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About course assignment

e Study 5 bugs in an open-source application’s
Bugzilla

— Pick the keyword you like

— Pick the application you like (or use cbs ...)

— Write the following for each bug
e What is the bug root cause (fault)
 What errors might be caused by the bug
e What is the failure symptom of this bug
 What is the fix strategy of developers
e Can this bug be automatically detected? Exposed during
testing? Automatically diagnosed or fixed?

* You can work in group ’



Types q_f bugs

Fighting' approaches

constraints



Different types of bugs

e Memory bugs
— Memory leaks
— Buffer overflow
— Null-ptr dereference
— Uninitialized read

 Semantic bugs

. {Concurrency bugs}

 Performance/energy bugs

Faults in linux: ten years later. ASPLOS'11
Bug Characteristics in Open Source Software. EMSE’13



Don’t hesitate to ask me

questions!




Background

Thread
Concurrency Bugs



Thread vs. Process

* Process —resource management unit
— Nothing is shared among processes, except ...
— Parent & child share initial image

 Thread — execution/scheduling unit

— The address space is completely* shared among
threads under the same process

See example code



Sources of non-determinism

¢ race.c

 On single-core machines

— System event non-determinism
 On multi-core machines

— System event non-determinism

— (Parallel) hardware on-determinism



Thread synchronization (I)

e Lock
— Enforce mutual exclusion
e Condition variable

— Enforce pair-wise ordering

e What is needed to synchronize ...?
(1) Thread 1 X++, Thread 2 X+,

(2) thread 1 p=malloc(10); thread 2 *p=10;



Thread synchronization (ll)

e Semaphore
— A counter (can be initialized with any positive value)
— P (acquire one piece of resource)
— V (release one piece of resource)

e What is needed to synchronize ...?
(1) Thread 1 X++, Thread 2 X+,

(2) thread 1 p=malloc(10); thread 2 *p=10;
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Thread APlIs

 pthread create

e pthread join

e pthread _mutex_lock

e pthread_mutex_unlock

e pthread cond wait

 pthread cond_signal
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Other way of parallel execution

 Shared memory vs. message passing
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What are concurrency bugs?

e Untimely accesses among threads (buggy interleavings)

ﬂ'hread 1 Thread 2\ ﬁl’hread 1 (child) Thread 2 (parem

if (proc){ mﬂhd(),

roc = NULL;
tmp=*pr<;c,-7 P _state = mThd->state;
}

Q/IySQL / K Mozilla J
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It is important to fight con. bugs
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Different aspects of fighting bugs

.
In-house In-field

detection failure

In-:;s;se - Liille recovery In-house

bug o
avoidance prevention bug fixing
In-field
failure
diagnosis

In-house

verification

High accurac
High accurac
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e What are concurrency bugs
e Concurrency bug detection

e Concurrency bug exposing

e Concurrency bug fixing
e Others

e Conclusion
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 What are concurrency bugs
 Concurrency bug detection
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The key challenges

e What type of interleavings is buggy?

e Large state space
* False positives

* False negatives
e Overhead
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Data race

e Definition

4 4
readerite X
< 4

Dinning’90,Netzer’91, Choi'91,
Savage’97, Larus’98, Choi'02,
O’Callahan’03, Yu'05, Aiken’06

e Does this pattern match our examples?
e How to get rid of a data race?

19



How to detect data races?

e How do | know the execution of two accesses are
concurrent?

e What does basic run-time monitoring tell us?
count ++; <thread 1>

... //millions of instructions in between

count++; <therad 2>
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Physical time vs. logical time

* From Leslie Lamport

e What ordering do we know for sure in a distributed
environment?

e Logical time based on causality/happens-before
relationship

— Vector timestamp
— Scalar timestamp

21



What ordering is guaranteed?




Logical time

e Operations within one thread are (happens-before)
ordered following program semantics

e Message sending is (happens-before) ordered
before message receiving

* Ordering is transitive
— A->B,B2>C=2>A>C
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How to represent logical time?

=\: —
:\E

—




(scalar) logical clock

* Design a clock that can reflect the happens-before
order

— Increment within one process

— Increment when receiving a message






Vector clock

<10
- 2 <72.101.0>




How to use logical time in race det?

e What is the causality relationship here?
e Example 1

Thread 1 Thread 2
tmp=x; tmp=x;
X=tmp+1; x=tmp+1;

e Example 2
Thread 1 Thread 2 (child)

p=malloc(10); *p=10;
pthread create(...)

