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Problem of Caching

+ An example

- 7 accesses
- single-element cache

+ Cache management
- LRU: 1 reuse
- Belady: 2 reuses
+ Our approach
- fuse computation on the

same data: 4 reuses

- group data used by the
same computation

(Memory\, RS
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Computation Fusion

Function Initialize:
read input[1:N].datal
read input[1:N].data2

End Initialize

Function Process:
//Step_A

A tmp[l:N].datal
€ input[1l:N].datal

//Step_B

B_tmp[1l:N].datal
€ input[1l:N].data2

End Process [/

//Fused_step_1
for each i in [1:N]
read input[i].datal
A tmp[i].datal
€ input[i] .datal
end for

//Fused_step_2
for each i in [1:N]
read input[i].data2
B_tmp[i].datal
€ input[i].data2

end for
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Data Grouping

//Fused_step_1
for each i in [1:N]
read input[i].datal
A tmp[i].datal
€ input[i] .datal
end for

//Fused_step_2
for each i in [1:N]
read input[i].data2
B_tmp[i].datal
€ input[i] .data2
end for

//Fused_step_1
for each i in [1:N]
read groupl[i] .datal
groupl[i] .data2
€ groupl[i] .datal
end for

//Fused_step_2
for each i in [1:N]
read group2[i] .datal
group2[i] .data2
€ group2[i] .datal

Original

Function Initialize:
read input[l:N].datal
read input[1l:N].data2

End Initialize

Function Process:
A tmp[1l:N].datal
€ input[1l:N].datal

B_tmp[l:N].datal
€ input[1l:N].data2

End Process /v

Transformed

for each i in [1:N]
read groupl[i] .datal
groupl[i] .data2

€ groupl[i] .datal
end for

for each i in [1:N]
read group2[i] .datal
group2[i] .data2

€ group2[i] .datal

end for

end for

- Computation fusion recombines all functions
- Data grouping reshuffles all data
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But How?

* Programmers
+ loss of modularity

+ data layout depends on function

* Hardware/operating system

Overall Fusion Process

for each statement in program

find its data sharing predecessor

try clustering them (fusion)

+ limited scope .
. if succeed
* run-time overhead
- Compilers apply fusion recursively
- global scope end if
- off-line analysis/transformation
. - . end for
- imprecise information
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Example Fusion Example Fusion
Difficulties
. . for i=2, N
for i=2, N ~incompatible shapes for i=2, N a[il=£(a[i-1])
ali] = £(a[i-1]) -data dependence a[i] = f(a[i-1]) if (i==3)
end for end for 13[2]:0-(0 )
T A else if (i==N
a[l] = amm Three cases of fusion a[l] = a[N] alll= a[N]
a[2}.= 0.0 -between iteration & loop a[2] = 0.0 end if
RN + embedding end for
for i=3, N-_ " f : for i=3, N .
bli] = g(ali-2]) D erarecrn + dhgnent bli] = g(ali-2]) for i=3, N
end for . end for b[i] = g(a[i-2])
-otherwise end for
+ iteration reordering,
V + e.g. loop splitting V V
* loop embedding
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Example Fusion Example Fusion
for i=2, N for i=2, N
alil=f(ali-11) a[i]=f(a[i-1])
for i=2, N if (i==3) for i=2, N if (i==3)
ali] = £(a[i-1]) a[2]=0.0 ali] = £(ali-1]) a[2]=0.0
end for else if (i==N) end for else if (i==N)
af[1l]= a[N] a[l]= a[N]
a[l] = a[N] end if a[l] = a[N] end if
a[2] = 0.0 end for a[2] = 0.0
. if (i>2 && i<N)
for i=3, N for i=4, N for i=3, N b[i+l] = g(a[i-1])
bl[i] = g(ali-2]) b[i] = g(a[i-2]) bli] = g(a[i-2]) end if
end for end for end for end for
V b[3] = g(a[ll) V V b[3] = g(a[ll]) V

* loop embedding, loop splitting,

* loop embedding, loop splitting, interleaving+alignment

04/02/2008

Chen Ding 11

04/02/2008

Chen Ding




More on Fusion

- Features of single-level fusion
- reuse based
- shape independent
+ Multi-level fusion
- gives priority to fusion at outer levels
- Optimal fusion
- hyper-graph formulation of data sharing
- an NP-hard problem

Arrays: A, B, C, D, E, F
Scalar: sum

Other Fusion Studies

Early fusion studies

- first uses [Wolfe UIUC'82, Allen & Kennedy IEEE TC'86]
- complexity [Kennedy&McKinley Rice'93, Darte PACT'99]
- heuristics [Gao+ LCPC'92, Kennedy ICS'01]

- implementation [McKinley+ TOPLAS'96, Manjikian&Abdelrahman 97, Lim
+ PPoPP'01]

- array contraction [Gao+ LCPC'92, Lim+ PPoPP'01, Song+ ICS'01]
Aggressive loop blocking/tiling
- shackling and slicing [Kodukula+ PLDI'97, Pugh&Rosser LCPC'99, Yi+

Data Regrouping

[Ding&Kennedy LCPC'99 IPDPS’'01

PLDI'00] JPDC'04]

- time skewing [Song PLDI'99, Wonnacott IPDPS'00]
* Recent work

- manual fusion in C programs [Pingali+ ICS'02]
- reuse-based fusion and array contraction in Intel Itanium compiler

[Ng+ PACT'03]

+ 12% average improvement for SPEC2K fp

- compiler fusion of loops containing array indirection [Strout+

PLDI'03]

Data Regrouping Magi

+ Cache-block utilization
- high-end machines use large cache blocks
- use one integer in a 64-byte cache block
+ 1/16 utilization of transfer bandwidth
+ 1/16 utilization of cache space
- Data regrouping
- group “useful” data into the same cache block
- group two arrays if and only if they are always accessed
together
* Basic questions
- what does “usefulness” mean in general?
- can we regroup data across array and object boundary?
- can we regroup data during execution?
- Systematic study on Thursday

