Fighting Software Inefficiency

Through Automated Bug Detection

Shan Lu
University of Chicago

CHICAGE
T

How did this start?

* | worked on detecting bugs for many years
— Memory bug detection
* Monitor memory accesses & operations
« |dentify abnormal memory accesses

— Concurrency bug detection
* Monitor memory accesses & synchronization
* |dentify abnormal memory accesses

Do performance bugs exist?

¢ Performance bugs:

Bugs that cause severe & unnecessary performance
degradation for some inputs

Real-world incidents caused by performance bugs:
— Example 1: Trend Micro (3 million USD, 650+ companies)
* http://www.pcworld.com/article/120612/article.html
— Example 2: Wikipedia servers stopped responding
* http://dom.as/2009/06/26/embarrassment/
— Example 3: Colorado Benefits System (200 million USD)
* http://cais.aisnet.org/articles/16-34/journal.pdf
— Example 4: UK Census site (1.9 million USD)
* http://news.bbc.co.uk/2/hi/uk_news/2136572.stm

CHICAGE
T

7/1/2016

MDifferent aspects of fighting bugs

In-house In-field In-field
bug detection failure recovery J failure diagnosis

In-house
bug fixing

Low overhead
High accurac

| High accuracy |

How did this start?

* One of our bug detectors is strangely slow
— Why not profiling?
* Lots of noises in profiling
* Measuring cost not inefficiency

¢ My collaborator asks me:

Why cannot you detect performance bugs?

How should I start this research?

Slide 2

SL41 ideally, this should be a cycle, but ...
Shan Lu, 2014-1-7

Are there performance bugs? How many?
What types of performance bugs are there?

Methodology

¢ Application and Bug Source

7/1/2016

What types of bugs are there?

Root causes and
locations?

How
bugs are introduced?

How to expose =)
performance bug? L“)

P Bug DB
Application | Software Type Language |MLOC| History Tags # Bugs
Command-line Utility +
Apache Server + Library C/lava 0.45| 13y | N/A 25
Chrome GUI Application C/C++ 14.0| 4y N/A 10
N Compile-
GCC Compiler C/C++ 57| 13y time-hog 10
Morzilla GUI Application C++/1S 4.7 | 14y | perf 36
MysaL Server Software C/C++/C#| 1.3 | 10y S5 28

¢ Threats to Validity

Root Causes of Performance Bugs

Motzilla Bug 490742 & Patch

for (i = 0; i < tabs.length; i++) {

Root Causes of Performance Bugs

ﬁ Performance

= Bug Detection

50

40 - - = MysaL

30 . Mozilla

20 » B -

10 . [= - = Chrome

0 f— = Apache chiciacc
Uncoordinated Skippable Synchronization Others 7
Functions Function Issue

Performance
Bug Detection

}

+ doAggregateTransact(tabs);

50
40
30
20
10

0

W Chrome

= MysaL
= Mozilla
- eee

- E =

Uncoordinated| Skippable Synchronization Others
Functions Function Issue

m Apache

Root Causes of Performance Bugs

Performance
nsimage::Draw(...) { Bug Detection

+ if(mIsTransparent) return;

} Morzilla Bug 66461
50
10 -

= MysaL

30 . = Motzilla
: B =
> W

. || E = v

pache i

Uncoordinated | Skippable | Synchronization Others
Functions Function Issue

Root Causes of Performance Bugs

int fastmutex_lock (fmutex_t *mp){
- maxdelay += (double) random();

+ maxdelay += (double) park_rng();

Performance
Bug Detection
== 7

1)
} MySQL Bug 38941 & Patch @
50
40 s
- B
= Motzilla
. B o«
=
5 . =

Uncoordinated
Functions

Skippable | Synchronization
Function Issue

® Apache cHi
Others I

Locations of Performance Bugs

7/1/2016

Root Causes of Performance Bugs

Implication: Future bug detection
research should focus on these common
root causes.

