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• Cache control instructions are emerging in 
a number of architectures.

• HP-PlayDoh EPIC architecture provides 2 
kinds of cache hints:

Cache Hints: What

LD LD_C2_C3
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Cache Hints: What (2)

• 2 kinds of cache hints
–source cache hint (C2): Indicates cache level where 

data is expected.
• used by compiler to know real latency of load

–target cache hint (C3): Indicates cache level where 
data should be kept.
• used by hardware to adapt replacement policy

• Question: How to select appropriate cache 
hints? (→ reuse distance)

LD_C2_C3
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Reuse Distance: Properties

• Backward reuse distance > cache size
⇔

Cache miss in fully-assoc. LRU cache

• Forward reuse distance > cache size
⇔ 

Data will not be retained in fully-assoc. 
LRU cache

Beyls, D’Hollander
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Reuse-distance based 
cache hint selection...

Reuse Distance (RD) Cache Hint

          RD < L1 C1

L1 <= RD < L2 C2

L2 <= RD < L3 C3

L3 <= RD C4

Cache sizeL1 L2 L3
Beyls, D’Hollander
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Differentiating between
source and target hints

• Source cache specifier: based on 
backward reuse distance

• Target cache specifier: based on forward 
reuse distance

...  B    H    F  ...

e.g.:

BRD = 13 FRD = 5000

L1 = 256   lines
L2 = 8K     lines
L3 = 64K   lines

LD_C1_C2

Beyls, D’Hollander
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C1

Example of cache hint per 
instruction problem

for i := 1 to 100
  A( i ) = ...

LD_C1_C1
or

LD_C4_C4
????

A(1) A(2) A(3) A(4)

A(5) A(6) A(7) A(8)

C4

75%

25%

reuse distance

cumulative
reuse distance
distribution
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Cumulative reuse distance 
distribution to cache hint

Reuse distance0%

100%
90%

Cache sizeL1 L2 L3

C2

0%

40%

45%

5%



Beyls, D’Hollander
13

Strategy

• Instrument the program to obtain memory 
access stream.

• Profile to obtain reuse distance 
distribution.

• Generate cache hints.
• Execute optimized program.

Beyls, D’Hollander
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Implementation

• Open64 compiler for Itanium (IA-64)
–source cache hints: in instruction scheduler

• only visible in internal compiler representation of 
instructions.

–target cache hints: in assembly output
• shows up in assembly code
e.g.   ld.nta r34 = [r47]

• Programs from Olden and Spec95fp.

Beyls, D’Hollander
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Execution times
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Results

• In Olden (pointer chasing), speedup 
comes mainly from target cache hints 
(better replacement policy) (4% on 
average)

• In Specfp (numerical loops), speedup 
results mainly from source cache hints 
(better latency hiding through instruction 
scheduling). (10% on average)

Beyls, D’Hollander
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Conclusion

• Reuse distance is independent of cache 
parameters such as size or associativity.

• ⇒ good metric for optimizations targeting 
multiple cache levels.

• As such, it is an appropriate measure to base 
cache hint selection on.

• The implementation in an EPIC compiler resulted 
in 7% speedup on average with a maximum of 
36%.

Beyls, Reuse-distance Eq.
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Stap 3: Tel aantal aangesproken 
elementen

for i:= 1 to N
for j:= 1 to 2
  B(i,j) := A(i)
endfor

endfor
for k:= 1 to N

A(k):=0
endfor
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Dynamische cache hints

for i:= 1 to N
for j:= 1 to 2

    if (j=1) FRD_A(i)=1
  if (j=2) FRD_A(i)=3*N-2i
  B(i,j) := A(i)
endfor

endfor
for k:= 1 to N

A(k):=0
endfor

;; FRD_A in register r2
Load  r1 = A(i), frd=r2

Beyls, Reuse-distance Eq.
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Dynamische cache hints:
reductie van overhead

for i:= 1 to N
for j:= 1 to 2

    if (j=1) FRD_Ai=1
  if (j=2) FRD_Ai=3*N-2i
  B(i,j) := A(i), FRD_Ai
endfor

endfor

FRD_A1:=1
FRD_A2:=3*N
for i:= 1 to N

B(i,1) := A(i), FRD_A1
FRD_A2 += -2
B(i,2) := A(i), FRD_A2

endfor

Generating cache hints for improved program efficiency
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Abstract

