Detecting and Fixing Concurrency Bugs

Shan Lu
University of Chicago

6/28/2016

ut course assignment

¢ Study 5 bugs in an open-source application’s
Bugzilla

— Pick the keyword you like

— Pick the application you like (or use cbs ...)
— Write the following for each bug

¢ What is the bug root cause (fault)

* What errors might be caused by the bug

¢ What is the failure symptom of this bug

¢ What is the fix strategy of developers

¢ Can this bug be automatically detected? Exposed during
testing? Automatically diagnosed or fixed?

* You can work in group

Types of bugs

Fighting approaches

constraints

Different types of bugs

¢ Memory bugs
— Memory leaks
— Buffer overflow
— Null-ptr dereference
— Uninitialized read
¢ Semantic bugs

«| Concurrency bugs

* Performance/energy bugs

Faults in linux: ten years later. ASPLOS'11

Don’t hesitate to ask me
questions!

Bug Characteristics in Open Source Software. EMSE'13

Background

Thread

Concurrency Bugs

Thread vs. Process

* Process — resource management unit
— Nothing is shared among processes, except ...
— Parent & child share initial image

¢ Thread — execution/scheduling unit

— The address space is completely* shared among
threads under the same process

See example code

6/28/2016

Sources of non-determinism

* race.c

* On single-core machines
— System event non-determinism
* On multi-core machines
— System event non-determinism
— (Parallel) hardware on-determinism

Thread synchronization (I)

¢ Lock
— Enforce mutual exclusion
¢ Condition variable

— Enforce pair-wise ordering

¢ What is needed to synchronize ...?
(1) Thread 1 X++; Thread 2 X++;

(2) Thread 1 p=ma||oc(10); Thread 2 *p=10;

Thread synchronization (ll)

Semaphore

— A counter (can be initialized with any positive value)
— P (acquire one piece of resource)
—V (release one piece of resource)

¢ What is needed to synchronize ...?
(1) Thread 1 X++; Thread 2 X++;

(2) hread 1 p=malloc(10); Thread 2 *p=10;

Thread APIs

¢ pthread_create

* pthread_join

¢ pthread_mutex_lock

* pthread_mutex_unlock
¢ pthread_cond_wait

¢ pthread_cond_signal

Other way of parallel execution

¢ Shared memory vs. message passing

What are concurrency bugs?

¢ Untimely accesses among threads (buggy interleavings

Thread 1 (child)

mmdo;

Thread 2 (parent)

/ Thread 1 Thread 2 "\

if (procl{ — = ;

tmp=rprog+~ Proc T VUL _state = mThd->state;
}
\\AﬂySQL /’ Mozilla

6/28/2016

It is important to fight con. bugs

7 N
In-house In-field

detection failure

In-field
& testing bug recovery lI)r;—ghg)t:lsneg

4l prevention

In-house
bug

avoidance

In-field
o failure
verification diagnosis

In-house

High accurac

¢ What are concurrency bugs
¢ Concurrency bug detection
¢ Concurrency bug exposing
¢ Concurrency bug fixing

* Others

Conclusion

* What are concurrency bugs
* Concurrency bug detection

The key challenges

¢ What type of interleavings is buggy?

* Large state space
* False positives

¢ False negatives

¢ Overhead

Data race

¢ Definition

4 14
readerite X
< <

Dinning'90,Netzer'91, Choi'91,
Savage'97, Larus’98, Choi'02,
O'Callahan’03, Yu'05, Aiken'06

¢ Does this pattern match our examples?
¢ How to get rid of a data race?

6/28/2016

How to detect data races?

¢ How do | know the execution of two accesses are
concurrent?

* What does basic run-time monitoring tell us?
count ++; <thread 1>

... //millions of instructions in between
count++; <therad 2>

Physical time vs. logical time

From Leslie Lamport

¢ What ordering do we know for sure in a distributed
environment?

Logical time based on causality/happens-before
relationship

— Vector timestamp

— Scalar timestamp

What ordering is guaranteed?

Logical time

¢ QOperations within one thread are (happens-before)
ordered following program semantics

¢ Message sending is (happens-before) ordered
before message receiving

¢ Ordering is transitive
—A->B,B>C=2>A>C

How to represent logical time?

=+
~

o

6/28/2016

¢ Design a clock that can reflect the happens-before
order

— Increment within one process

— Increment when receiving a message

ﬁ

Vector clock How to use logical time in race det?