- 26 attributes belong to 6 reference affinity groups

Computation Arrays accessed
phases

Constructing position
neighbor list

Smoothing attributes ' position,

Hydrodynamics 1 density, momentum

Hydrodynamics 2 momentum, volume, energy,
cumulative totals

Stress 1 volume, energy, strength,
cumulative totals
Stress 2 density, strength




NAS/SP

- Benchmark application from NASA

NAS/SP
E no optimization [] fusion only

fusion+grouping [] grouping only

- computational fluid dynamics (CFD) 2.32 8.8x
- class B input, 102x102x102
- 218 loops in 67 loop nests, distributed into 482 loops
- 15 global arrays, split into 42 arrays 1.74
* Optimizations
- fused into 8 loop nests 1.16
- grouped into 17 new arrays, e.g.
+ {ainv[n,n,n], us[n,n,n], gs[n,n,n], uln,n,n,1-57}
- {Ihs[n,n,n,6-8], lhs[n,n,n,11-13]} 0.58 -
0
exe. time L1 mi L2 mi TLB mi
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Software Techniques Summary

Overall Comparison

main steps sub-steps example techniques
(* studied in my work) programs L2 misses TLB misses Speedup
: p "
temporal | global (.rnul‘h-loop) Ioop.fusuon . . NoOpt SGI New NoOpt SGT New over SGT
reuse local (single loop) blocking, register allocation ARG
dynamic *dynamic partitioning
spatial global (inter-array) | *inter-array data regrouping
reuse local (intra-array) |loop permutation, array reshaping,
combined schemes A
dynamic *dynamic data packing YERAGE
cache interference | padding Moldyn
latency local (single loop) data prefetching, instruction
tolerance scheduling
program  |global *balance model NAS/C6
tuning & (whole program) *bandwidth-based perf. tuning & Average
scheduling prediction
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Limit of Computation Fusion
P Summary

5,000

© original
o potential
" 3,750 o reuse-based fusion
3]
5
o 2,500
L
13)
e
<
S 1250

0 4 16 64 256 1K 4K 16K 64K 256K 1M
reuse distance

* Ding and Kennedy, IPDPS 2001 (best paper), JPDC 2004

- Global transformations

- Combining both computation and data reordering at a large
scale

+ Dynamic transformations

- Combining compile-time and run-time analysis and
transformation

- Compiling for locality
- splits and regroups global computation and data
- for the whole program and at all times

04/02/2008 Chen Ding 24




Qing Yi
Assist. Prof., U. Texas San Antonio
Ph.D. Rice 2002
M.S. ICS 1995
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Transforming Loops to Recursion for Multi-

Level Memory Hierarchies

Qing Yi', Vikram Adve* and Ken Kennedy'

' Rice University
*University of Illinois, Urbana-Champaign

Computation Regrouping: Restructuring
Programs for Temporal Data Cache
Locality

Venkata K. Pingali
Sally A. McKee
Wilson C. Hsieh
John B. Carter
School of Computer Science

University of Utah
Best student paper, ICS 2002
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Problem: Memory Performance

100.000
83.333
66.667

B Computation
H TLB
50.000 ey
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] 60-80% of execution time spent in memory stalls
(generated by Perfex)

(%] 194 MHz, R10K Processor, 32K LiD, 32K Lil, 2MB L2
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Application Analysis
* Bad memory behavior

* Working set larger than L2
* Data dependent accesses

Benchmark Source Domain Access
Characteristics
R-TREE DARPA Databases Pointer Chasing
RAY TRACE DARPA Graphics Pointer Chasing
+ Strided Accesses
CuUDD U. of Colorado | CAD Pointer Chasing
EM3D Public domain | Scientific Indirect Accesses

+ Pointer Chasing

IRREG Public Domain | Scientific Indirect Accesses

HEALTH Public Domain | Simulator Pointer Chasing

FFTW DARPA/MIT Signal Strided Accesses
Processing

28

Related Work

Compiler approaches
* Loop, data and integrated restructuring: Tiling,
permutation, fusion, fission {CarrMckinleyg4}
* multi-level fusion {DingKennedyo1l, Compile-time
resolution[Rogers891
e Prefetching
* Hardware or software based, simple,efficient models: Jump
pointers, prefetch arrays[Karlssonool, dependence-based
[Rotho8}
¢ Cache-conscious, application-level approaches
e Algorithmic changes: Sorting [Lamarcag6l, query
processing, matrix multiplication
¢ Data structure modifications: Clustering, coloring,
compression [Chilimbigg]}
* Cohort Scheduling {Larusoz}
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Computation Regrouping

e Idea: compute when the data is available in the cache

* Spend extra computation to achieve this: computation is
cheap

* Logical operations
e Short streams of independent computation performing unit
task

e Examples: R-Tree query, FFTW column walk, Processing
one ray in Ray Trace
* Application-dependent optimization
¢ Techniques: deferred execution, early execution, filtered
execution, computation merging
* Preliminary performance improvements encouraging
* Range from 1.26 to 3.03, modest code changes




Regrouping
Data Objects

Logical Operations/Time

Problem: Too Many
Objects Accessed
Per Logical Operation !