One of the new extensions in EPIC architectures are cache hints. On each memory instruction, two kinds of hints can
be attached: a source cache hint and a target cache hint. The source hint indicates the true latency of the instruction,
which is used by the compiler to improve the instruction schedule. The target hint indicates at which cache levels it
is profitable to retain data, allowing to improve cache replacement decisions at run time. A compile-time method is pre-
sented which calculates appropriate cache hints. Both kind of hints are based on the locality of the instruction, mea-
sured by the reuse distance metric.

Two alternative methods are discussed. The first one profiles the reuse distance distribution, and selects a static hint
for each instruction. The second method calculates the reuse distance analytically, which allows to generate dynamic
hints, i.e. the best hint for each memory access is calculated at run-time.

The implementation of the static hints scheme in the Open64-compiler for the Itanium processor shows a speedup of
10% on average on a set of pointer-intensive and regular loop-based programs. The analytical approach with dynamic
hints was implemented in the FPT-compiler and shows up to 34% reduction in cache misses.
! 2004 Elsevier B.V. All rights reserved.

Keywords: Compiler optimization; Reuse distance; Replacement policy; Source cache hint; Target cache hint; EPIC

1. Introduction

Many optimizations have been proposed to
improve the cache behavior of programs. The
existing software techniques either improve data

layout (e.g. array padding [38], structure layout
[12]), reorganize the order of computation to in-
crease the locality (e.g. loop transformations such
as loop tiling [51], fusion [30], and others [32]),
or hide the latency of cache misses through pre-
fetching [33]. In a different vein, the growing speed
gap between processor and memory has spurred
the development of new hardware remedies to im-
prove cache performance. This resulted in cache
hint extensions for memory instructions, e.g. in

1383-7621/$ - see front matter ! 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2004.09.004
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Statische vs. dynamische hints
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Can Collaborative Caching Be Optimal?

Optimal Caching

•Optimal cache management
•MIN by Belady, CACM 1966
•OPT by Mattson et al., IBM SJ 1970
•Improvements over LRU by large factors

• proportional to cache size in theory [Sleater&Tarjan, CACM 
1985]

• up to a hundred times in simulation [Burger et al., ISCA 1996]
•Assuming no program rerodering
•Optimal ordering is NP-hard

• Computation fusion, Ding & Kennedy, JPDC 2004
• Data layout, Petrank & Rawitz, POPL 2002

Optimal Collaborative Caching: 
Theory and Applications

Xiaoming Gu
08.15.2013

OPT Cache 
Replacement Policy

• Optimal

• The furthest reused data element is the 
victim when an eviction is needed

• Impossible for real hardware

• Previously only useful for studying the 
performance upper bound

4

•  LRU: no cache 
reuse until data 
fits in cache

• OPT: miss ratio 
drops 
proportionally 
with cache size 
increase

Streaming Program
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Trace w/ Mixed Locality

• Stack distance
• Requires the inclusion property
• A cache miss iff distance > cache size

• LRU: bad for streaming (low locality) data
• MRU: bad for high locality data
• OPT: store all high locality data and as much 

as low locality data as possible
6

capacity misses 
when cache size = 5



Collaborative Caching

• Software provides cache hints to 
influence hardware cache management

• The term coined by Wang et al [PACT’02]

• Available cache hint interfaces in real 
hardware

• Intel X86 & Itanium, IBM Power

• Previous works not aimed to be optimal
7

Outline

• Introduction

• Theory

• Applications

9

New Cache Types and
 Formal Properties

• Three collaborative cache types

• Trespass LRU cache [LCPC’08]

