
多౮共享缓存下的ᐫ程优化和正确性
Program Behavior in Shared Cache: Performance and Correctness

软硬件协⇖管ၯ和优化缓存
Collaborative Cache Management and Optimization

丁ߚ Chen Ding
美国纽约州᪃立罗切斯特大学

计算机科学系教授

Professor
University of Rochester

2014 DragonStar Course at University of Science and Technology of China

Beyls, D’Hollander
3

Reuse Distance-Based
Cache Hint Selection

Kristof Beyls and Erik D’Hollander
Ghent University

Euro-Par 2002 and Ph.D. Thesis Defense 2004

Beyls, D’Hollander
6

CPU
L1 L2

L3
MRU

LRUCache

CPU
L1 L2

L3
MRU

LRUCache

• Cache control instructions are emerging in
a number of architectures.

• HP-PlayDoh EPIC architecture provides 2
kinds of cache hints:

Cache Hints: What

LD LD_C2_C3

Beyls, D’Hollander
7

Cache Hints: What (2)

• 2 kinds of cache hints
–source cache hint (C2): Indicates cache level where

data is expected.
• used by compiler to know real latency of load

–target cache hint (C3): Indicates cache level where
data should be kept.
• used by hardware to adapt replacement policy

• Question: How to select appropriate cache
hints? (→ reuse distance)

LD_C2_C3

Beyls, D’Hollander
8

Reuse Distance: Properties

• Backward reuse distance > cache size
⇔

Cache miss in fully-assoc. LRU cache

• Forward reuse distance > cache size
⇔

Data will not be retained in fully-assoc.
LRU cache

Beyls, D’Hollander
9

Reuse-distance based
cache hint selection...

Reuse Distance (RD) Cache Hint

 RD < L1 C1

L1 <= RD < L2 C2

L2 <= RD < L3 C3

L3 <= RD C4

Cache sizeL1 L2 L3
Beyls, D’Hollander

10

Differentiating between
source and target hints

• Source cache specifier: based on
backward reuse distance

• Target cache specifier: based on forward
reuse distance

... B H F ...

e.g.:

BRD = 13 FRD = 5000

L1 = 256 lines
L2 = 8K lines
L3 = 64K lines

LD_C1_C2

Beyls, D’Hollander
11

C1

Example of cache hint per
instruction problem

for i := 1 to 100
 A(i) = ...

LD_C1_C1
or

LD_C4_C4
????

A(1) A(2) A(3) A(4)

A(5) A(6) A(7) A(8)

C4

75%

25%

reuse distance

cumulative
reuse distance
distribution

Beyls, D’Hollander
12

Cumulative reuse distance
distribution to cache hint

Reuse distance0%

100%
90%

Cache sizeL1 L2 L3

C2

0%

40%

45%

5%

Beyls, D’Hollander
13

Strategy

• Instrument the program to obtain memory
access stream.

• Profile to obtain reuse distance
distribution.

• Generate cache hints.
• Execute optimized program.

Beyls, D’Hollander
14

Implementation

• Open64 compiler for Itanium (IA-64)
–source cache hints: in instruction scheduler

• only visible in internal compiler representation of
instructions.

–target cache hints: in assembly output
• shows up in assembly code
e.g. ld.nta r34 = [r47]

• Programs from Olden and Spec95fp.

Beyls, D’Hollander
15

Execution times

0.60

0.69

0.78

0.87

0.96

1.05

bh
em

3d m
st

power ts
p

to
m

ca
tv

wav
e5

av
er

ag
e

Normalized execution time after cache hint selection

Beyls, D’Hollander
16

Results

• In Olden (pointer chasing), speedup
comes mainly from target cache hints
(better replacement policy) (4% on
average)

• In Specfp (numerical loops), speedup
results mainly from source cache hints
(better latency hiding through instruction
scheduling). (10% on average)

Beyls, D’Hollander
17

Conclusion

• Reuse distance is independent of cache
parameters such as size or associativity.

• ⇒ good metric for optimizations targeting
multiple cache levels.

• As such, it is an appropriate measure to base
cache hint selection on.

• The implementation in an EPIC compiler resulted
in 7% speedup on average with a maximum of
36%.

Beyls, Reuse-distance Eq.

18

Stap 3: Tel aantal aangesproken
elementen

for i:= 1 to N
for j:= 1 to 2
 B(i,j) := A(i)
endfor

endfor
for k:= 1 to N

A(k):=0
endfor

3N-2i

1 1

1

1

j

i

k

1

2

3

1

2

3

1 2

5

7

3

Beyls, Reuse-distance Eq.

