +22%

IRS 73s +14%
SRAD 34s +17.6%

Table 1: ArrayTool’s measurement overhead for the
three benchmarks.

• IRS, a LLNL Sequoia benchmark [14], is an implicit
radiation solver. It solves a di↵usion equation on a
three-dimensional, block structured mesh. IRS is im-
portant for LLNL because the style of f or loops and
array indexing used in IRS is very representative of
the coding style that is used widely in production ap-
plications at LLNL. IRS, with careful optimization by
LLNL’s code team, is written in C and parallelized
with hybrid MPI and OpenMP. We run IRS with 4
MPI processes and 12 OpenMP threads in each pro-
cess. The input for IRS is a 60⇥60⇥60 3-dimensional
matrix.

• SRAD (Spechle Reducing Anisotropic Di↵usion) [26] ,
one of Rodinia benchmarks [2], is a di↵usion method
for ultrasonic and radar imaging applications based
on partial di↵erential equations. It is parallelized with
OpenMP. In the experiment, we ran it with 48 threads.
The input size is a 10240 ⇥ 10240 domain with 50 it-
erations.

These benchmarks have been already optimized for
NUMA architectures . We use numactl [12] to balance the
memory allocation across NUMA domains to avoid band-
width contention. We first evaluate the overhead generated
by ArrayTool’s profiler. We profile all of these benchmarks
with a sampling period of 64K instructions. To reduce the
overhead, we only sample memory accesses, ignoring arith-
metic and other instructions. We use gcc to compile all of
the three benchmarks with -g -O2 options. Table 1 shows
ArrayTool’s profiling overhead, which is less than 18% on
average. Because ArrayTool’s overhead is very small, one
can apply it for large-scale production code executions. In
the following sections, we first study each benchmark indi-
vidually with ArrayTool and then summarize our analysis
to understand why array regrouping leads to better perfor-
mance.

5.1 LULESH
Figure 5 shows ArrayTool’s GUI that identifies significant

arrays as regrouping candidates. The GUI consists of three
panes. The top pane shows the source code of the monitored
program; the bottom left pane shows the array-centric pro-
filing results that list either array names or array allocation
sites, which can be mapped to the source code; the bottom
right pane shows the metrics that are associated with each
array. In our experiment, we use memory access latency (in
CPU cycles) to measure the significance of arrays. We only
highlight six arrays with their names on the left of their allo-
cation sites, which account for more than 4% of total latency
each. Besides these six arrays, there are also other arrays
can be regrouped for better performance. However, these
six arrays have the highest priority for regrouping.
From the top pane of Figure 5, we can see these six arrays

have the same dimension and size. They are all allocated
at the beginning of the program and freed at the end. Both

Figure 5: ArrayTool’s profiling results that identify
significant arrays in LULESH. Array names are on
the left of their allocation sites.
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Figure 6: The access pattern of array z. The hor-
izontal axis is the threads. The vertical axis shows
a variable’s address range in [0, 1] accessed by each
thread: triangles are upper bounds and circles are
lower bounds. This regular access pattern shows
that each thread works on a subsection of array z in
an ascending order, except three outliers. The oc-
currence of outliers is because of the thread migra-
tion. All other significant arrays used in LULESH
have a similar access pattern as z’s.

time and space overlap analysis shows these arrays are feasi-
ble for regrouping. ArrayTool first analyzes the access pat-
terns of these six arrays. Figure 6 shows that all these arrays
have a common access patterns across threads. This regular
pattern in the figure means all loops access these arrays in
an ascending order. Therefore, access pattern analysis does
not show any objection to regrouping these arrays.

Next, we examine the simplified mixed CCT of these six
arrays. We only show the analysis of three representative

Figure 7: Simplified mixed CCTs for array z, y, and
zd. This figure shows the abstraction of CCT struc-
tures from ArrayTool’s outputs: omp_region denotes
a OpenMP parallel region on the call path; loop with
a number denotes the loop detected by ArrayTool
at that line number; the percentage on the arrow
denotes the percentage of access latency to the vari-
able in that loop over the aggregate memory access
latency in the whole program.