 Example 3 (lock)
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How to detect data races?

e Happen-before algorithm

— Use logic time-stamps to find concurrent accesses

Thread 1 Thread 2
lock (L); <0,1>
ptr=NULL; <0,2>
unlock(L); <0,3>

<1,0>ptr = malloc(10);
<2,3%ock (L);
<3,3tr[0]="a’;
<4,3unlock(L);
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How to detect data races?

e Happen-before algorithm

— Use logic time-stamps to find concurrent accesses

Thread 1 Thread 2

ptr=NULL; <,>
barrier(&b); <>

<,> barrier(&b);

<, ptr = malloc(10);
<,> ptr[0]="a’;
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How to detect data races?

e Happen-before algorithm

— Use logic time-stamps to find concurrent accesses

Thread 1 Thread 2
<1,0>tr = malloc(10);
<2 lock (L);
<> ptr[0]="a’;
<4,0zunlock(L);

lock (L); <4,1>

ptr=NULL; <4,2>
unlock(L); <>
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Happen-before algorithm summary

e Strength
— Work for different types of synchronization
— Few false positives in race detection

e \Weakness

— False negatives in race detection
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How to detect data races?

e Lock-set algorithm

— A common lock should protect all conflicting
accesses to a shared variable

Thread 1 Thread 2 Thread 1 Thread 2
lock (L); </> ptr = malloc(10);
ptr=NULL; <L> lock (L);
unlock(L); <L> ptr[0]=‘a’;
unlock(L);
</> ptr = malloc(10);
lock (L); lock (L);
<L> ptr[0]="a’; ptr=NULL; <L>
unlock(L); unlock(L);

Eraser : A dynamic data race detector for multithreaded programs, TOCS’97 33



Lock-set algorithm summary

e Strength

— Fewer false negatives

* |nterleaving in-sensitive
e Weakness
— More false positives
— Cannot handle non-lock synchronization

e How to solve the false positive problem?
— H-B & Lockset hybrid race detection

RaceTrack: efficient detection of data race conditions via adaptive tracking, SOSP’'05 34



Are we done?

e Performance
— Huge problem

— Solution?

* False positives

— Huge problem while ('flag) {}; flag=TRUE:;
* 90% of data races do not lead to visible failures* [pLDI07]

— Solution?

* False negatives

Thread 1 Thread 2
ptr = malloc(10);  |ock (L);
lock (L); ptr=NULL;
ptr[0]="a’; unlock(L);

unlock(L); 35



How to speed-up?

e Hardware support
— Non-existing

— Existing

e Sampling
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How to do better?

Let’s find a more accurate root-cause pattern for concurrency bugs!
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Root-cause patterns

e A study of 105 real-world concurrency bugs

Learning from Mistakes --- A Comprehensive Study on Real World Concurrency Bug Characteristics, ASPLOS08



Root-cause patterns

ﬁl’hread 1 (child) Thread 2 (parerm

mﬂhd();

_state = mThd->state;

zilla /
Atomicity Order
/Thread 1 Thread 2 Violation Violation
Bugs Bugs
if (proc){ — NULL:
tmp=*prcF/> proc ’
}
70% 30%
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Root-cause patterns
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Why did | do this study?




How to detect atomicity-violations?

e Problem 1

— Know which code region should maintain atomicity

e Problem 2

— Judge whether a code region’s atomicity is violated

43



How to detect atomicity-violations?

* Problem1
— Know which code region should maintain atomicity

/ \ /" Thread 1 Thread 2 \
F%%ﬂﬁ%g \ if (proc>)k{ 7 oroc = NULL;
whj ﬁgggﬂ/ flag = 1; } tmp=*proc;
° MysaL
N Y \_ )

* Problem 2
— Judge whether a code region’s atomicity is violated
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Solution to problem 2

e Atomicity violation = unserializable interleaving

Associating synchronization constraints with data in an object-oriented language, POPL'06

AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants, ASPLOS’06

Thread 1 Thread 2
access X Read x . Write x
atom\ Read x no at “wnte X
access x S Read X Read x
e Totally 8 cases of interleaving
Read x Write x Read x Write x
Read x Read x Write x Write x
Read x Read x Read x Read x
Read x Write x Read x Write x
Read x Read x Write x Write x
Write x Write x Write x Write x




Solution to problem 2

e Atomicity violation = unserializable interleaving

Thread 1 Thread 2
access X Read x . Write X ic
atomic Read x | | not a"-()“\‘Mite X
access x S Read X Read x
4 out of 8 cases are violations
Read x Write x Write x Read x
Write x Write x Read x Write x
Read x Read x Write X Write x
Inconsistent Too early Leaking Using stale
Views overwritten intermediate value value

Both hardware and software solutions exist
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Solution to problem 1

 Which code regions are expected to be atomic?