19
Dynamische cache hints

for i:= 1 to N
for j:= 1 to 2

 if (j=1) FRD_A(i)=1
 if (j=2) FRD_A(i)=3*N-2i
 B(i,j) := A(i)
endfor

endfor
for k:= 1 to N

A(k):=0
endfor

;; FRD_A in register r2
Load r1 = A(i), frd=r2

Beyls, Reuse-distance Eq.

20

Dynamische cache hints:
reductie van overhead

for i:= 1 to N
for j:= 1 to 2

 if (j=1) FRD_Ai=1
 if (j=2) FRD_Ai=3*N-2i
 B(i,j) := A(i), FRD_Ai
endfor

endfor

FRD_A1:=1
FRD_A2:=3*N
for i:= 1 to N

B(i,1) := A(i), FRD_A1
FRD_A2 += -2
B(i,2) := A(i), FRD_A2

endfor

Generating cache hints for improved program efficiency

Kristof Beyls *, Erik H. D!Hollander

Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Received 16 June 2003; received in revised form 23 April 2004; accepted 7 September 2004
Available online 30 December 2004

Abstract

One of the new extensions in EPIC architectures are cache hints. On each memory instruction, two kinds of hints can
be attached: a source cache hint and a target cache hint. The source hint indicates the true latency of the instruction,
which is used by the compiler to improve the instruction schedule. The target hint indicates at which cache levels it
is profitable to retain data, allowing to improve cache replacement decisions at run time. A compile-time method is pre-
sented which calculates appropriate cache hints. Both kind of hints are based on the locality of the instruction, mea-
sured by the reuse distance metric.

Two alternative methods are discussed. The first one profiles the reuse distance distribution, and selects a static hint
for each instruction. The second method calculates the reuse distance analytically, which allows to generate dynamic
hints, i.e. the best hint for each memory access is calculated at run-time.

The implementation of the static hints scheme in the Open64-compiler for the Itanium processor shows a speedup of
10% on average on a set of pointer-intensive and regular loop-based programs. The analytical approach with dynamic
hints was implemented in the FPT-compiler and shows up to 34% reduction in cache misses.
! 2004 Elsevier B.V. All rights reserved.

Keywords: Compiler optimization; Reuse distance; Replacement policy; Source cache hint; Target cache hint; EPIC

1. Introduction

Many optimizations have been proposed to
improve the cache behavior of programs. The
existing software techniques either improve data

layout (e.g. array padding [38], structure layout
[12]), reorganize the order of computation to in-
crease the locality (e.g. loop transformations such
as loop tiling [51], fusion [30], and others [32]),
or hide the latency of cache misses through pre-
fetching [33]. In a different vein, the growing speed
gap between processor and memory has spurred
the development of new hardware remedies to im-
prove cache performance. This resulted in cache
hint extensions for memory instructions, e.g. in

1383-7621/$ - see front matter ! 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2004.09.004

* Corresponding author. Tel.: +32 9 264 3375; fax: +32 9 264
3594.

E-mail addresses: kristof.beyls@elis.ugent.be (K. Beyls),
erik.dhollander@elis.ugent.be (E.H. D!Hollander).

Journal of Systems Architecture 51 (2005) 223–250

www.elsevier.com/locate/sysarc

Beyls, Reuse-distance Eq.

22
Statische vs. dynamische hints

-29%

-11%

6%

23%

40%

vp
en

ta

m
xm

liv
18

ch
ol

es
ky

ja
co

bi

ga
us

s-
jo

rd
an

to
m

ca
tv

ge
m

id
de

ld
e

re
du

ct
ie

 c
ac

he
m

is
se

rs
statische hints
dynamische hints

23

COOPERATIVE HARDWARE/SOFTWARE CACHING FOR
NEXT-GENERATION MEMORY SYSTEMS

A Dissertation Presented

by

ZHENLIN WANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2004

Department of Computer Science

[����2004]

Can Collaborative Caching Be Optimal?

Optimal Caching

•Optimal cache management
•MIN by Belady, CACM 1966
•OPT by Mattson et al., IBM SJ 1970
•Improvements over LRU by large factors

• proportional to cache size in theory [Sleater&Tarjan, CACM
1985]

• up to a hundred times in simulation [Burger et al., ISCA 1996]
•Assuming no program rerodering
•Optimal ordering is NP-hard

• Computation fusion, Ding & Kennedy, JPDC 2004
• Data layout, Petrank & Rawitz, POPL 2002

Optimal Collaborative Caching:
Theory and Applications

Xiaoming Gu
08.15.2013

OPT Cache
Replacement Policy

• Optimal

• The furthest reused data element is the
victim when an eviction is needed

• Impossible for real hardware

• Previously only useful for studying the
performance upper bound

4

• LRU: no cache
reuse until data
fits in cache

• OPT: miss ratio
drops
proportionally
with cache size
increase

Streaming Program

5

64K 256K 1M 4M 16M 64M
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

cache sizes (byte)

m
is

s
ra

tio

LRU
OPT

Trace w/ Mixed Locality

• Stack distance
• Requires the inclusion property
• A cache miss iff distance > cache size