R
cw

x y z xd yd zd

x 1 1 1 0.9 0.9 0.9
y - 1 1 0.9 0.9 0.9
z - - 1 0.9 0.9 0.9
xd - - - 1 1 1
yd - - - - 1 1
zd - - - - - 1

Table 2: ArrayTool computes R
cw

between any two
of the examined six arrays. An array has R

cw

as 1
with itself.

arrays: z, y, and zd. Figure 7 shows these arrays’ simplified
mixed CCTs. From Figure 7, we can see that both array
z and y’s simplified mixed CCTs consist of four loops. Ac-
cording to our a�nity calculation equation, z and y have an
a�nity R

cw

of 1 because their paths are all common, regard-
less the di↵erence of weights of access latency in each loop.
Therefore, y and z should be regrouped without any con-
sideration. On the other hand, zd has a di↵erent simplified
mixed CCT from z’s. Based on Equation 2, we compute the
a�nity R

cw

between z and zd as 0.9. It means that although
z and zd are not always accessed together, loops in which
they are accessed separately are insignificant. Therefore, z
and zd should be regrouped.
Table 2 shows R

cw

computed between any two of these
six arrays with similar ArrayTool’s analysis. There are two
cluster of arrays with R

cw

of 1: (1) x, y, z, and (2) xd, yd, zd.
A�nities between arrays of these two clusters are around 0.9,
which is high enough to deem all six arrays as one cluster.
Consequently, ArrayTool gives the decision that x, y, z, xd,
yd, and zd should be regrouped. Regrouping them leads to
a speedup of 1.16⇥ for the whole LULESH program.
Besides these six arrays that ArrayTool already examined,

ArrayTool also identifies another group of nine arrays used
in LULESH for regrouping. Each of these nine arrays ac-
counts for more than 1% of total memory access latency.
Regrouping all of these 15 arrays into two groups suggested
by ArrayTool yields a 1.25⇥ speedup for the whole LULESH
program.
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Abstract—Code layout optimization seeks to reorganize the in-
structions of a program to better utilize the cache. On multicore,
parallel executions improve the throughput but may significantly
increase the cache contention, because the co-run programs share
the cache and in the case of hyper-threading, the instruction
cache.

In this paper, we extend the reference affinity model for use in
whole-program code layout optimization. We also implement the
temporal relation graph (TRG) model used in prior work for
comparison. For code reorganization, we have developed both
function reordering and inter-procedural basic-block reordering.
We implement the two models and the two transformations in the
LLVM compiler. Experimental results on a set of benchmarks
show frequently 20% to 50% reduction in instruction cache
misses. By better utilizing the shared cache, the new techniques
magnify the throughput improvement of hyper-threading by 8%.

Keywords-Code layout optimization; Multicore; Cache sharing

I. INTRODUCTION

As multi-core processors become commonplace and cloud
computing gains acceptance, more applications are run sharing
the same cache hierarchy. Managing cache sharing is not
just for achieving good performance, but also for ensuring
stable performance in a dynamic environment; and not just
for parallel programs but also for sequential programs co-run
with each other.

Program optimization for shared cache is an important prob-
lem. In this paper, we explore the subject by examining the
effect of traditional cache optimization for sequential code co-
running in shared cache. There are two goals when optimizing
a program for shared cache, defined below informally using
the terms from existing work.

• Defensiveness: making a program more robust against
peer interference [2].

• Politeness: making itself less interfering to others [10],
also called niceness [26].

Traditional cache optimization reduces the reuse distance of
data accesses. The first question is whether it also improves
defensiveness and politeness (and what precisely do these
terms mean). We will address this question in Section II-A.