Performance
Bug Detection

50

40

: B

20

10

il = =

Uncoordinated
Functions

Skippable Synchronization
Function Issue

= MysQL

= Mozilla
GCC

= Chrome |

= Apache Ciic
Others

Locations of Performance Bugs

Apache-Ant Bug 34464

while (s.indexOf(k) == -1)
{s.append (nextchar());}

80
60
40

2 =
-

1loop

Nested Loops

@ Performance
Bug Detection
= 9

= MysalL
= Mozilla
GCC

™ Chrome

= Apache

CHICAG

How Performance Bugs are Introduced

Implication: Detecting inefficiency
in nested loops is critical.

80

60

40

20 .
, I

0loop

Lloop

Nested Loops

@ Performance
Bug Detection
2= 9

= MysaL
= Mozilla
GCC

™ Chrome

= Apache

How Performance Bugs are Introduced

Qthers

Performance

A Bug Avoidance

= MysaL

= Mozilla
GeC

= Chrome

= Apache

CHICAG

How Performance Bugs are Introduced

int fastmutex_lock (fmutex_t *mp){ BT Performance
- maxdelay += (double) random(); (€= ug Avoidance
+ maxdelay += (double) park_rng(); D oy
NS
} MySQL Bug 38941 & Patch ‘11
50
40
= MysaL
30 = Mozilla
il L ® Chrome
N BN BN B

Workload Issues __API Issues Others

How Performance Bugs are Introduced

BC=T®) Performance

ot Bug Avoidance
= 9

Implication: Performance aware
annotation systems and change-
impact analysis tools are needed.

50

40

30 l

10 .
0

® Apache

=MysaL
= Mozilla
e
I # Chrome

Workload Issues APl Issues Others

How Performance Bugs Manifest

Performance
Testing

B

=Mysat

= Mozilla
GCC

m Chrome

Unique, severe

= Apache

Always Active) Special Feature Special Scale Feature+Scale

7/1/2016

How Performance Bugs are Introduced

Performance

‘ Bug Avoidance

nsimage::Draw(...) {

+*1INot Born Buggy! ™ Q 1y
S/
} Mozilla Bug 66461 S
50
40
= MysaL
30 l ® Mozilla
20 L ! I GCC
il I Chrome
10 . - - = Apache

orkload Issues| APl Issues Others

How Performance Bugs Manifest

W
| = ‘Tesgingoidance

How Performance Bugs Manifest

Performance
Testing

80
60 = MysQL
= Mozilla

40 Gee

= Chrome

20
- = Apache

0

Always Active Special Feature Special Scale |Feature+Scale

How Performance Bugs Manifest

Performance
Testing

=

Implication: New input generation =T,
tools are needed.

80
60 | B -
. = ola
40 GCC
= Chrome
20
. = Apache "
= O
0
Always Active Special Feature Special Scale Feature+Scale

How Performance Bugs are Fixed

[Rant Performance
@_’J Bug Fixing

S

¢ Patch sizes are small

— 42 patches are no larger than 5 LOC
— Median patch size = 8 lines of codes

=>Fixing perf. bugs does not hurt readability

10
0

ChangeCall ~ Change Change A
Sequence _ Condition _Parametey

50
«(W

= MysaL
30 W Moziila
20

GCC
® Chrome
= Apache

Others

Static inefficiency patterns exist

How Performance Bugs are Fixed

=

What is next?

Can we detect performance bugs?
What “pattern” did we find?

Static inefficiency patterns exist

Apache-Ant Bug 34464
while (s.indexOf(k) == -1) {

{s.append (nextchar());}

What pattern can you get from here?

Mozilla Bug 490742
for (i = 0; i < tabs.length; i++) {

tabs[i].doTransact();

}

What pattern can you get from here?

7/1/2016

How to get these patterns?

