6/28/2016

Fighting Software Bugs 'f;ﬁﬁ} ﬁ‘(}ﬂlfl)'5 n

Shan Lu

University of Chicago

University of Wisconsin -- Madison

Software bugs

¢ How many of you have never written bugs?

* How many of you have been bothered by bugs?

6/28/2016

| like interaction!

¢ Software dependability
¢ Software bugs
¢ Tackling memory bugs
— Memory bug detection
— Memory bug tolerance/survival

Software Dependability

Terminology 1: the metrics

* Reliability
¢ Availability
* Dependability

Terminology 1: the metrics

* Reliability

— How often does the system fail?

— MTTF

Availability

— How often is the system available?
— Available Time / Total Time

* Dependability
— Availability + Reliability + Security

¢ How to improve availability with fixed reliability?

6/28/2016

Terminology 2: why does my PC stop?

Terminology 2: why does my PC stop?

¢ Hardware problems
¢ Software problems

¢ Operator/configuration problems

Terminology 2: why does my PC stop?

¢ Hardware problems
— Types
— Models

* Software problems
— Types
— Models

¢ Operator/configuration problems

* How to compute system availability based on
components’ availability?

Terminology 3: different stages

* Fault
* Error
* Failure

Software Bugs

6/28/2016

Software bugs

¢ Some more examples of software bugs?

Fighting software bugs is crucial

¢ Software is everywhere
— http://en.wikipedia.org/wiki/List_of_software_bugs

* Software bugs are widespread and costly
— Lead to 40% system down time [Blueprints 2000]
— Cost 312 Billion lost per year [Cambridge 2013]

Different types of bugs

¢ What types of bugs do you know?

Faults in linux: ten years later. ASPLOS'11 __

Bug Characteristics in Open Source Software. EMSE'13 ~

The space of bug fighting

Types gf bugs
|

Fighting approaches

constraints

How do we know what are real-world bugs?

Bugzilla@Mazilia
[[

Welcome to Bugzilla

https://bugzilla.mozilla.org/

Slide 21

SL1 add new figures. use new citations
Shan Lu, 2014-1-7

6/28/2016

Different types of bugs & examples

* Memory bugs

Approaches to tackling bugs

* What are the approaches?

* Semantic bugs

« Concurrency bugs

fault error failure

Performance/energy bugs

Faults in linux: ten years later. ASPLOS'11 25
Bug Characteristics in Open Source Software. EMSE'13 ~

*Different aspects of fighting bugs

¢ What are the challenges/goals for designing each
approach?

In-house In-field

failure

recovery

detection
In-house

bug & testing
avoidance

In-field
bug In-hql{se
prevention bug fixing

In-house In-field

o failure
verification diagnosis

The space of bug fighting

Tackling memory bugs
Types of bugs
\

(mainly C/C++)

Why it is important to fight memory bugs

How to detect memory bugs
Fighti h .
/ s How to tolerate memory bugs at run-time?

constraints

Slide 27

SL3 ideally, this should be a cycle, but ...
Shan Lu, 2014-1-7

Memory bug detection

6/28/2016

Why is it important to me?

How to detect memory leak?

¢ How to detect it dynamically?

Dynamic program analysis

Run-time (dynamic) information includes ...

Program instrumentation infrastructure
— C/C++: PIN, LLVM

— Java: Javassist, ASJ, JVM

—RoR: ...

Advantage?
Limitations?

How to detect memory leak statically:

6/28/2016

Static program analysis Static vs. Dynamic Bug Detection

¢ Program Dependency Graph

¢ Pointer-alias analysis Static analysis

¢ Path sensitivity — Advantage: ??

* Inter-procedural vs. intra-procedural — Disadvantage: ??
¢ Dynamic anlaysis

* Advantage? — Advantage:??

¢ Limitations? — Disadvantage:??

How to do better? How to detect buffer overflow?

o (will discuss later) ¢ How to detect it dynamically?

chat* p = malloc (10);
p[11] = ‘A’;

How to detect buffer overflow? How to detect other mem. bugs?

¢ The basic algorithm * Uninitialized reads

— monitor every memory allocation, pointer
arithmetic, memory accesses

— Maintain a big hash table ...
¢ A faster algorithm

* Dangling pointers

¢ Double free
— Add padding around heap buffers

— Demo: valgrind — tool = memcheck ...

. ¢ Null pointer dereference (hmm)
— How about stack buffer overflow detection?

What are the problems?

e Accuracy?

— False positives
e Coverage?

— False negatives
¢ Performance?

— Overhead

6/28/2016

How to do better?

¢ Hybrid analysis

¢ Hardware/OS support

— How can | know whether a memory variable V is
accessed at run time with low overhead?

How to do better?

¢ Hybrid analysis

¢ Hardware/OS support

— How can | know whether a memory variable V is
accessed at run time with low overhead?
* Using page fault
« Using ECC bits (my first project idea, yeah™~~)
* New hardware
— iWatcher
— Intel memory protection extensions (MPX)

Memory bug survival

How to survive/tolerate mem. bugs?

¢ Suppose we can detect buffer overflows at run
time, what can | do to avoid security attack or
crash? [Failure Oblivious Computing]

How to survive/tolerate mem. bugs?

¢ Can we improve failure oblivious computing to
maintain program semantics? [Rx]

— No need to do bug detection

6/28/2016

* Approximate computing

Dependability terminologies
* What are bugs?

¢ Diehard Basic techniques

— Static/dynamic program analysis

— Hardware/OS support

— ML-ish techniques (not discussed yet)
¢ How to detect & survive memory bugs

Backup topics

¢ How did people solve stack overflows?
¢ Can heap overflow be exploit?

¢ Can we automatically fix memory bugs?
¢ How to detect semantic bugs?
¢ Background about threads & concurrency