Next is the choice of cache optimization. We use code layout
optimization. Given a program with F functions, there are F!

possible layouts. The goal is to find the one with the best
cache performance.

Programs share the instruction cache if they run to-
gether using simultaneous multi-threading (SMT). Most high-
performance processors today use SMT to turn a single phys-
ical core into multiple logical cores. The first implementation
in Intel Xeon showed that it adds less than 5% to the chip size
and maximum power requirement and provides gains of up to
30% in performance [19]. IBM machines have 4 SMT threads
on a Power 7 core and will have 8 threads on Power 8. An
extensive study on sequential, parallel and managed workloads
found that SMT “delivers substantial energy savings” [7].

In an experiment which we will describe in more detail
later, we found that 9 out of 29 SPEC CPU 2006 programs
have non-trivial miss ratios in the instruction cache. The next
table shows the average miss ratio in solo execution and in
hyper-threading co-run with two different peers:

avg. miss ratio increase over solo

solo 1.5% —
co-run 1 2.5% 67%
co-run 2 3.8% 153%

We see that 30% of the benchmark programs will see signif-
icantly higher contention in shared instruction cache, which
makes it a good target for code layout optimization.

A useful concept is reference affinity. It finds data or code
that are often used together in time and places them together
in memory. Past work has shown that reference affinity is
effective to reorganize structure fields and basic blocks inside a
procedure [34], [32], [31]. The number of items to reorder was
small, compared to the number of functions or basic blocks in
a large program. In this paper, we describe an extension to use
reference affinity to reorganize code for the whole program.

Another useful model is called temporal-relation graph
(TRG), which was designed especially to optimize code
layout [8]. It was later used to optimize for SMT shared
cache [13]. In this paper, we study the TRG model as an
alternative solution.

We describe two transformations. One is global reordering
of functions, and the second is inter-procedural reordering of
basic blocks. Previous work targeted either function reorder-
ing or intra-procedural basic block reordering. With the two
locality models and two transforms, we build and evaluate four
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Abstract
From a trace of data accesses, it is possible to calculate an
affinity hierarchy that groups related data together. Combin-
ing this hierarchy with the extremely common hash table,
there is an opportunity to use this affinity information to pro-
vide both optimizations and novel applications.

1. Introduction
The hash table is a common implementation of an associa-
tive array, which maps keys to values. A hash table consists
of buckets, and keys are mapped to buckets by means of a
hash function. The user can put a key and value into the ta-
ble or get a value for a given key.

An affinity hash tracks the gets and puts to generate affin-
ity information, which groups items that are often used to-
gether. It then provides an additional operation that retrieves
a group of values that have high affinity with a given key.
Additionally, the affinity information can be used internally
by the hash table for optimizations.

This paper begins with an informal example of using an
affinity hash table. It then describes the algorithm that we
use to generate the affinity hierarchy. This is followed by
techniques that use the affinity hash table to provide perfor-
mance improvements for dynamic languages. We conclude
with more open directions for research on this topic.

2. Example Usage
As an example, consider the use of a hash table in a multi-
threaded program. The simplest method to make this data
structure thread-safe is to use a single lock to guard access
to the entire table. To increase the scalability one can use
lock striping, where there are multiple locks on the table and
each guards access to a portion of the hash buckets. Due to
the nature of hashes, any program using this striped locking
system and needs to access several keys will likely have to
contend for several locks.

Rather than grouping buckets under a lock simply by
position, we can assign buckets to a lock based on the affinity
information. This way, entries that are commonly accessed
together are protected by the same lock in order to reduce
lock contention. If a large number of updates need to be
performed at once then the application can query for related

entries and perform the updates for that group all at once
before proceeding to the next group.

3. Footprint Window Affinity
Every program’s data access behavior can be represented
by a data access trace, a sequence of data element accesses
indexed by logical time. The footprint distance (footprint in
short) between two data element accesses at times t1 and
t2, is defined to be the number of distinct elements accessed
between (and including) t1 and t2.