— Manual annotation
— 7?7

ﬁl’hread 1 Thread 2\ ﬁl’hread 1 Thread 2\

while (!flag) {}; flag=TRUE;

if (proc){ proc = NULL;
tmp=*proc;

}

L2 Y N Y

AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants, ASPLOS’06




Inference based bug detection




Infer likely program invariants

* What is the typical value of x?
e Whatis the...?

e How to use it to detect general semantic bugs?

How to use it to detect memory bugs?

How to use it to detect concurrency bugs?



Solution to problem 1

 Which code regions are expected to be atomic?
— Manual annotation
— Training/Learning
— Testing validation

Thread 2\

while (!flag) {}; flag=TRUE;

/I'hread 1 Thread 2\

if (proc){ proc = NULL;
tmp=*proc;

}

s y N y

AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants, ASPLOS’06




What are order violations?

e Expected order between two operations are flipped
e Can it be detected by atom. vio. detectors?
 Can it be detected by race detectors?

ﬂhread 1 (child) Thread 2 (parem

mﬂhdo;

_state = mThd->state;

K Mozilla j
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How to detect order violation?

* Problem1

— How to judge which is the correct order?
 Problem 2

— How to detect the order violation?

ﬁl’hread 1 (child) Thread 2 (parem

mﬂhdo;

_state = mThd->state;

K Mozilla j
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* How to judge which is the correct order?
— Learning based techniques [micro'09, 0opsLa’10]
— Semantic guided techniques [aspLos'11]

e How to detect the order violation
— Easy

ﬁl’hread 1 (child) Thread 2 (parem

mﬂhdo;

_state = mThd->state;

K Mozilla j
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What are multi-var conc. bugs?

 Multi-variable bugs
— Untimely accesses to correlated variables

 Can it be detected by race detectors?
e Can it be detected by AVIO?

/ Thread 1 Thread 2 \

if(InProgress)
isBusy=TRUE;
InProgress=FALSE;
URL = NULL; .
if(isBusy) {
if(URL == NULL)
__assert_fail(),

wozil/a ) /
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How to detect multi-variable bugs?

* Problem1
— How to judge which variables are correlated?
* Problem 2

— How to detect untimely accesses

/ Thread 1 Thread 2 \

if(InProgress)
isBusy=TRUE;
InProgress=FALSE;

URL = NULL; -
if(isBusy) {

if(URL == NULL)
__assert_fail(),

wozil/a ) / 55




 Which variables are correlated?

— Variables that are frequently accessed together
e How to detect the violation?

— Extend existing single-variable bug detectors

struct fb_var_screeninfo
struct JSCache { struct JSRuntime { {
JSEntry table[SIZE] int totalStri int red_msb;
ntry table s int totalString; _ T
bool empty; double lengthSum; !nt blue_msb,\éﬁ
int green_msb;
} } int transp_msb; |
Mozilla Mozilla } Linux

MUVI.SOSP’07, ColorSafe.ISCA10



 Which variables are correlated?
— Variables that are frequently accessed together
e How to detect the violation?

— Extend existing single-variable bug detectors

/ Thread 1 Thread 2 \

if(InProgress)
isBusy=TRUE;
InProgress=FALSE;
URL = NULL; .
if(isBusy) {
if(URL == NULL)
__assert_fail(),

wozil/a ) J

MUVI.SOSP’07, ColorSafe.ISCA10




Are we done?

e Are these “learning”-based techniques perfect?
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Are we done?

* False positives
— Still a problem!

* False negatives
— Still a problem!

59






How to do better?

/I'hread 1 Thread 2\

if (proc){ roc = NULL;
tmp="‘prcF/> P ’
}

s y
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How to do better?

If we cannot find a more accurate pattern,
let’s look at the patterns of concurrency bugs!