¢ What is the causality relationship here?

e Example 1
Thread 1 Thread 2
tmp=x; tmp=x;
X =tmp+1; x=tmp+1;
e Example 2
Thread 1 Thread 2 (child)
010 p=malloc(10); *p=10;

pthread_create(...)
e Example 3 (lock)

How to detect data races? How to detect data races?

* Happen-before algorithm ¢ Happen-before algorithm

— Use logic time-stamps to find concurrent accesses — Use logic time-stamps to find concurrent accesses

Thread 1 Thread 2 Thread 1 Thread 2
lock (L); <0,1>
ptr=NULL; <0,2>

ptr=NULL; <>
unlock(L); <0,3>

barrier(&b); <,>
<1,05ptr = malloc(10); <,> barrier(&b);
<2,3%ock (L); <> ptr = malloc(10);
<3,3>ptr[0]="a; <> ptr[0]=a’;
<4,3xnlock(L);

6/28/2016

How to detect data races? Happen-before algorithm summary

¢ Happen-before algorithm e Strength
— Use logic time-stamps to find concurrent accesses — Work for different types of synchronization
— Few false positives in race detection

Thread 1 Thread 2 . Weakness
<1,0%ptr = malloc(10); i) X
<> lock (L); — False negatives in race detection
<> ptr[0]="a’;
<4,0zunlock(L);
lock (L); <4,1>

ptr=NULL; <4,2>
unlock(L); <>

How to detect data races? Lock-set algorithm summary

¢ Lock-set algorithm ¢ Strength
— A common lock should protect all conflicting — Fewer false negatives
accesses to a shared variable « Interleaving in-sensitive
¢ Weakness
Thread 1 Thread 2 Thread 1 Thread 2 — More false positives
: </> = N . .
Iricrl;,gﬂ'l_l_: > f;tcrk (E)‘?”m(lo)' — Cannot handle non-lock synchronization
unlock(L); <L> ptr[o]="a;
unlock(L);
</> ptr = malloc(10); iti ?
otk) lock (L) ¢ How to solve the false positive problem?
<L> ptr[0]="a’ ptr=NULL; <L> —_H- : f
Droe(L): Pooek(L): H-B & Lockset hybrid race detection

Eraser : Adynamic data race detector for multithreaded programs, TOCS'97 33 RaceTrack: efficient detection of data race conditions via adaptive tracking, SOSP'05 3

¢ Performance ¢ Hardware support
— Huge problem — Non-existing
— Solution? — Existing
¢ False positives
— Huge problem while (tflag) {1 flag=TRUE; » Sampling
* 90% of data races do not lead to visible failures* (pLpro7]
— Solution?

False negatives

Thread 1 Thread 2
ptr = malloc(10); lock (L)
lock (L); ptr=NULL;
ptr[0]="a’; unlock(L);
unlock(L);

6/28/2016

How to do better?

Let’s find a more accurate root-cause pattern for concurrency bugs!

Root-cause patterns

¢ A study of 105 real-world concurrency bugs

Learning from Mistakes --- A Comprehensive Study on Real World Concurrency Bug Characteristics, ASPLOS08

Root-cause patterns

Thread 1 (child) Thread 2 (parent)

memm;

_state = mThd->state;

Atomicity Order
Thread 1 Thread 2 Violation Violation
Bugs Bugs
if (proc){ = NULL:
tmp=rproc; <~ o
.
70% 30%

Root-cause patterns

30%

Single Variable

70%

70%

Why did | do this study?

6/28/2016

How to detect atomicity-violations? How to detect atomicity-violations?

* Problem 1 * Problem 1

— Know which code region should maintain atomicity — Know which code region should maintain atomicity

/" Thread 1 Thread2
AR 1A%y~~~ "f((Pm‘l(—> proc=NUL;
Wh‘%f ﬁgﬂ q} flag = 1; mp=*proc;
%gg - }MVSQL
) N J

* Problem 2 * Problem 2
— Judge whether a code region’s atomicity is violated — Judge whether a code region’s atomicity is violated