For each pair of data elements, and for every footprint
`, we compute the frequency of their joint occurence in
footprint windows.

Definition A footprint window is a time window which can-
not be made smaller (in length) without decreasing the foot-
print.

The affinity between two data elements A and B for
footprint ` is defined as:

freq`(A,B)

max(freq`(A), freq`(B))

,

where freq`(A,B) denotes the joint frequency of A and
B in (footprint) windows with footprint `, and freq`(A)

denotes the individual frequency of A in those windows.
To illustrate, consider the following trace.

X A B| {z }
z }| {
A B Y A| {z }

The affinity values for each pair and each footprint are
shown in figure 1(a).

To verify, we enumerate the windows of each footprint.
There are six windows with footprint 2, one starting from

each access point except the last.
The three braces in the trace represent the windows with

footprint 3. All the other time windows with footprint 3
shrink to one of these three and thus, are ruled out by our
definition.

Finally, there is a single window with footprint 4 which
contains all the elements (the window starting from X and
ending at Y).

To compute the affinity layout, we start from footprint
2 and for each pair, coalesce their corresponding layouts if

[MSPC 2014]
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Abstract
From a trace of data accesses, it is possible to calculate an
affinity hierarchy that groups related data together. Combin-
ing this hierarchy with the extremely common hash table,
there is an opportunity to use this affinity information to pro-
vide both optimizations and novel applications.

1. Introduction
The hash table is a common implementation of an associa-
tive array, which maps keys to values. A hash table consists
of buckets, and keys are mapped to buckets by means of a
hash function. The user can put a key and value into the ta-
ble or get a value for a given key.

An affinity hash tracks the gets and puts to generate affin-
ity information, which groups items that are often used to-
gether. It then provides an additional operation that retrieves
a group of values that have high affinity with a given key.
Additionally, the affinity information can be used internally
by the hash table for optimizations.

This paper begins with an informal example of using an
affinity hash table. It then describes the algorithm that we
use to generate the affinity hierarchy. This is followed by
techniques that use the affinity hash table to provide perfor-
mance improvements for dynamic languages. We conclude
with more open directions for research on this topic.

2. Example Usage
As an example, consider the use of a hash table in a multi-
threaded program. The simplest method to make this data
structure thread-safe is to use a single lock to guard access
to the entire table. To increase the scalability one can use
lock striping, where there are multiple locks on the table and
each guards access to a portion of the hash buckets. Due to
the nature of hashes, any program using this striped locking
system and needs to access several keys will likely have to
contend for several locks.

Rather than grouping buckets under a lock simply by
position, we can assign buckets to a lock based on the affinity
information. This way, entries that are commonly accessed
together are protected by the same lock in order to reduce
lock contention. If a large number of updates need to be
performed at once then the application can query for related

entries and perform the updates for that group all at once
before proceeding to the next group.

3. Footprint Window Affinity
Every program’s data access behavior can be represented
by a data access trace, a sequence of data element accesses
indexed by logical time. The footprint distance (footprint in
short) between two data element accesses at times t1 and
t2, is defined to be the number of distinct elements accessed
between (and including) t1 and t2.

For each pair of data elements, and for every footprint
`, we compute the frequency of their joint occurence in
footprint windows.

Definition A footprint window is a time window which can-
not be made smaller (in length) without decreasing the foot-
print.

The affinity between two data elements A and B for
footprint ` is defined as:

freq`(A,B)

max(freq`(A), freq`(B))

,

where freq`(A,B) denotes the joint frequency of A and
B in (footprint) windows with footprint `, and freq`(A)
denotes the individual frequency of A in those windows.

To illustrate, consider the following trace.

X A B| {z }
z }| {
A B Y A| {z }

The affinity values for each pair and each footprint are
shown in figure 1(a).