62



The lifecycle of bugs

trigger propagate .
Fault —> g0 —> BREINE
ﬁ‘b@ @

1%
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The lifecycle of (most) concurrency bugs

based on 70 real-world bugs

Thread 2 m‘
Thread 1 &)\% Mx

trigger

>

Data races
Atomicity violations
single variable

multiple variables
Order violations
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The lifecycle of (most) concurrency bugs

based on 70 real-world bugs ~
Critical Read
Thread 2

o
o

Thread 1 ( Mx

propagate
Error ——> seoe

* Memory errors
® NULL ptr
» Dangling ptr
® Uninitialized read
» Buffer overflow
® Semantic errors
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The lifecycle of (most) concurrency bugs

based on 70 real-world bugs

Thread 2

Thread 1

nigger

o—X

_

propagate

short
single-threaded

Error ——> see — IS

#Crash @ invalid memory
#Crash @ assertion
i#Infinite loops

i¥Incorrect outputs

i*Error messages

66



ﬂ'hread 1 Thread 2\ / Thread 1 Thread 2 \

' Thd=CreateThd();
if (proc){ proc = NULL; m reate 0
tmp=* proc; _state = mThd->state;
}
wyscu / k Mozilla /

atomicity null-ptr order uninitialized

. ) crash ] ] crash
violation deref. violation read
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Summary of effect characteristics

e Simple error/failure patterns

e Single-threaded error propagation

e Short error propagation
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Cause-oriented approach

Thread 2

Thread 1

Interleavings that
match certain patterns
are buggy

race detectors atom. vio. detectors

write x

* Limitations
— False positives
— False negatives
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Effect-oriented approach

Thread 2

Thread 1

Interleavings that
lead to certain patterns
are buggy

— Step 1: Statically identify potential failure/error site
— Step 2: Statically look for critical reads
— Step 3: Dynamically identify buggy interleaving

Fewer false positive
Fewer* false negative
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Slide 70

SL29 Shan Lu, 2014-1-7

SL30 i like the mapping in paper: cause maps to xxx effects; effect map back to xxx.
Shan Lu, 2014-1-7

SL31 if i refer to interleaving here, we need to define interleaving earlier
Shan Lu, 2014-1-8



Thread 2 m‘
Thread 1 &)\% ’X’ZX

trigger propagate
Fault > Error |—@> se0 ——> | Failure
* Memory errors #Crash @ invalid memory
® NULL ptr #Crash @ assertion
» Dangling ptr i#Infinite loops
® Uninitialized read i¥lncorrect outputs
» Buffer overflow i*Error messages

® Semantic errors

ConMem: Detecting Severe Concurrency Bugs through an Effect-Oriented Approach, ASPLOS'1071



Thread 2 m‘
Thread 1 &)\% ’X’ZX

trigger propagate
Fault > Error |—@> se0 ——> | Failure

* Memory errors #Crash @ invalid memory
® NULL ptr #Crash @ assertion
» Dangling ptr i#Infinite loops
® Uninitialized read i¥lncorrect outputs
» Buffer overflow i*Error messages

® Semantic errors

ConSeq: Detecting Concurrency Bugs through Sequential Errors, ASPLOS'11 72



Thread 2 m‘
Thread 1 &)\%

Fault

trigger

‘>

Error

—>

propagate

o—X

—> | Failure

#Crash @ assertion
i#Infinite loops
i¥lncorrect outputs
i*Error messages

® Semantic errors

ConSeq: Detecting Concurrency Bugs through Sequential Errors, ASPLOS'11 73




ConSeq bug example

/ Thread 1 Thread 2

InProgress=FALSE; if(InProgress)
URL = NULL; isBusy=TRUE;
/
if(isBusy) {

\ﬁ)ZiIla )

~

if(URL == NULL)
__assert_fail(),

/

MUVI: Automatically Inferring Multi-Variable Access Correlations and Detecting Related Semantic and Concurrency Bugs.

Shan Lu, et. al., SOSP’'09 74



Slide 74

SL32 the sosp, muvi reference should be put earlier
Shan Lu, 2014-1-8



Step 1: Identify potential failure sites

Statically look for places where failures could happen

Failure Type

Assertion Failure

Error Message

Incorrect output

Infinite loop

Number of failure sites in MySQL: ~1000
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Step 1: Identify potential failure sites

Statically look for places where failures could happen

4 D

if(InProgress)
IsBusy=TRUE;
if(isBusy){
IF(URL ==NULL){
__assert_fail();

}
}

\_ /
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Step 2: Look for critical reads