• LRU: bad for streaming (low locality) data
• MRU: bad for high locality data
• OPT: store all high locality data and as much

as low locality data as possible
6

capacity misses
when cache size = 5

Collaborative Caching

• Software provides cache hints to
influence hardware cache management

• The term coined by Wang et al [PACT’02]

• Available cache hint interfaces in real
hardware

• Intel X86 & Itanium, IBM Power

• Previous works not aimed to be optimal
7

Outline

• Introduction

• Theory

• Applications

9

New Cache Types and
 Formal Properties

• Three collaborative cache types

• Trespass LRU cache [LCPC’08]

• LRU-MRU cache [ISMM’11]

• Priority LRU cache [ISMM’12]

• Two formal properties
• Optimality

• Inclusion

10

Inclusion Property

• A larger cache always contains the
content of a smaller cache

• Miss curve is non-increasing

• Miss ratio can be simulated as a stack
in one pass for all cache sizes

• Stack distance exists

11

LRU-MRU Cache
• Two access types: LRU or MRU

• 1-bit hint interface

12

Sm

Sm−1

...

S3(w)

S2

S1

=⇒

Sm

Sm−1

...

S2

S1

S3(w)

Sm

Sm−1

.

.

.

S3

S2

S1

w

=⇒

Sm−1

Sm−2

.

.

.

S2

S1

w

Sm

LRU hit LRU miss

LRU-MRU Cache

13

Sm

Sm−1

...

S3(w)

S2

S1

=⇒

S3(w)

Sm

...

S4

S2

S1

Sm

Sm−1

...

S3

S2

S1

w

=⇒

w

Sm−1

...

S3

S2

S1

Sm

MRU hit MRU miss

• MRU data have lower priority
• Evicted before LRU data

LRU-MRU Cache

• Can be made optimal

• Inclusion property holds
• Two-page proof (pp. 41 -- 42)
• Stack distance exists

14

same misses as
OPT (for c=5)

Optimal Hint Insertion
• Use forward OPT distance

• If distance > cache size => MRU
• Otherwise => LRU

15

MRU accesses
fwd OPT dis > cache size

Theorem 1 Bypass LRU Is Optimal

•Proof by contradiction
• first z’ that is hit in OPT but miss in BLRU
• let z be the previous access to the same data d

•Two cases
• z is a bypass access

• z’ cannot be cache hit in OPT
• z is a normal access

• y exists that evicts d after z
• if OPT cache is not full, trivial
• if cache is full

• d is at the bottom -> all elems are brought in by normal accesses
• OPT and BLRU have same content before y

• if d’ in BLRU not OPT, d’ has to be brought in by a bypass
• OPT must evict some data x, then x has to be from a bypass

Non-optimal Uses

• LRU/MRU may mix in arbitrary ways

• Maybe not optimal

• Inclusion property still holds
• Same two-page proof (pp. 41 -- 42)
• Stack distance exists

18

LRU-MRU Stack Distance
• Inclusion property traditionally requires a

single priority list

• Two types of priorities

• LRU and MRU data managed differently

• Solution --- combine two priorities

• LRU priority: the last access time

• MRU priority: the negation of the last
access time

16

An Example of LRU-MRU

17

• LRU priority: the last access time
• MRU priority: the negation of the last

access time

• MRU data evicted before LRU data

Optimal Collaborative Caching:
Theory and Applications

by

Xiaoming Gu

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Chen Ding

Department of Computer Science
Arts, Sciences & Engineering

Edmund A. Hajim School of Engineering & Applied Sciences

University of Rochester
Rochester, New York

2013

Optimal cache performance?
Answer: Yes

Miss rate in all cache sizes?
Answer: LRU-MRU (Gu) distance

[Gu et al. LCPC 2008, ISMM 2011/2012/2013, Rochester
Dissertation 2013]

Priority Hint

• 1-bit hint in LRU-MRU cache

• Only two choices: LRU or MRU

• Priority hint

• A number encoding a priority

• Unlimited choices

• Priority LRU cache

19

Priority LRU
• Inclusion property holds

• Six-page proof (pp. 55 -- 60)

• Non-uniform

• The priority list does not exist

• Traditional (uniform) inclusion requires
a single priority list

• A brand new algorithm for stack distance

21

Example of
Non-uniform Inclusion

22
cache size = 6

cache size = 5

cache size = 5

Cache Policy Hierarchy

23

traditional
caching

collaborative
caching

generalized
collaborative

caching

no hint

1-bit hint

priority hint

LRU
MRU
OPT

Trespass LRU

LRU-MRU

Priority LRU

Cache Policy Hierarchy

Original execution: addr1, addr2, ...

