

About course assignment

- Study 5 bugs in an open-source application's Bugzilla
 - Pick the keyword you like
 - Pick the application you like (or use cbs ...)
 - Write the following for each bug
 - What is the bug root cause (fault)
 - What errors might be caused by the bug
 - What is the failure symptom of this bug
 - What is the fix strategy of developers
 - Can this bug be automatically detected? Exposed during testing? Automatically diagnosed or fixed?
- You can work in group

• Memory bugs - Memory leaks - Buffer overflow - Null-ptr dereference - Uninitialized read • Semantic bugs • Concurrency bugs • Performance/energy bugs Faults in linux: ten years later, ASPLOS*11

Don't hesitate to ask me questions!

Thread vs. Process

- Process resource management unit
 - Nothing is shared among processes, except ...
 - Parent & child share initial image
- Thread execution/scheduling unit
 - The address space is completely* shared among threads under the same process

See example code

Sources of non-determinism

- race.c
- On single-core machines
 - System event non-determinism
- On multi-core machines
 - System event non-determinism
 - (Parallel) hardware on-determinism

Thread synchronization (I)

- Lock
 - Enforce mutual exclusion
- · Condition variable
 - Enforce pair-wise ordering
- What is needed to synchronize ...?
- (1) Thread 1 X++;
- Thread 2 X++;
- (2) Thread 1 p=malloc(10); Thread 2 *p=10;

Thread synchronization (II)

- Semaphore
 - A counter (can be initialized with any positive value)
 - P (acquire one piece of resource)
 - V (release one piece of resource)
- What is needed to synchronize ...?
- (1) Thread 1 X++; Thread 2 X++;
- (2) Thread 1 p=malloc(10); Thread 2 *p=10;

Thread APIs

- pthread_create
- pthread_join
- pthread_mutex_lock
- pthread_mutex_unlock
- pthread_cond_wait
- pthread_cond_signal
- ..

Other way of parallel execution

• Shared memory vs. message passing

• What are concurrency bugs • Concurrency bug detection • Concurrency bug exposing • Concurrency bug fixing • Others • Conclusion

Outline • What are concurrency bugs • Concurrency bug detection • Concurrency bug exposing • Concurrency bug fixing • Others • Conclusion

The key challenges • What type of interleavings is buggy? • Large state space • False positives • False negatives • Overhead

Data race

Definition

read write x
Dinning'90,Netzer'91, Choi'91,
Savage'97, Larus'98, Choi'02,
O'Callahan'03, Yu'05, Aiken'06

- · Does this pattern match our examples?
- How to get rid of a data race?

How to detect data races?

- How do I know the execution of two accesses are concurrent?
- What does basic run-time monitoring tell us?

count ++; <thread 1>

 \dots //millions of instructions in between

count++; <therad 2>

Physical time vs. logical time

- From Leslie Lamport
- What ordering do we know for sure in a distributed environment?
- Logical time based on causality/happens-before relationship
 - Vector timestamp
 - Scalar timestamp

Logical time

- Operations within one thread are (happens-before) ordered following program semantics
- Message sending is (happens-before) ordered before message receiving
- Ordering is transitive
 - A→B, B→C →A→C

(scalar) logical clock

- Design a clock that can reflect the happens-before order
 - Increment within one process
 - Increment when receiving a message

Vector clock <1.0.0> <200.0.0> <200.0.0> <72, 101.0> <77, 77, 1010> <77, 77, 1010>

How to detect data races? Happen-before algorithm Use logic time-stamps to find concurrent accesses Thread 1 Thread 2 lock (L); <0,1> ptr=NULL; <0,2> unlock(L); <0,3> <1,0*ptr = malloc(10); <2,3*lock (L); <3,3*ptr[0]='a'; <4,3*unlock(L);

How to detect data races?

Thread 2

- · Happen-before algorithm
 - Use logic time-stamps to find concurrent accesses

Thread 1 <1,0>ptr = malloc(10);

</pr>

</pre

> lock (L): ptr=NULL; <4,2> unlock(L);

Happen-before algorithm summary

- Strength
 - Work for different types of synchronization
 - Few false positives in race detection
- Weakness
 - False negatives in race detection

How to detect data races?