Regrouping
Data Objects

Logical Operations/Time

\Regrouped

computations
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Filtered Execution: IRREG

%] Simplified CFD code

{¥] Series of indirect accesses

{¥] If index vector random, working set is as large as data array
{(¥] Memory stall accounts for more than 80% of execution time
{¥] Logical operation: set of remote accesses

for alli{

sum += datalindex[il};

INDEX
b = DATA

Unoptimized
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Filtered Execution: IRREG

{(¥] Defer accesses to data outside the window
{¥] Significant additional computation cost : z loops instead of 1
{¥] Tradeoff: window size vs. number of passes

for k = o,n step block {
for all i {
if (index(il >= k && index[i} < (k+block)){

sum += datalindex[il};

Optimized

Pass 1 Pass

Deferred Execution: R-Tree
— Quey 2
* Height balanced tree
® Branching factor 2-15

e Used for spatial searches

® Problem: data dependent
accesses, large working set of
queries/deletes

* Logical operation: insert,
delete, query

35

Deferred Execution: R-Tree

Access Matrix

20000 20050 20100 20150 20200
Tree Node Identifier

Access Set Size

100000

Number of Nodes Accessed

0 000 o0 iS00 om0 25000

Query Number




R-Tree Regrouping
P
:
A, T A
Jo
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T Query 1
— Querg 2

8uery 3
T Query 4

R-Tree Performance Characteristics

4 Average Result Latency (s) 4 Throughput (queries/s)

150.000

128.571

107.143

/k

85.714 /

sweet spot /

Queries/sec

21.429 T—_’:—_—‘—_‘—/A/A/(
0

0 2 4 8 16 32 64 128 256
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512

Latency (in secs)

Regrouping: Perfex Estimates
Il Memory [l TLB [l Computation [l Overhead

100.000

83.333

66.667

50.000
33.333
16.667

p & o &
) L 2 L
& o &

Locality Grouping (LG)
¢ Locality groups: User identified groups of tasks that
share objects
e Library interface
* Runtime scheduling
e Simple abstraction
e lg *createlg(, void deletelg(lg *

* void addtolg(lg *, void *data, void (*proc)(void *)
¢ void flushlg(lg *

Summary

* Regrouping exploits (1) low cost of
computation (2) application-level
parallelism

* Improves temporal locality
1)

Sally McKee
Cornell University

¢ Changes small compared to overall
code size

* Hand-optimized applications show
good performance improvements

41
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G COMPUTER SCIENCE £ Bird and Program

*' SCHOOL OF
& APPLIED SCIENCES
UNIVERSITY« ROCHESTER

2013 International Symposium on Code Generation and
Optimization (CGO), Shenzhen, China “Unlike a bird, which can learn to fly better and
better, existing programs are sort of dumb---the
one millionth run of a program is typically not a
bit better than the first-time run.” --- Professor
Xipeng Shen @ W&M

Defensive Loop Tiling for
Shared Cache

Bin Bao, Chen Ding
University of Rochester

44

Peer Interaction Co-Run Program Optimization

Interfering Collaborative
Limited resources Parallel tasks Existing shared-cache optimization
N = Cache partitioning
Ng‘& Job scheduling
‘\gé**\( Task throttling
Compiler optimization?

Peers: threads, tasks, and independent programs

46
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Tiling Strategy for Shared Cache

Loop Tiling --- A Matrix Multiplication Example

For(i=0;4 < N;ji=i+1) Tile for whole = (0 @
for(j =0;j <N;j=3j+1) shared cache | ¢ >
for(k=0k<N;k=k+1)
Clil[j] = beta * C[i][4] + alpha * A[i][k] * B[K][];
(a) Original code
Tile for part of o0

for(jj=0;55 < N;jj=jj+ B; g 7N,
fog(kk N P nE gk) shared cache
for(i=0;i < N;i=14+1)
for(3 =375;5 <min(jj+ B;,N);j=j+1) o?
for(k = kk;k < min(kk + By, N); k =k + 1) Tile for private (#)¢
Cli][j] = beta * C[il[j] + alpha * Ali][k] * B[k][5]; cache only 2

(b) Tiled code
48
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Inclusion Victim Problem

Inclusive cache
E.g. L3 cache in Intel Nehalem processor
Inclusive victim [Jaleel et al. MICRO’10]

A toy example: L1 cache size 2; L2 cache size 8

misses: ¢ v v
prog.l: [laaaaaaaalaaaaaaaaa ...

prog.2: |pquUVwWXyzZpquVvwxyzp ...

49

Miss count

Matrix Multiplication Results on a Cache Simulator

_| —— Private cache misses in solo-run 7 2 cores
- Private cache misses in co-run ;
@
o
$ Private 256KB
: L1 cache
3
7
o Shared 2MB 1.2
| cache
8
é T T T
0.94KB 64.7KB 2559k « Matmul and
Tile size in terms of B[j][k] reuse distance Stre aming

50

Inclusion Victim Modeling

Private cache usage

“Reused data” ap(p1)

w(p1) = ————— *reuse(py)

“Active period” sw(p1 + p2)

Shared cache interference

“Survival window”

misses: ¢ v v
prog.1: |aaaaaaaalaaaaaaaaa ...

prog.2: | pqUVWXyzZpquUVwWwXyzp ...

51
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Implementation in Open64 Compiler

A cache cost function
Example: matrix multiplication
Footprint
F, =8+ (N B+ Bj * B, + N x B;)
F; =8« (B + B, * B, + Bj)

Reuse
reuse; = F; — (F; — F;)/N

Implementation in Open64 Compiler (cont.)

Original cache miss equation

F; R;
Nl 22as i
c J N+(a*ecsz+ﬁ*

|R; — ecsz|*

) xreuse;
ecsz

Cache misses caused by inclusion victim

1V; = * reuse;

i
sesz /vy

7 is the defensiveness parameter




Defensiveness and Politeness

Defensive tiling generates code that is less
sensitive to cache interference

Table 1. Reuse Distance as a Function of the Loop Bounds

Loop Array Reuse Distance (Bytes)
k  Cllj] 8x3

T T T T i
1B 32B 1KB  32KB

cache size (log-scale)

iMB  32MB

T T T T T
1B 32B 1KB 32KB 1MB

cache size (log-scale)

T
32MB

j A[i]lk] 8x1-+8x By +8x By,
Politeness: how intrusive the transformed - 2[[];]5]] o ;jXJrBS’“;]s . ;’: . i e
programis 7 Afi][k] 8XNXBj+8xNxN+8x N X Bj
Static politeness analysis
A Higher Order Theory of Locality [Xiang et
al. ASPLOS13]
Lifetime Calculation Experimental Results
£ 4 Lifetime PLUTO benchmarks
12 1f(e) = SZdim(i) = zf;ém etonn
T m e e we e Pin-based cache simulator
reuse distance (log-scale)
o i 256KB private L1, 2MB shared L2
H s _ % | Intel Nehalem processor
E i | g f’ Fiie 32KB private L1, 256KB private L2, SMB

shared L3

Effect on private
cache miss

Baseline: default
tiling on solo-
run

4 defensiveness
values

s
&
8
S
2

°
400%

ivate cache misses
&
&
S
2

i
b
3

S

R

100%

Normalized

Q
*

600%

500%

400%

300%

ivate cache misses

pri

Normalized
TR
s 3
S
X R

9
&

| default tiling
O defensiveness=1
@ defensiveness=2
B defensiveness=4
B defensiveness=8

.