• LRU-MRU cache [ISMM’11] 

• Priority LRU cache [ISMM’12]

• Two formal properties
• Optimality

• Inclusion

10

Inclusion Property

• A larger cache always contains the 
content of a smaller cache

• Miss curve is non-increasing

• Miss ratio can be simulated as a stack 
in one pass for all cache sizes

• Stack distance exists

11

LRU-MRU Cache
• Two access types: LRU or MRU

• 1-bit hint interface
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• MRU data have lower priority
• Evicted before LRU data



LRU-MRU Cache

• Can be made optimal

• Inclusion property holds
• Two-page proof (pp. 41 -- 42)
• Stack distance exists

14

same misses as 
OPT (for c=5)

Optimal Hint Insertion
• Use forward OPT distance

• If distance > cache size => MRU
• Otherwise => LRU

15

MRU accesses 
fwd OPT dis > cache size

Theorem 1  Bypass LRU Is Optimal

•Proof by contradiction
• first z’ that is hit in OPT but miss in BLRU
• let z be the previous access to the same data d

•Two cases
• z is a bypass access

• z’ cannot be cache hit in OPT 
• z is a normal access

• y exists that evicts d after z
• if OPT cache is not full, trivial
• if cache is full

• d is at the bottom -> all elems are brought in by normal accesses
• OPT and BLRU have same content before y

• if d’ in BLRU not OPT, d’ has to be brought in by a bypass
• OPT must evict some data x, then x has to be from a bypass

Non-optimal Uses

• LRU/MRU may mix in arbitrary ways

• Maybe not optimal

• Inclusion property still holds
• Same two-page proof (pp. 41 -- 42)
• Stack distance exists

18

LRU-MRU Stack Distance
• Inclusion property traditionally requires a 

single priority list

• Two types of priorities

• LRU and MRU data managed differently

• Solution --- combine two priorities

• LRU priority: the last access time

• MRU priority: the negation of the last 
access time

16

An Example of LRU-MRU

17

• LRU priority: the last access time
• MRU priority: the negation of the last 

access time

• MRU data evicted before LRU data
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Optimal cache performance?
Answer: Yes

Miss rate in all cache sizes?
Answer: LRU-MRU (Gu) distance

[Gu et al. LCPC 2008, ISMM 2011/2012/2013, Rochester 
Dissertation 2013]

Priority Hint

• 1-bit hint in LRU-MRU cache

• Only two choices: LRU or MRU

• Priority hint

• A number encoding a priority

• Unlimited choices

• Priority LRU cache

19

Priority LRU
• Inclusion property holds

• Six-page proof (pp. 55 -- 60)

• Non-uniform

• The priority list does not exist

• Traditional (uniform) inclusion requires 
a single priority list

• A brand new algorithm for stack distance

21

Example of 
Non-uniform Inclusion

22
cache size = 6

cache size = 5

cache size = 5

Cache Policy Hierarchy

23

traditional 
caching

collaborative 
caching

generalized 
collaborative 

caching

no hint

1-bit hint

priority hint

LRU
MRU
OPT

Trespass LRU

LRU-MRU

Priority LRU

Cache Policy Hierarchy

Original execution: addr1, addr2, ...

Hinted execution: addr1-hint1, addr2-hint2, ...

LRU MRUOPT

LRU-MRUtrespassevict-me Itanium

priority LRU

implemented 
by



Outline

• Introduction

• Theory

• Applications
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• Program-assisted Cache Management

• A feedback-based cache-hint 
optimization

• Reference-based PACMAN [ISMM’11]

• Loop-based PACMAN [ISMM’13]

Cross-input Prediction

• Grid regression 
for pattern 
recognition

• Prediction based 
on input sizes

32

Improv. on Swim

• Training on input 256 by 256 and 384 by 384 
• Testing on 512 by 512

33

• An OpenMP streaming example

Improv. on Real Hardware

34

A 12MB array is 
traversed many times

• The inner parallel loop is split into two
• 1st => 8MB & normal access
• 2nd => 4MB & non-temporal

Thesis Statement
• Optimal cache management can be 

done efficiently through software-
hardware collaboration

• Collaborative hardware can be as 
simple and efficient as existing cache 
and robust against Belady anomaly

• Collaborative software can be general 
and optimized for all cache sizes

8



On-going Studies

Cache Rationing

with Jacob Brock and Raj Parihar (ECE) 

(a) Rationing performs as well as partitioning and better than sharing because rationing protects core 1 against the
interference by core 2.