Solution to problem 2 Solution to problem 2

¢ Atomicity violation = unserializable interleaving ¢ Atomicity violation = unserializable interleaving
Thread 1 Thread 2 Thread 1 Thread 2
access x. Read x . Write x, ic access x. Read x . Write x, ic
alom\c Read x not atomplle X @;f; atom‘c Read x not ato‘%}ne X
access X i Read x Read x access X Read x Read x
* Totally 8 cases of interleaving * 4 out of 8 cases are violations
Read x Write x Read x Write x
Read x Read x Write x Write x Read x Write x Write x Read x
Read x Read x Read x Read x Write x Write x Read x Write x
Read x Read x Write x Write x
Read x Write x Read x Write x Inconsistent Too early Leaking Using stale
Read x Read x Write x Write x views overwritten intermediate value value
Write x Write x Write x Write x
AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants, ASPLOS'06 Both hardware and software solutions exist
Associating synchronization constraints with data in an object-oriented language, POPL'06 A

Solution to problem 1 Inference based bug detection

¢ Which code regions are expected to be atomic?
— Manual annotation

—-??
/ Thread 1 Thread 2 "\ / Thread 1 Thread 2\
while (flag) {}; flag=TRUE;
if (proc){ proc = NULL;
tmp=*proc;

}

\rv,ysm B J Ny) //

AVIO: Detecting Atomicity Violations via Access:Interleaving Invariants, ASPLOS'06

6/28/2016

Infer likely program invariants Solution to problem 1

¢ What is the typical value of x? * Which code regions are expected to be atomic?
e Whatis the ...? — Manual annotation
— Training/Learning
¢ How to use it to detect general semantic bugs? — Testing validation
e How to use it to detect memory bugs? /, Thread 1 Thread 2’\‘ /'fhread 1 Thread Z\
while (flag) {}; flag=TRUE;
) if (proc){ proc = NULL;
¢ How to use it to detect concurrency bugs?)tmp:‘w;
\\Mysm // \\\ /,
AVIO: Detecting A!ONHCIIZVID\aUOHs via Access-Interleaving Invariants, ASPLOS'06

What are order violations? How to detect order violation?

¢ Expected order between two operations are flipped ¢ Problem 1

¢ Can it be detected by atom. vio. detectors? — How to judge which is the correct order?

¢ Can it be detected by race detectors? * Problem 2

— How to detect the order violation?

/ Thread 1 (child) Thread 2 lparerm\ / Thread 1 (child) Thread 2 (parent)

mmdo; mﬂhd();

_state = mThd->state; _state = mThd->state;

Mozilla /

// g Mozilla //

* How to judge which is the correct order?
— Learning based techniques [micro'0s, 00psLA10]
— Semantic guided techniques [aspios'11]

* How to detect the order violation

e Multi-variable bugs

— Untimely accesses to correlated variables
¢ Can it be detected by race detectors?
¢ Can it be detected by AVIO?

— Eas' -
Y /7 Thread1 Thread 2 ™
/ Thread 1 (child) Thread 2 (parent) if(InProgress)
\ L isBusyeTRUE;
InProgress=FALSE;
/m‘:ueacemdn; URL= NULL; — e
_state = mThd->state; s ”ﬁ’,.ﬁL == nuULL
__assert_faill),

ol | \\{lffﬂzll/a) ~
\
\V lozilla /

6/28/2016

How to detect multi-variable bugs?

Problem 1

Which variables are correlated?

— How to judge which variables are correlated? — Variables that are frequently accessed together
* Problem 2

How to detect the violation?
— How to detect untimely accesses

— Extend existing single-variable bug detectors

/" Thread1

struct fb_var_screeninfo
Thread 2 \ struct JSCache { struct JSRuntime { {
if(InProgress) - . R int red_msb;
isBusy=TRUE; JSEntry table[SIZE] int totalString; >
— int blue_msb,
InProgress=FALSE; bool empty; double lengthSum;| — _
URL = NULL; —_ . int green_msb;
if(isBusy) { int transp_msb;
if(URL == NULL) } ¥ i
__assert_fail(), Mozilla Mozilla } Linux
_ Mozilla .
} _/ MUVI.SOSP'07, ColorSafe ISCAL0

Which variables are correlated?

Are we done?

¢ Are these “learning”-based techniques perfect?

— Variables that are frequently accessed together
¢ How to detect the violation?

— Extend existing single-variable bug detectors

Thread 1 Thread 2 N
if(InProgress)
_ isBusy=TRUE;
InProgress=FALSE;*
URL=NULL;
T if(isBusy) {
f(URL == NULL)
__assert_fail(),

))
\MDZ!HG } /

MUVI.SOSP'07, ColorSafe.ISCAL0

* False positives
— Still a problem!

¢ False negatives
— Still a problem!