I

corcol covcol det matmul

(a) Co-run simulation result

B default tiling
O defensiveness=1
O defensiveness=2
B defensiveness=4
® defensiveness=8
corcol  coveol det matmul tce

(b) Solo-run simulation result

Generated Tile Sizes

corcol covcol dct matmul tee
default tiling [105,105,220] | [90,90,240] | [56,56,320] | [60,60,272] | [5.5,5,5,36]
defensiveness=1 [56,56,160] | [60,60,204] | [32,32,280] | [36,36,224] | [6,6,6,6,25]
defensiveness=2 [42,42,126] | [50,50,168] | [26,26,231] | [30,30,180] | [6,6,6,6,25]
defensiveness=4 [20,20,91] | [40,40,136] | [21,21,182] | [25,25,136] | [6,6,6,6,18]
defensiveness=8 [20,20,91] | [30,30,104] | [17,17,144] | [20,20,105] | [5.5.5,5,15]

Table 2: Tile sizes generated by Open64




Real Machine Performance

Defensiveness parameter v = 4

W solo-run
1.4x o O with 1 STREAM
O with 2 STREAM
B with 3 STREAM
S 1.2x
°
[}
[}
o
1.0x — —D:'-
0.8x —
corcol covcol dct matmul tce

Symmetric Co-runs

Each benchmark co-runs with its replica (y = 4)

1.3x —
B 1 instance
O 2instances
=X T2 = O 3instances
3 B 4 instances
a
D 1.1x
1x l:l:- = .:EL B T

corcol  covcol dct matmul tce

Comparison with Cache Oblivious Algorithm

Recursive version matrix multiplication [Qing et al.
PLDI 2000]

B solo-run
1.4x 7 O with 1 STREAM

O with 2 STREAM
B with 3 STREAM

S 1.2x

o

9]

[

Q

&

1.0x F I:D- !:I:r

recur_16  recur_32 recur_64 recur_128 recur_256

Comparison with QoS-Compile

: o QoS-Compile
Def Til

i [Tang et al. CGO’12]

Targeted Program Loop-based General

Analysis Static Profiling

T 5
rans{ Z::Ttwn Compiler IR Binary
A Reordering C01inputat10n, Inserting no-ops,
defensive communal

Effect Reduce interference Transfer interference

)i LOP ENGINEERING DEPARTMENT OF jl
& APPLIED SCIENCES COMPUTER SCIENCE £
I

UNIVERSITY+ ROCHESTER

Peer-Aware Program
Optimization

Bin Bao
Advisor: Chen Ding

Outline

Cache contention aware loop tiling [CGO’13]




Data Packing

[Ding&Kennedy PLDI'99]

Unknown Access

"Every problem can be solved by adding one more level of
indirection.”

* Irregular and dynamic applications

* Irregular data structures are unknown until run time

* Data and their uses may change during the computation
* For example

* Molecular dynamics

* Sparse matrix
* Problems

* How to optimize at run time?

* How to automate?

Chen Ding, DragonStar lecture, ICT 2008 b

Example packing
original
array
data
accessS £[8], £[800], £[8], £[2], ...

transformed

£[8] £[800] f£[2]

Software remapping:
flt[i]] = flremaplt[i] = f[t’[i]]
flil = flremaplil] = f[i]

Chen Ding, DragonStar lecture, ICT 2008
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Moldyn, 8K elements, 4K cache

_ 100 —
% ] Origina

] [ Consecutive

I 75 ] Group(1K)

5] [ ] Consecutive-group(1K,group(1k))
é Il Consecutive-group(1K,group(150))
> 50

-

>

<]

€ —

©

B8 25

N

©

£

2 0

z 0 o

1 2 4 8 16

Cache block size

Dynamic Optimizations

* Locality grouping & Dynamic packing
* run-time versions of computation fusion & data grouping
+ linear time and space cost
+ Compiler support
+ analyze data indirections
- find all optimization candidates
* use run-time maps to guarantee correctness
* remove unnecessary remappings
* pointer update
* array alignment
* The first set of compiler-generated run-time fransformations

Chen Ding, DragonStar lecture, ICT 2008

packing Directive: apply packing using interactions

for each pair (i,j) in interactions
compute_force( force[i], force[]] )
end for

for each object i

update_location( location[i], force[i] )
end for

Chen Ding, DragonStar lecture, ICT 2008




apply_packing(interactions[*],force[*],inter map[*])
for each pair (i,j) in interactions
compute_force( force[inter map[i]],

force[inter map[j]] ) .
- - ctions
for each object i

update_location(location[i], force[inter map[i]])
end for

end for

Chen Ding, DragonStar lecture, ICT 2008

apply packing(interactions[*], force[*],
inter map[*], update map[*])
update_indirection_array(interactions[*],
update_map[*])
transform data_array(location[*],update map[*])

for each pair (i,j) in interactions
compute_force( force[i], force[]j] )
end for

for each object i

update_location( location[i], force[i] )
end for

Chen Ding, DragonStar lecture, ICT 2008

Indirection Analysi}/—\

pointer 4

pointer 2

access

Chen Ding, DragonStar lecTure, ICT 2008

DoD/Magi

+ A real application from DoD Philips Lab
* particle hydrodynamics
+ almost 10,000 lines of code
- user supplied input of 28K particles
+ 22 arrays in major phases, split into 26
+ Optimizations
* grouped into 6 arrays
* inserted 1114 indirections to guarantee correctness
+ optimization reorganized 19 more arrays
+ removed 379 indirections in loops
* reorganized 45 arrays 4 times during execution