A Rule-Based ¢ Manually extract from patches
Inefficiency Detector

Python Checkers

LLVM Checkers,

hes{and Patterns

gt Contain Rules

CHICAGE CHICAGC
i

Rule-Violation Detection Results

* 17 checkers find PPPs in original buggy versions What is next?
* 13 checkers find 332 PPPs in latest versions

PPPs in Latest Versions

Introduced lateigla

Inherits from
buggy versions

[Efficiency rules and rule-based performance-bug detection is prom: 3

Found by
cross-application
checking

Do we have to manually specify rules?

Can we build generic detectors?

CHICAGC
ST

i

* PPP: Potential Performance Pro

Toddler
A dynamic and generic detector 20
targeting inefficient nested loops 60 —
= Mozilla
a0 GCC
® Apache
, 1 I .
0loop 1loop Nested Loops EL
Toddler: Detecting Performance Problems via Similar i
Memory-Access Patterns [ICSE '13]

Previous example

Apache-Ant Bug 34464

while (s.indexOf(k) == -1)
{s.append (nextchar());}

|

Password: abcdefghi

* Input: Test code + system under test
* Output: Loops that are likely performance bugs
* Steps:
1. Instrument the system under test
2. Run the test with the instrumented code
3. Analyze trace produced by instrumentation
4. Detect work that is similar across loop iterations

CHICAGE
L

7/1/2016

Another example in Java

* Previously unknown bug in Google Core Libraries

set.removeAll(arrayList);
[public boolean removeAll(Collection<?> €) {
if (someCondition) {
for (Iterator<?> i = iterator(); i.hasNext();) { // Outer Loop
if (c.contains(i.next())) {
i.remove();

3

}
}

public boolean contains(Object o) {
For (int 1 = 0; 1 < size; i++) { // Inner Loop
if (o.equals(elementData[i])) {
return true;

}

3
}

What is the pattern?

¢ What type of nested loops are likely inefficient?

— Many inner loops are similar with each other
* Some instructions keeps reading similar sequences of valueg

abcdefg
abcdefgh
abcdefghi

Instrumentation

* Loop start
* Loop stop

Iteration start

* Memory reads from fields

— Value read

— Instruction Pointer

— Stack at the time of the read

Recall Example

¢ Previously unknown bug in Google Core Libraries

set.removeAll(arrayList);
public boolean removeAll(Collection<?> c) {

for (Iterator<?> i = iterator(); i.hasNext();) { // Outer Loop
iF (c. Tnext(O)) {
i.remove();

}

public boolean contains(Object o) {
for (int i = @; i < size; i++) { // Inner Loop
Tf(orequatste I
return true;

}

Algorithm

Input: trace of dynamic loops
Output: loops with similar iterations, if any

foreach dynamic loop dynLoop
if dynLoop has more than minIteration iterations
foreach instruction ins
if ins appears in more than minSeqRatio(%) of all iterations

vals = the values accessed by ins

foreach pair of consecutive iterations consecIt in vals
are the two iterations in consecIt similar?

F more than minSimilarRatio(%) of consecit are similar
report BUG;

are the two iterations in a consecIt similar?
1cs = Longest Common Substring between the iterations in consecIt
IT size of lcs is larger than minLCS and
lcs larger than minLCSRatio(%) of the smallest of the two iterations
return true
return false

[sppicatin | besciptin | 10¢ | knowniugs | new g | e | Confimed |
Ant Build tool 109,765 1 8 1 0
Apache Collections Collections library 51,516 1 20 10 4
Groovy Dynamic language 136,994 1 2 2 0
Google Core Libraries ~ Collections library 156,004 2 10 1 2
JFreeChart Chart framework 64,184 1 1 0 0
Jmeter Load testing tool 86,549 1 0 0 0
Lucene Text search engine 320,899 2 [0 0
PDFBox PDF framework 78,578 1 0 0 0
Solr Search server 373,138 1 0 0 0
JDK standard library 2 0 0
JUnit testing framework 1 1 0

9 Apps + 2 Libs 50,000 — 320,000 11 4 15 6

¢ 11 real-world performance bugs o

¢ Previously unknown bugs: 44 found, 15 fixed, 6 confirmed:

7/1/2016

Collecting Trace and Computing Similarity

Computing
Similarity

One OL Iteration

<init> > ...
1133, 3, 3
>iz>2 5 9

Similar?