10

6/28/2016

How to do better? How to do better?

If we cannot find a more accurate pattern,
let’s look at the patterns of concurrency bugs!

/" Thread 1 Thread z'\\
if (proc){ —

tmp=‘proc:/ proc=NULL St O r
}
\nfrysm / T . M

The lifecycle of bugs The lifecycle of (most) concurrency bugs

based on 70 real-world bugs

Thread 2

Thread 1 ZW %}.\“_"/,x
trigger propagate trigger
—> e — IS

Data races
. 1

Atomicity violations
single variable
multiple variables

Order violations

The lifecycle of (most) concurrency bugs The lifecycle of (most) concurrency bugs
based on 70 real-world bugs based on 70 real-world bugs
Critical Read
-]W %\w—»c/r

Thread 2
o
Thread 1 x Thread1 O %\“—"/,x
&L >
K r
propagate trigger propagate
Error R —> s g Failure
short
single-threaded) .
s*Memory errors aCrash @ invalid memory
#NULL ptr oCrash @ assertion
» Dangling ptr alnfinite loops
#Uninitialized read alncorrect outputs
»Buffer overflow aError messages
+Semantic errors

11

Thread 1 Thread 2

/ Thread 1 Thread 2 "\

i Thd=CreateThd();
if (proc){ proc= NULL; m reateThd();
tmp=* proc; _state =mThd->state;

}
\\AﬂySQL /’ Mozilla
atomicity null-ptr order uninitialized

N crash N crash

violation deref. violation read

6/28/2016

Summary of effect characteristics

¢ Simple error/failure patterns

* Single-threaded error propagation

* Short error propagation

Cause-oriented approach

Thread 2
Thread 1

Interleavings that
match certain patterns
are buggy

atom. vio. detectors

race detectors

read x

Limitations
— False positives
— False negatives

°
&
“\6

Thread 2 j
Thread 1

Interleavings that
lead to certain patterns

are buggy

— Step 1: Statically identify potential failure/error site

— Step 2: Statically look for critical reads

— Step 3: Dynamically identify buggy interleaving
Fewer false positive
Fewer* false negative

Thread 2

Thread 1

X

trigger propagate
Fault Error | —> .. —>| Failure
s*Memory errors oCrash @ invalid memor!
#NULL ptr oCrash @ assertion

#Dangling ptr

#Uninitialized read

» Buffer overflow
+Semantic errors

olnfinite loops
olncorrect outputs
oError messages

[ConMem: Detecting Severe Concurrency Bugs through an Effect-Oriented Approach, ASPLOS'1071

Thread 2
Thread1 O x
trigger propagate
Fault Error |—> +es —>| Failure
s*Memory errors aCrash @ invalid memor
s NULL ptr

s Dangling ptr
Uninitialized read
s Buffer overflow

alnfinite loops
alncorrect outputs
oError messages

ConSeq: Detecting Concurrency Bugs through Sequential Errors, ASPLOS'11 72

12

Slide 70

SL29 Shan Lu, 2014-1-7

SL30 i like the mapping in paper: cause maps to xxx effects; effect map back to xxx.
Shan Lu, 2014-1-7

SL31 if i refer to interleaving here, we need to define interleaving earlier
Shan Lu, 2014-1-8

6/28/2016

mtonSeq bug example

Thread 2]W
Thread1 O L"'—Mx
trigger propagate
Fault Error sees —>| Failure

oCrash @ assertion
olnfinite loops
olncorrect outputs
oError messages

ConSeq: Detecting Concurrency Bugs through Sequential Errors, ASPLOS'11 73

/[Thread1 Thread 2 N
InProgress=FALSE; if(InProgress)
RL = NULL; isBusy=TRUE;

u P

—

if(isBusy) {
if(URL == NULL)
__assert_fail(),

\h{lazll/a }] /

atically Inferring Multi-Variabl

Correlations and Detecting Related Semanti

Step 1: Identify potential failure sites

Stage |
X—
Statically look for places where failures could happen

Failure Type
Assertion Failure

Error Message

Incorrect output

Infinite loop

Number of failure sites in MySQL: ~1000

Step 1: Identify potential failure sites

Stage |

X—

Statically look for places where failures could happen

4 N
(\
if(InProgress)
isBusy=TRUE;
if(isBusy){
if(URL ==NULL){
__assert_fail();

Step 2: Look for critical reads

Stage

% <
\x/)(\,x
Statically find shared mem. reads that impact failure sites

o N
/ if(InProgress) 4 \

\sBusyy 3
if(isBusy){
2 f(URL ==NULL){

>
_assert_fail();