Chen Ding, DragonStar lecture, ICT 2008

Magi
1.0
0.8 T
0.6 T
0.4
0.2 —
Exe. time L1 misses L2 misses TLB misses
O original B data regrouping [ | base packing
[ ] opt packing

Chen Ding, DragonStar lecture, ICT 2008

Comparison with SGI Compiler

TLB misses
NoOpt SGI New

L2 misses
NoOpt SGI New

Speedup
over SGI

programs

Moldyn

Mesh
Magi
NAS/c6
Average

Chen Ding, DragonStar lecture, ICT 2008 78




Dynamic Locality Improvement

* Other studies
* inspector-executor [bas+ ASM'92]

* run-time dependence testing [Pugh&Wonnacott Maryland'94,
Rauchwerger+ ICS'95, Strout+ PLDI'03]

* graph partitioning [Al-Furaih&Ranka IPDPS'98, HandTseng LCR00]
* bucket partitioning [mitchell+ PACT99]
+ space-filling curve ordering [Mellor-crummey+ I¢5'99]
* sparse tiling [Strout+ PLDI'03]
* Mellor-Crummey et al. and Strout et al. found consecutive
data packing most effective

Chen Ding, DragonStar lecture, ICT 2008 79

Improving the Computational Intensity of
Unstructured Mesh Applications

Bronis R. de Supinski, Brian Miller,
Daniel Quinlan, Martin Schulz
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Brian S. White, Sally A. McKee
Computer Systems Lab
Cornell University

80

Unstructured Mesh

- Library consisting 282 files and 68K lines of C++
* published in International Conf. on Supercomputing ‘05
* Data placement improves prefetching
+ amesh object larger than a cache block
+ consecutive packing [DK PLDI'99] improves useful
prefetches by 30% and reduce load latency from 3.2 to
2.8 cycles
* Not all misses are equal
* iteration blocking reduces memory loads by 20% but
interferes with hardware prefetching
* load latency rose to 4.4 cycles

Chen Ding, DragonStar lecture, ICT 2008
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Streamlining GPU Computations On the Fly

Xipeng Shen

The College of William and Mary

Graphic Processing Units (GPU)

T

Graphic Processing Unit (GPU)

SIS OO SO SO oo o

Each thread: a little work, a few data accesses.
But hundreds of thousands of them.




Theoretical GFLOP/s ( from NVI DIA)
5750
5500
5250
5000

4750
4500 wsss|ntel CPU Double Precision

4250 @mgmm|ntel CPU Single Precision
4000
3750

3500
3250 Great for

regular
2500 computation!

GeForce 780 Ti
«w=s==NVIDIA GPU Single Precision
et NVIDIA GPU Double Precision

GeForce GTX TITAN

GeForce GTX 680

1750 GeForce GTX 580 Tesla K40

1500 GeForce GTX 480

Tesla K20X

1250 GeForce GTX 280

Tesla M2090

750 GeForce 8800 GTX Testa C2050

Tesla C1060
Harpertown

500 GeForce 7800-6TX Ivy Bridge
GeForce 6800 Ultra
250 G oForce FX 5800

‘oodcrest

Westmere

Nov-10 Apr-12 Aug-13 Dec-14

Pentium 4

Bloomfield
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09

Dynamic Irregularities
memory

Contr‘0| f|0W (thread divergence)
P[1={0,5,2,3,4,56 ]

i

31 BENE SR

[for (=0i<Atid];i++) {-}]

tid:

=arran]  ((§9(66¢
| Db
V

a mem seg.

Degrade throughput by up to (warp size - 1) times.
(warp size = 32 in modern GPUs)

Performance Impact

e Applications: Dynamic programming, fluid simulation,
image reconstruction, data mining, ...
Host: Xeon 5540.

Potential Speedup Device: Tesla 1060.

HMMER  3D-LBM CUDA-EC NN CFD CG Unwrap

Prior Studies

® Most sw solutions on Static Irregularities
+ [Baskaran+, |CS'08], [Lee+, PPoPP'09],[Yang+, PLDI'I 0], etc.
® Dynamic irregularity are more challenging

e

% Remain unknown until runtime (e.g.,A[P[tid]])

Overview of this Work

® Analytic findings on properties of dyn. irreg. removal

® A software solution: G-Streamline library

+ No profiling or hw ext.
+ Transparent removal on the fly
+ Jeopardize no basic efficiency

data ppg lob +Treat both types of irreg. holistically
reorder. swap.

data reloc. ref. redirect.

Transformations

guidance for
transformations

overhead hiding &
minimization

Optimality & approximation Efficiency control

Complexity analysis Adaptive CPU-GPU pipelining

Approximating optimal layouts
nd mappings

Three-leve| efficiency-driven
adaptation

Basic Insight:
Both mem & control irreg. stem

from inferior thread-data mappings.

A unified treatment.

Two basic mechanisms:

Transformations

data hybrid job
reorder. swap.

data reloc. redirect.

‘uidance for overhead hiding &
transformations minimization

Optimality & approximation

e data relocation » Comepose three

e reference redirection
® Alp[tid]] -> Alq[tid]]

transformations.