(b) Rationing performs as well as sharing and better than partitioning because rationing utilizes the unused ration of core
1.

Figure 2: Resource protection (a) and utilization (b) in evenly rationed cache, in comparison with communist (hard partitioning) and capitalist
(free-for-all sharing) policies.

replace it before replacing other blocks. Such an instruction can be
readily supported by cache rationing.

We add a hint bit to load/store instructions. At the access, the
processing is exactly as we have defined before. The only effect
happens when setting the access bit. In the default logic, the access
bit is set after the access. With the new interface, the access bit is
set only if the hint bit is not. In other words, the software can tell the
rationing hardware not to set the access bit if it knows that the block
will have no more cache reuse, or if its eviction would free cache
space for other blocks. The block then becomes unused ration and
will be favored for immediate eviction (before every block whose
access bit is 1).

As an example, consider two cores sharing a four-block cache.
Let the access traces be “xyzxyz...” for one core and “abcabc...” for
the other. With equal rationing, neither core has enough cache to
obtain any reuse. However, with cache hints, the software can free
up cache space by zeroing some access bits (where the hint bit is
set). In Figure 3, every other access has its hint bit set, so the access
bit is zeroed. In this case, the non-compulsory miss ratio is reduced
from 1 to 1/2. In [10], it is shown that a hint-based solution can
achieve optimal caching, and its application for single threads is
demonstrated in [3].

2.7 Comparison with Promotion/Insertion Pseudo
Partitioning (PIPP)

In this section, we compare and differentiate our technique with
several other designs. The recently proposed PIPP design [39]
tries to achieve partitioning with the help of intelligent insertion
and promotion policies. Because PIPP does not explicitly and pro-
actively partition the cache, it is pseudo-partitioning as the name
suggests. The baseline PIPP design works as following: For n

Thread 1      | a b c a b c a b c!
Hint Bit      | 0 1 0 1 0 1 0 1 0!
Access Bit    | 1 0 1 0 1 0 1 0 1!
Misses        | M M M   M   M   M!
--------------|------------------!
Thread 2      | x y z x y z x y z!
Hint Bit      | 0 1 0 1 0 1 0 1 0!
Access Bit    | 1 0 1 0 1 0 1 0 1!
Misses        | M M M   M   M   M!
==============|==================!
Post-Access   | a b c a b c a b c!
Cache Content | x y z x y z x y z!
              |   a a c c b b a a!
              |   x x z z y y x x

Figure 3: An example of cache rationing with a hardware-software
collaboration hint bit. If the hint bit is set, the access bit is zeroed so
that the accessed blocks will not be kept in the cache. The contents
of the cache are shown after each pair of accesses, and blocks with
their access bit zeroed are underlined.

cores, it assumes that there exists a set of target partitions P =
{p1, p2, ..., pn} such that

P
pi = w, where w is the set associa-

tivity of the cache. Simple baseline PIPP implements three policies.
On insertion, corei simply installs all new incoming lines at prior-

4 2013/11/22

Two threads, each accessing three elements and using 
two-element cache.  Best per thread and overall 

cache utilization --- 50% miss rate for each program. 
56

Collaborative Rationing 
[PACT 2014 poster]

Summary

• Many techniques of non-LRU management
• most are LRU-MRU variations
• collaborative caching coined by Wang et al. PACT 2002

• LRU-MRU cache properties
• optimality
• inclusion
• Gu distance

• Compiler cache hint insertion
• Beyls and D’Hollander, JSA 2004
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