Hinted execution: addr1-hint1, addr2-hint2, ...

LRU MRUOPT

LRU-MRUtrespassevict-me Itanium

priority LRU

implemented
by

Outline

• Introduction

• Theory

• Applications

25

• Program-assisted Cache Management

• A feedback-based cache-hint
optimization

• Reference-based PACMAN [ISMM’11]

• Loop-based PACMAN [ISMM’13]

Cross-input Prediction

• Grid regression
for pattern
recognition

• Prediction based
on input sizes

32

Improv. on Swim

• Training on input 256 by 256 and 384 by 384
• Testing on 512 by 512

33

• An OpenMP streaming example

Improv. on Real Hardware

34

A 12MB array is
traversed many times

• The inner parallel loop is split into two
• 1st => 8MB & normal access
• 2nd => 4MB & non-temporal

Thesis Statement
• Optimal cache management can be

done efficiently through software-
hardware collaboration

• Collaborative hardware can be as
simple and efficient as existing cache
and robust against Belady anomaly

• Collaborative software can be general
and optimized for all cache sizes

8

On-going Studies

Cache Rationing

with Jacob Brock and Raj Parihar (ECE)

(a) Rationing performs as well as partitioning and better than sharing because rationing protects core 1 against the
interference by core 2.

(b) Rationing performs as well as sharing and better than partitioning because rationing utilizes the unused ration of core
1.

Figure 2: Resource protection (a) and utilization (b) in evenly rationed cache, in comparison with communist (hard partitioning) and capitalist
(free-for-all sharing) policies.

replace it before replacing other blocks. Such an instruction can be
readily supported by cache rationing.

We add a hint bit to load/store instructions. At the access, the
processing is exactly as we have defined before. The only effect
happens when setting the access bit. In the default logic, the access
bit is set after the access. With the new interface, the access bit is
set only if the hint bit is not. In other words, the software can tell the
rationing hardware not to set the access bit if it knows that the block
will have no more cache reuse, or if its eviction would free cache
space for other blocks. The block then becomes unused ration and
will be favored for immediate eviction (before every block whose
access bit is 1).

As an example, consider two cores sharing a four-block cache.
Let the access traces be “xyzxyz...” for one core and “abcabc...” for
the other. With equal rationing, neither core has enough cache to
obtain any reuse. However, with cache hints, the software can free
up cache space by zeroing some access bits (where the hint bit is
set). In Figure 3, every other access has its hint bit set, so the access
bit is zeroed. In this case, the non-compulsory miss ratio is reduced
from 1 to 1/2. In [10], it is shown that a hint-based solution can
achieve optimal caching, and its application for single threads is
demonstrated in [3].

2.7 Comparison with Promotion/Insertion Pseudo
Partitioning (PIPP)

In this section, we compare and differentiate our technique with
several other designs. The recently proposed PIPP design [39]
tries to achieve partitioning with the help of intelligent insertion
and promotion policies. Because PIPP does not explicitly and pro-
actively partition the cache, it is pseudo-partitioning as the name
suggests. The baseline PIPP design works as following: For n

Thread 1 | a b c a b c a b c!
Hint Bit | 0 1 0 1 0 1 0 1 0!
Access Bit | 1 0 1 0 1 0 1 0 1!
Misses | M M M M M M!
--------------|------------------!
Thread 2 | x y z x y z x y z!
Hint Bit | 0 1 0 1 0 1 0 1 0!
Access Bit | 1 0 1 0 1 0 1 0 1!
Misses | M M M M M M!
==============|==================!
Post-Access | a b c a b c a b c!
Cache Content | x y z x y z x y z!
 | a a c c b b a a!
 | x x z z y y x x

Figure 3: An example of cache rationing with a hardware-software
collaboration hint bit. If the hint bit is set, the access bit is zeroed so
that the accessed blocks will not be kept in the cache. The contents
of the cache are shown after each pair of accesses, and blocks with
their access bit zeroed are underlined.

cores, it assumes that there exists a set of target partitions P =
{p1, p2, ..., pn} such that

P
pi = w, where w is the set associa-

tivity of the cache. Simple baseline PIPP implements three policies.
On insertion, corei simply installs all new incoming lines at prior-

4 2013/11/22

Two threads, each accessing three elements and using
two-element cache. Best per thread and overall

cache utilization --- 50% miss rate for each program.
56

Collaborative Rationing
[PACT 2014 poster]

Summary

• Many techniques of non-LRU management
• most are LRU-MRU variations
• collaborative caching coined by Wang et al. PACT 2002

• LRU-MRU cache properties
• optimality
• inclusion
• Gu distance

• Compiler cache hint insertion
• Beyls and D’Hollander, JSA 2004

57