Trans-1: Data Reordering
(for mem irreg only)

original w 5T :
tid: {0 | 2 6 7
.= ALP[tid]L;
P[]1=1{05232376} ><
All
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between threads [
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tid: thread ID; § :a thread; l : data access; ' : data swapping ‘

Trans-2: Job Swapping (for mem)

® Job = operations + data elements accessed

original I :

Both reduce S E {0,5,2,3,2,3,7,6)
1 mem trans. o 5 5.5
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1 more than |  transformed ‘5 [{ SNy
the optimal.... newtid = Q[eid]; $99999565
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Trans-2: Job Swapping (for control)

original

if (B[tid]) {..}

method 1 ‘ <redirection>
transformed

newtid = D[tid];

Trans-2: Job Swapping (for control)

original
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if (B[tid]) {..} §'¢
|
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Py |
method 2 o1 B H
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Job integrity — B[]
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Trans-3: Hybrid “““&5

P[]1=1{05232376}
data‘ AL
* JOb Swap * reordering <redirection>| B
Data reorder <relocation>’% i
ALL
= A[QHd]];

® Data reorder +
QL= 1{45232376}

Job swap
Single opt job | <redirection> "
r 'ﬁﬁﬂ swapping
transformed
n;% et&%gs nt\dA [QR[[t\tdg]]
= nt
1 g]&:?n g:.an {4,5,2‘3,0‘\,6‘7/? !

if (B[newtid]) {..}
- B[]
D[]1=1{0,1,43,2,5,6,7} @ tid:
Mem ref. pattern changes. newtid = Q[tid];
Solution: A follow-up data reordering. if (Bfeid]-newrid) {-.}
Q[1={0,1,43256,7}
12 13
original id: O I .
g ‘ Comparisons

® |rreg. Mem
® Diff. applicability of reordering and job swapping
® Hybrid: largest potential

® |rreg. Control
® Job swapping by redirection

® |ower overhead, but with side effects

® Job swapping by relocation

® higher overhead, no side effects




G-Streamline

Transformations

® NP-Complete

® Layout: 3D matching guidance for
transformations

® Mapping: Partition Problem

overhead hiding &
minimization

Efficiency control
Adpitve CPUGPU

Y Approx. Optimality & approximation R

Complexity analysis

® Duplication/padding

Approximating optimal layouts
and mappings

® Sharing

How to determine
optimal layouts / thread-data mapping?

[ASPLOS’I I, PPOPP’I3]

After Transformation

% Benchmark Suites: Rodinia, Tesla Bio, and etc.
% Host: Xeon 5540.  Device:Tesla 1060

5 ¥y [l Without Overhead
B With Overhead

3 How to minimize or hide overhead?

HMMER 3D-LBM CUDA-EC NN CFD CG Unwrap

G-Streamline

® CPU-GPU pipelining
overhead hiding &
® Kernel splitting minimization
® Partial transf. and overlap. Effjclencyicontrol
Adaptive CPU-GPU pipelining
® Two-level adaptive control g ool s

% Transparent, on-the-fly %+ Adaptive to pattern changes
%+ No perf. degradation % Resilient to dependence

% Automatically balance benefits and overhead

CPU-GPU Pipelining

e Utilize Idle CPU Time
% Transform on CPU while computing on GPU
% Automatic shutdown when necessary

fori=1I:n
async_transform (i+2);
async_copy (i+2);
gpu_kernel(i);

end

cpu_transform()
MEM I copy_to_gpu
I gpu_kernel

Dependence or No Loop

CFD CUDA-EC
(grid Euler solver) (DNA error correction)

for i=|:iterations main (){
cuda_compute_flux(..); // writeA,read B "
cuda_time_step(...);// read A, write B