\ /
N %

cind
o Shet®
st

Stage 3: Look for buggy interleavings

(

-

<,

%
2
%

Dynamic analysis looks for interleavings
that provide critical reads with bad values

Thread 1 Thread 2 N

if(HRres)
isBusy=TRUE;
if(isBusy) {
(ERE == NULL)(
__assert fail(),

}

InProgress=FALSE;
URL = NULL; I\ }

13

Slide 74

SL32 the sosp, muvi reference should be put earlier
Shan Lu, 2014-1-8

6/28/2016

Look for alternative data dependence Dependence feasibility analysis

¢ Can synchronization prevent a data dependence?
i)
L

THD RW Addr Value
1 W Oxabed @ Qeé
- (~*

1 R Oxabcd @
2 W Oxabcd 0

@

N\

Is the alternative data dependence feasible in future runs?

Dependence feasibility analysis Put everything together

¢ Locks could make a data-dependence infeasible

Thread 1 Thread 2 Thread 1 Thread 2 Identify Identify Identify Suspect ug
failure Critical Suspect nterleavin reports
) p Reads nterleavings| | Testing
write Q] (vrite sites
4
) A)
4 it §
wre @ : e /7 Thread1 Thread 2
read @ read @] B /
R —
. ., isBusy=TRUE;
23 if(isBusy){
. . . if (D,
¢ Barriers could make a data-dependence infeasible ~)
InProgress=FALSE; }
]) .-
— R _ EEERL -
write (g rea_d@_ \
read (@ write (%) \\

. /

. ?

Thread 2 What are the errors?
* How to detect them using dynamic analysis?

Thread1 O x
/ Thread 1 Thread i\,\ /" Thread 1 Thread 2
trigger propagate
Fault Error see —>| Failure if (proc){ roc = NULL: mThd=CreateThd();
tmp=*pro; © .

_state =mThd->state;
}

+Memory errors
s NULL ptr
» Dangling ptr
#Uninitialized read
» Buffer overflow

oCrash @ invalid memor

\MySQL /J \7 Mozilla

[ConMem: Detecting Severe Concurrency Bugs through an Effect-Oriented Approach, ASPLOS'1083

14

6/28/2016

Summary of conc. bug detection

How to detect them?
— Find patterns
* Cause patterns

5-min Break?

« Effect patterns

What are the remaining challenges?
— Performance
—_— False negativégeEnacHSCAO& ParalLog.ASPLOS10, RaceMob.SOSP13, LiteRace, ...]
— False positives
* Customized synchronization
¢ The state of practice
— Race detection; Atom. detection; ...

¢ What are concurrency bugs .
* Concurrency bug detection Exposmg Concurrency BUgs
¢ Concurrency bug exposing

Background --- Software Testing The challenges

¢ Testing space * Huge state space

* Coverage criteria * What is the coverage criteria?

— Testing property * How to cover a testing property?

¢ Test suite

Software testing is extremely important!

15

Background in testing

* Coverage criteria
— Examples
— Complexity vs. Capability

¢ Test input design

6/28/2016

What are the coverage criteria?

" Thread 1 Thread 2
* Total-order [rseo2) (A
® ALL-DU [icsma2,issTass) if (roc){ — broc NULL
. . tmp=*proc;
* Synchronization (peopeos)
¢ Function [soqua07] [
L msa

¢ Bug-pattern based

[Chess, RaceFuzzer, CTrigger...]

[Thread1(child) Thread 2 (parent)

=CreateThd();
_state = mThd->state;
——— mThd=

“\ Mozilla

How to cover a testing property?

How can | make A execute before B?

¢ Ad-hoc solution
— Single-core based
— Multi-core based

Constraint-solving based solution (madhu viswanathan, Nec]

* How many properties can be covered in one run?
[Madan Musuvathi]

Summary of exposing con. bugs

Key challenges

¢ Key solutions

What are the remaining challenges?
— Better coverage criteria

— Input generation

— Regression testing

— Unit testing

Summary of the day

¢ Concurrency bug detection
— Cause based detection

* Data race; atomicity violation; order violation; single
variable; multi-variable

— Effect based detection
— Bug exposing (testing)
* Detection mechanisms
— Run-time analysis
— Static analysis
— Learning-based technique

16