Stage |l
G <

Statically find shared mem. reads that impact failure sites

ﬁlnProgreSS) ‘7 4 \
isBusy? 3
if(isBusy){ . gncin®

2 if(URL ==NULL){

} _assert_fail(); ‘> !
N /
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Stage 3: Look for buggy interleavings

Dynamic analysis looks for interleavings
that provide critical reads with bad values

/ Thread 1 Thread 2 \

if(InProgress)
isBusy=TRUE;
if(isBusy) {
if(URL == NULL){
__assert_fail(),
InProgress=FALSE; }
URL = NULL; f\v}

N /
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Look for alternative data dependence

© )
THD R/W Addr Value
1 W  Oxabcd @ y
1 R  Oxabcd @

[ 2 W  Oxabcd 0

(& y

Is the alternative data dependence feasible in future runs?

79



Dependence feasibility analysis

e Can synchronization prevent a data dependence?
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Dependence feasibility analysis

* Locks could make a data-dependence infeasible

Thread 1 Thread 2 Thread 1 Thread 2
@
4
@ rite QD 4 G write (2
read (@ {read @]

L 4

”..X’O.
e Barriers could make a data-dependence infeasible
write 0
Write @ reijl@— B T—

read ( write 0

81



Put everything together

4 — N )
ldentify ldentify
failure [ Critical

L sites ) \ Reads |,

Identify ) [ Suspect Bug
nterleavin
nteriemvings| | Testing | ]7ePorts

Vi
gJ —

/ Thread 1

InProgress=FALSE;

EEEENULL,

\_

"

if(isBusy){

-

Thread 2

~

Vil Y, g, W,

70

iIsBusy=TRUE;

if (I == NULL){
_\a.sssert_fail();
) A

/

- "
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Thread 2 m‘
Thread 1 &)\% ’X’ZX

trigger propagate
Fault —>  Error —> L0 —> | Failure
* Memory errors #Crash @ invalid memory
® NULL ptr

» Dangling ptr
® Uninitialized read

ConMem: Detecting Severe Concurrency Bugs through an Effect-Oriented Approach, ASPLOS’1083



ConMem bug example

e What are the errors?
e How to detect them using dynamic analysis?

ﬂ'hread 1 Thread 2\ / Thread 1 Thread 2 \

i mThd=CreateThd();

if (proc){ proc = NULL; reate 0
tmp=* proc; _state = mThd->state;

}

Q/IySQL / K Mozilla J
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5-min Break?




Summary of conc. bug detection

e How to detect them?

— Find patterns
* Cause patterns
e Effect patterns

e What are the remaining challenges?
— Performance

— Fa|se negative[geEnact.ISCAOS, ParaLog.ASPLOS10, RaceMob.SOSP13, LiteRace, ...]

— False positives

e Customized synchronization
 The state of practice

— Race detection; Atom. detection; ...

86



 What are concurrency bugs
 Concurrency bug detection
e Concurrency bug exposing
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Exposing Concurrency Bugs




Background --- Software Testing

e Testing space

 Coverage criteria
— Testing property

e Test suite

e Software testing is extremely important!
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The challenges

* Huge state space

e What is the coverage criteria?
* How to cover a testing property?
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Background in testing

 Coverage criteria
— Examples
— Complexity vs. Capability

e Test input design
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What are the coverage criteria?

Total-order [rse92]
ALL-DU [icsmoaz,iss1A98]
Synchronization [prorros]

Function [soquao7]

Bug-pattern based

[Chess, RaceFuzzer, CTrigger...]

/ Thread 1 Thread 2\

if (proc){ > proc = NULL;

tmp=*proc;

}

\ MysQlL /
/Thread 1 (child) Thread 2 (parent)\

=CreateThd();

_state = mThd->state;
—— mThd=

K Mozilla J
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How to cover a testing property?

How can | make A execute before B?

e Ad-hoc solution
— Single-core based
— Multi-core based

e Constraint-solving based solution [madhu viswanathan, NEC]

e How many properties can be covered in one run?
[Madan Musuvathi]
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Summary of exposing con. bugs

* Key challenges

e Key solutions

e What are the remaining challenges?
— Better coverage criteria
— Input generation
— Regression testing
— Unit testing
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Summary of the day

 Concurrency bug detection
— Cause based detection

e Data race; atomicity violation; order violation; single
variable; multi-variable

— Effect based detection
— Bug exposing (testing)
e Detection mechanisms
— Run-time analysis
— Static analysis
— Learning-based technique
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