end }

Kernel Splitting

igpuKernel_org<<<..>>>(pData,...);: .
~~~~~~~~~~ opt. ratio
l split

gpuKernel_org_sub<<<..>>>(pData,0, (I@*Ien, )

pipeline g :
igpuKernel_opt_sub<<<..>>>(pData,(l-r)*len+1, len, ..

® Also enables partial transformation for
overhead control




Adaptive Efficiency Control

® Pipelining
® CPU & GPU with kernel-splitting
® Used for both transformation & data copying
® Adaptively determine the best opt. ratio
® Runtime profiling
® Adaptive feedback-driven control

° Automatica.ll{ shutting down optimizations when
not beneficia

Final Speedup

27 3.6}

[ Basic transformation
[ w/ efficiency control .75
full potential 251
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Improving Memory Hierarchy
Performance For Irregular
Applications

John Mellor-Crummey*  David Whalley*
Ken Kennedy™

*Dept. of Computer Science
Rice University
*Dept. of Computer Science
Florida State University

First published in International Conference of Supercomputing, 2000 and
then in International Jouranl of Parallel Programming, 2001

Exploiting Deep Memory Hierarchies

* Principal strategies
— loop transformations to improve data reuse
- register and cache blocking, loop fusion
— data prefetching

* Limitations
— fail to deal with irregular codes
- loop transformations depend on predictable subscripts
- prefetching can help, but at higher overhead
— primarily focused on latency reduction
- but bandwidth is critical on modern machines
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Irregular Codes Space-Filling Curves

Indirect references have poor temporal and spatial locality - Continuous, non-smooth curves through n-D space
— poor spatial locality (] low utilization of bandwidth consumed * Mapping between points in space and those along the curve

* Recursive structure preserves locality

Reqister 8 Bytes
100 % Utilizgtion

L1 Cache 32 Bytes

tilization

25% U

e = e

6.25 % Utilization L2 Cache 128 Bytes
Memory

— poor temporal locality [¥] more bandwidth needed

Fifth-order Hilbert curve in 2 dimensions
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Space-Filling Curve Data Reordering Effects of Multi-Level Blocking
L1 miss patterns for Moldyn using dynamic multi-level blocking
‘ '
g s i |
11
: Iy W
: W////,W )/ 4
ﬁ .,l“’. u //l & ‘l i //// ////I/I /// ////l// i
o 10K 100K ™M
L1 misses L1 misses L1 misses
¢ Points nearby in space are nearby (on average) on the curve
- ordering data along the curve co-locates neighborhoods
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Moldyn Results MAGT Results
12 0.6000
M D ’
1.2 B HD 0.5139
l HC
0.9 BC 0.4278 FD + FC
Il FD + HC 0.3417 Il HD + HC
0.6 B HD + HC : B HD/FD + HC/FC
Il HD + BC 0.2556
03 . . 0.1694
0 s — 0.0833 — -
L1 Mi L2 Mi TLB Mi Cycles L1 Mi L2 Mi TLB Mi Cycles
FDH:Cf[SLti%%CﬂhC%ar;a S’Egﬁcr)nHo[: derélgei[ gg[sk%:;jer FD = first touch data order HD = Hilbert data order
- P ) - FC = First-touch computation HC = Hilbert
Computation Computation
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Difficulty with Multi-Level Blocking

* Must choose a blocking parameter for each MH level

* appropriate blocking parameter dependent on
* volume and number of arrays referenced in core
loop

+ cache size
+ cache associativity
* A way around the dilemma

* recursive blocking

* block for all possible memory hierarchy sizes
simultaneously
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Conclusions

* Matching data and computation order improves performance
— data reordering: improves spatial locality
— computation reordering: boosts spatial and temporal reuse
— big improvements with coordinated approaches
- factor of 4 reduction in cycles for Moldyn
- factor of 2.3 reduction in cycles for MAGT

* Implications for other codes

— space-filling curve reorderings for "neighborhood-based” computations

— dynamic multi-level blocking: regularize memory hierarchy use of any
explicitly-specified computation order
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The Hardness of Cache
* Conscious Data Placement

Erez Petrank
Technion — Israel Institute of Technology

Joint work with Dror Rawitz (Technion)

ACM Conference on Principles of Programming Languages
Portland, Oregon
January 16, 2002

* Computers today

"Memory speed falls behind processor speed,
and gap still increasing.

=Solution: use a fast cache between memory
and CPU.

*Implication: program cache behavior has a
significant impact on program efficiency.

Cache

i )
POPL 2002

Petrank,

118

How do we place data (or
* code) optimally?

=Step 1: Discover future accesses to data.

*Step 2: Find placement of data that
minimizes the cache misses.

=Step 3: Rearranged the data in memory.
=Step 4: Run program.

= Some "minor" problems:
= In Step 1: We cannot tell the future

= In Step 2: We don't know how to do that

Petrank, POPL 2002 119

Step 1. Discover future
* accesses to data

=Static analysis.

*Profiling.
=Runtime monitoring.

This work:
Even if future accesses are known exactly,

Step 2 (placing data optimally) is extremely
difficult.

Petrank, POPL 2002 120




* Our results

Can we (efficiently) find the optimal
placement?

No! Unless, P=NP.

Petrank, POPL 2002 121

* Our results

Can we (efficiently) find an “almost” optimal
placement?

Almost = # misses is fwice the optimum
Nol! Unless, P=NP.

Can we (eff.) find “fairly” optimal placement?
Fairly = # misses is 100 fimes the optimum

Nol Unless, P=NP.

Petrank, POPL 2002 122

* Our results

Can we (eff.) find a "reasonable” placement?
reasonable = # misses [ log(n) the optimum

No!  Unless, P=NP.

Can we (eff.) find an “acceptable” placement?
Acceptable = # misses is n°°° times the optimum

Nol! Unless, P=NP.
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* The Main Theorem

Let e be any real number, O< e <1.
If there is a polynomial time algorithm that
finds a placement which is within a factor of

n(-9 from the optimum, then P=NP.

(Theorem holds for caches with > 2 blocks)

Petrank, POPL 2002 124

* An Open Question:

Can we classify programs for which
the problem becomes simpler?

An extended version of the paper:

http://www.cs.technion.ac.il/~erez/
publications.html
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Reference Affinity
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Reference Affinity

* Memory hierarchy is organized as blocks

+ cache blocks, cache, VM pages, disk tracks
- 64-byte, 128-byte, 4KB, ...

* block utilization = cache/memory utilization
* Basic problem

* what data are being used together?
* Reference affinity

* a group of data have reference affinity if they are always
accessed close together

* the term was coined by late Ken Kennedy
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The Concept of Links

Data are accessed together if

+ their accesses are linked by a short distance
+ Linked path & link length
A linked path from x; to yj (x to y) with link length k iff

1 m accesses X1, X2, X3, .., Xm St
1) dis(x,x1) < k N dis(x1,x2) < k N ... N dis(xm.y) < k

2) X , X1, X2, .., Xm, y are all dlffegelmkg?jtsa%lﬁ?fg%s
w1 (to x2) to y1
with link length 2.
w, X, y are distinct
elements.

W{ X{ W2 X2 uq{ Y1 z{ ...
#»
1 2

128

Properties

* Consistency
* A unique partition of program data
‘abeGand b,ce6 =a,c e6

* Hierarchical structure
» shorter link length = finer partition
* k = o = all data are in one group
* k = 0 = each element is in one group
- reducing k = sharpening the focus
+ Bounded volume distance
- any element of G is accessed, all other elements will be
accessed within |G| *k elements
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An Affinity Hierarchy