- · Lock-set algorithm
 - A common lock should protect all conflicting accesses to a shared variable

Thread 1 lock (L):

<L> **ptr**[0]='a'; unlock(L);

ptr=NULL; <L> unlock(L); ptr = malloc(10); lock (L);

Thread 1 ptr = malloc(10);
lock (L); <L> ptr[0]='a';
unlock(L);

lock (L); ptr=NULL; unlock(L); <L>

Thread 2

Eraser: A dynamic data race detector for multithreaded programs, TOCS'97

Lock-set algorithm summary

- Strength
 - Fewer false negatives
 - Interleaving in-sensitive
- Weakness
 - More false positives
 - Cannot handle non-lock synchronization
- How to solve the false positive problem?
 - H-B & Lockset hybrid race detection

Are we done?

- Performance
 - Huge problem
 - Solution?
- False positives
 - Huge problem while (!flag) {}; flag=TRUE;
 - 90% of data races do not lead to visible failures* [PLDI'07]
 - Solution?
- False negatives

Thread 2 ptr[0]='a'; unlock(L);

How to speed-up?

- Hardware support
 - Non-existing
 - Existing
- Sampling

Root-cause patterns • A study of 105 real-world concurrency bugs Learning from Mistakes --- A Comprehensive Study on Real World Concurrency Bug Characteristics, ASPLOSOB

Problem 1 Know which code region should maintain atomicity Problem 2 Judge whether a code region's atomicity is violated

Infer likely program invariants

- What is the typical value of x?
- What is the ...?
- How to use it to detect general semantic bugs?
- How to use it to detect memory bugs?
- · How to use it to detect concurrency bugs?

What are order violations?

- · Expected order between two operations are flipped
- Can it be detected by atom. vio. detectors?
- Can it be detected by race detectors?

How to detect order violation?

- Problem 1
 - How to judge which is the correct order?
- Problem 2
 - How to detect the order violation?

Thread 1 (child) Thread 2 (parent)

mThdtCreateThd();

_state = mThd->state;

Mazilla

Solutions

- How to judge which is the correct order?
 - Learning based techniques [Micro'09, OOPSLA'10]
 - Semantic guided techniques [ASPLOS'11]
- · How to detect the order violation
 - Easy

What are multi-var conc. bugs?

- Multi-variable bugs
 - Untimely accesses to correlated variables
- Can it be detected by race detectors?
- Can it be detected by AVIO?

Slide 70

SL29 Shan Lu, 2014-1-7

SL30 i like the mapping in paper: cause maps to xxx effects; effect map back to xxx. Shan Lu, 2014-1-7

SL31 if i refer to interleaving here, we need to define interleaving earlier Shan Lu, 2014-1-8

SL32 the sosp, muvi reference should be put earlier Shan Lu, 2014-1-8

5-min Break?

Summary of conc. bug detection

- How to detect them?
 - Find patterns
 - Cause patterns
 - Effect patterns
- What are the remaining challenges?
 - Performance
 - False negative BeEnact.ISCA03, ParaLog.ASPLOS10, RaceMob.SOSP13, LiteRace, ...]
 - False positives
 - Customized synchronization
- The state of practice
 - Race detection; Atom. detection; ...

Outline

- What are concurrency bugs
- Concurrency bug detection
- · Concurrency bug exposing
- Concurrency bug failure recovery
- Concurrency bug fixing
- Others
- Conclusion

Exposing Concurrency Bugs

00

Background --- Software Testing

- Testing space
- Coverage criteria
 - Testing property
- Test suite
- Software testing is extremely important!

The challenges

- Huge state space
- What is the coverage criteria?
- How to cover a testing property?

90

Background in testing

- Coverage criteria
 - Examples
 - Complexity vs. Capability
- Test input design

How to cover a testing property?

How can I make A execute before B?

- Ad-hoc solution
 - Single-core based
 - Multi-core based
- Constraint-solving based solution [Madhu Viswanathan, NEC]
- How many properties can be covered in one run?

 [Madan Musuvathi]

Summary of exposing con. bugs

- · Key challenges
- Key solutions
- What are the remaining challenges?
 - Better coverage criteria
 - Input generation
 - Regression testing
 - Unit testing

Summary of the day