To verify, we enumerate the windows of each footprint.
There are six windows with footprint 2, one starting from

each access point except the last.
The three braces in the trace represent the windows with

footprint 3. All the other time windows with footprint 3
shrink to one of these three and thus, are ruled out by our
definition.

Finally, there is a single window with footprint 4 which
contains all the elements (the window starting from X and
ending at Y).

To compute the affinity layout, we start from footprint
2 and for each pair, coalesce their corresponding layouts if
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affinity hierarchy that groups related data together. Combin-
ing this hierarchy with the extremely common hash table,
there is an opportunity to use this affinity information to pro-
vide both optimizations and novel applications.

1. Introduction
The hash table is a common implementation of an associa-
tive array, which maps keys to values. A hash table consists
of buckets, and keys are mapped to buckets by means of a
hash function. The user can put a key and value into the ta-
ble or get a value for a given key.

An affinity hash tracks the gets and puts to generate affin-
ity information, which groups items that are often used to-
gether. It then provides an additional operation that retrieves
a group of values that have high affinity with a given key.
Additionally, the affinity information can be used internally
by the hash table for optimizations.

This paper begins with an informal example of using an
affinity hash table. It then describes the algorithm that we
use to generate the affinity hierarchy. This is followed by
techniques that use the affinity hash table to provide perfor-
mance improvements for dynamic languages. We conclude
with more open directions for research on this topic.

2. Example Usage
As an example, consider the use of a hash table in a multi-
threaded program. The simplest method to make this data
structure thread-safe is to use a single lock to guard access
to the entire table. To increase the scalability one can use
lock striping, where there are multiple locks on the table and
each guards access to a portion of the hash buckets. Due to
the nature of hashes, any program using this striped locking
system and needs to access several keys will likely have to
contend for several locks.

Rather than grouping buckets under a lock simply by
position, we can assign buckets to a lock based on the affinity
information. This way, entries that are commonly accessed
together are protected by the same lock in order to reduce
lock contention. If a large number of updates need to be
performed at once then the application can query for related

entries and perform the updates for that group all at once
before proceeding to the next group.

3. Footprint Window Affinity
Every program’s data access behavior can be represented
by a data access trace, a sequence of data element accesses
indexed by logical time. The footprint distance (footprint in
short) between two data element accesses at times t1 and
t2, is defined to be the number of distinct elements accessed
between (and including) t1 and t2.

For each pair of data elements, and for every footprint
`, we compute the frequency of their joint occurence in
footprint windows.

Definition A footprint window is a time window which can-
not be made smaller (in length) without decreasing the foot-
print.

The affinity between two data elements A and B for
footprint ` is defined as:

freq`(A,B)

max(freq`(A), freq`(B))

,

where freq`(A,B) denotes the joint frequency of A and
B in (footprint) windows with footprint `, and freq`(A)

denotes the individual frequency of A in those windows.
To illustrate, consider the following trace.

X A B| {z }
z }| {
A B Y A| {z }

The affinity values for each pair and each footprint are
shown in figure 1(a).

To verify, we enumerate the windows of each footprint.
There are six windows with footprint 2, one starting from

each access point except the last.
The three braces in the trace represent the windows with

footprint 3. All the other time windows with footprint 3
shrink to one of these three and thus, are ruled out by our
definition.

Finally, there is a single window with footprint 4 which
contains all the elements (the window starting from X and
ending at Y).

To compute the affinity layout, we start from footprint
2 and for each pair, coalesce their corresponding layouts if

Summary

• Computation locality
• reuse-driven loop fusion, hyper-graph cut
• many others (Prof. Yi’s lectures)

• Data locality
• Petrank-Rawitz hardness
• reference affinity for hierarchical data layout

• Integrated solutions
• computation fusion + data regrouping
• space-filling curve ordering
• algorithmic changes

• Compiler optimization for shared cache
• defensive tiling [Bao and Ding, CGO 2013]
• compiling for defensiveness/politeness [Li et al., ICPP 2014]
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