- k = «, affinity group {u, v, w, x, y, 2}

- k = 3, affinity group {w, x, y, z}, {u}, and {v}

* k = 1, affinity groups {w, x}, {y, z}, {u}, and {v}

- k=0, affinity groups {w}, {x}, {y}. {z}. {u}, and {v}

+ Data of the same group may be accessed ina
different order with a different frequency
+ Affinity holds for the entire trace
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Data Regrouping/ Splitting

+ Source-level data
+ arrays and structures account for data
* The layout of object fields
+ array allocation in Fortran orstructure allocation in C
* neither is sensitive to the access pattern
* Array regrouping [Ding&Kennedy LCPC'99 JPDC'04]
« compiler analysis
+ Structure splitting [Chilimbi+ PLDI'99 ‘01, Rabbah&Palem
TECS'03, Zhong+ PLDT'04]
* pointer and array based implementation
- safety, nested structures
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Structure Splitting/Array Regrouping

* Number of choices

+ 7 fields, 210 layouts

* Swim has 14 arrays

* 6 million possible layouts

- Different platforms/compilers
* Optimal data layout unreachable

+ Petrank & Rawitz, POPL 2001
+ Affinity-based layout

* ties or wins 97% cases against 7 methods
* never loses more than 1% or 0.004 second
+ larger structures = larger improvements

132




Evaluation

- 8 Data layout schemes compared
+ Original
+ K-distance with k = 256, 64
+ K%-distance with k = 1%, 0.1%
+ X-means
* Frequency-based
+ Static analysis
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Affinity Relations Among Tree Data

kA
693
= =
69
55
19
0 [ ]
addr 1ft rtwt inum rt

- Set k to be 256
- data are used within 2KB of data access
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Array Regrouping / Structure Splitting

Dendrogram for Swim

Machines
14 4
Intel Swim
Pentium 4 124
Tomcatv 1
2X ave 10
1.12X avg TSP &
& -
IBM Swim =
Power 4 .
105X avg Tomcatv 61
TSP 44
* larger structures = larger improvements 4
- ties or wins 97% cases against 8 methods for 9 .
pr‘ogr‘ams on two machlnc’es cv oz h cu wu v P uold pt;ld vold unewpnewvnew psi
* never loses more than 1% or 0.004 seconds
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Reference Affinity

+ A new theoretical model [Zhang+ POPL'06]
* theoretical properties
* recursive data placement, sampling, code layout
* the first trace-based hierarchical locality model
- Empirical evidence [Zhong+ PLDI'04]
* the link length is critical
* array regrouping and structure splitting
* strict affinity seems to approximate optimum
* Implementation in IBM compiler [Shen+ ICS'05]
+ compiler analysis and light-weight profiling
- effective for SPEC2Kfp programs

* trace-based models useful for compiler design
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Soft-OLP: Improving Hardware Cache Performance Through Software-Controlled
Object-Level Partitioning

Qingda Lu', Jiang Lin?, Xiaoning Ding', Zhao Zhang?, Xiaodong Zhang', P. Sadayappan®

! Dept. of Computer Science and Engineering *Dept. of Electrical and Computer Engineering
The Ohio State University Towa State University

{lug,dingxn,zhang,saday } @cse.ohio-state.edu {linj, zzhang} @iastate.edu

[Lu et al. PACT 2009]
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ArrayTool: A Lightweight Profiler to Guide Array
Regrouping

Xu Liu, Kamal Sharma, John Mellor-Crummey
Department of Computer Science, Rice University
Houston, TX, USA
{x110, kgs1, johnmc}@rice.edu

e LULESH [13], an application benchmark developed
by Lawrence Livermore National Laboratory (LLNL),
is an Arbitrary Lagrangian Eulerian code that solves
the Sedov blast wave problem for one material in 3D.
In this paper, we study a highly-tuned LULESH im-
plementation written in C++ with OpenMP. We run
LULESH with 48 threads on a 90 x 90 x 90 three-
dimensional mesh.

Regrouping all of these 15 arrays into two groups suggested
by ArrayTool yields a 1.25x speedup for the whole LULESH

program.

Code Layout Optimization for Defensiveness and

Politeness in

Pengcheng Li, Hao Luo, Chen Ding

Department of Computer Science, University of Rochester

Rochester, NY, US
{pli, hluo, cding} @cs.rochester.edu

Abstract—Code layout optimization secks to reorganize the in-
structions of a program to better utilize the cache. On multicore,
parallel ions improve the throughput but may signi

Shared Cache

Ziang Hu, Handong Ye
Futurewei Technologies Inc.
Santa Clara, CA, US
{ziang, hye} @huawei.com

possible layouts. The goal is to find the one with the best
cache performance.

Programs share the instruction cache if they run to-
gether using lti-threading (SMT). Most high-

increase the cache contention, because the co-run programs share
the cache and in the case of hyper-threading, the instructi
cache.

In this paper, we extend the reference affinity model for use in

hole-program code layout optimizati i the
temporal relation graph (TRG) model used in prior work for
comparison. For code reorganization, we have developed both
function reordering and inter-procedural basic-block reordering.
We implement the two models and the two transformations in the
LLVM compiler. Experimental results on a set of benchmarks
show frequently 20% to 50% reduction in instruction cache

isses. By better utilizing the shared cache, the new techniques
the throughput improvement of hyper-threading by 8%.

performance processors today use SMT to turn a single phys-
ical core into multiple logical cores. The first implementation
in Intel Xeon showed that it adds less than 5% to the chip size
and maximum power requirement and provides gains of up to
30% in performance [19]. IBM machines have 4 SMT threads
on a Power 7 core and will have 8 threads on Power 8. An
extensive study on sequential, parallel and managed workloads
found that SMT “delivers substantial energy savings” [7].

In an experiment which we will describe in more detail
later, we found that 9 out of 29 SPEC CPU 2006 programs

[ICPP 2014]

Affinity-Based Hash Tables

Brian Gernhardt, Rahman Lavaee, and Chen Ding

University of Rochester
{gernhard, rlavaee, cding}@cs.rochester.edu

2. Example Usage

As an example, consider the use of a hash table in a multi-
threaded program. The simplest method to make this data
structure thread-safe is to use a single lock to guard access
to the entire table. To increase the scalability one can use
lock striping, where there are multiple locks on the table and
each guards ac to a portion of the hash buckets. Due to
the nature of hashes, any program using this striped locking
system and needs to access several keys will likely have to
contend for several locks.

Rather than grouping buckets under a lock simply by
position, we can assign buckets to a lock based on the affinity
information. This way, entries that are commonly accessed
together are protected by the same lock in order to reduce
lock contention. If a large number of updates need to be
performed at once then the application can query for related
entries and perform the updates for that group all at once
before proceeding to the next group.

[MSPC 2014]

Summary

+ Computation locality

* reuse-driven loop fusion, hyper-graph cut
* many others (Prof. Yi's lectures)

- Data locality
* Petrank-Rawitz hardness

- reference affinity for hierarchical data layout

* Integrated solutions

» computation fusion + data regrouping

+ space-filling curve ordering
+ algorithmic changes

+ Compiler optimization for shared cache
- defensive tiling [Bao and Ding, CGO 2013]

+ compiling for defensiveness/politeness [Li et al., ICPP 2014]
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