Ignoring Known Benign Patterns

¢ Values that don’t change between iteration
— for(...) { ... if (this.someField < 5) ... }
— This is a very frequent pattern and does not indicate a bug
* Computation inside class initializers
— Developers unlikely to optimize code executed infrequently
« Explicitly specified some fields and methods to ignore
— Some supposed to have repetitive patterns:
* Example: for (...) {... this.cursor++ ...}
— Some typically considered benign by developers
« Example: appending strings in a loop
— Done only once for each library
— Default: only 3 fields and 4 toString/append methods in JDK,
« 7 items for JDK (for almost 200,000 tests) appears reasonable i

CaGC
ST

Toddler vs. HProf

Bug Detected? Slowdown
Known Bug e
Ant
Apache Collections
Groovy

Google Core Libraries #1

®

Google Core Libraries #2
IFreeChart

IMeter

Lucene #1

Lucene #2

PDFBox

Solr.

(| . O
B ¢ %t x ¥ w5 4 L %

v |15 aox

* Toddler finds more bugs with fewer false positives than profiler .

* Overhead is higher than profiler, but still acceptable for testin
Wz

7/1/2016

[who [app | s BugsinTest FalsePos.
Auto Apache Collections
Google Core Libraries 1,703
‘Apache Collections 60
Bz Google Core Libraries 60
‘Apache Collections 14
‘Apache Collections 20
ppache Calletons 5)
. AoacheCollectons 18 Why so many bugs are not fixed by
ovices Apache Collections 5 ?
ppache Calectons 28 developers?
Apache Collections 30
‘Apache Collections 5
Unique bugs: 35 £ FPéid-
* Performance tests are easy to write even by novices
* Toddler finds new real bugs with few false positives

e
G

What are perf. bugs not fixed?

Potential speedup under certain workload How can we detect bUgs that

developers are willing to fix?

Correctness
Maintainability
Manual effort

Can we detect bugs with simple fixes?

hat is the pattern?

¢ What is a typical simple fix for an inefficient loop?

Caramel

A static and generic detector
targeting inefficient loops
with simple patches

CHICAGE
L

CARAMEL: Detecting and Fixing Performance Problems That
Have Non-Intrusive Fixes [ICSE'15]

Won SIGSOFT Distinguished Paper Award

What is the pattern?

+

for(...)

* What is a typical simple fix for an inefficient loop?

if (cond) break;

Example Bug Found By Caramel

¢ Non-Intrusive fix

* New bug in PDFBox, fixed by developers

boolean alreadyPresent = false;

while (isActualEmbedde

1f (alreadyPresent) break

CondBreak FIX

@i{hamext()) {

rop.container().addProp(newVal); // side effect

— Fix is non-intrus

ive

* Developers fix bugs that have CondBreak fixes:

— Waste computation in loops

What Bugs Have CondBreak Fixes?

How Is
Computation
Wasted?

Useless-Result

Where Is Computation Wasted?

Every Late Early
Iteration Iterations Iterations

Type 1

Type X

Type 2

Type 3

Type Y

Type 4

7/1/2016

Results Overview

¢ 150 new bugs
¢ 116 bugs fixed

* Only 4 rejected Mysou
15 applications A Kl
* Auto. fixing iR 'SO =

149/150 bugs 4

Struts STind W

(_Tika f? '

What loops have CondBreak fixes?

* We thought for a loooong time ...

What Bugs Have CondBreak Fixes?

How Is Where Is Computation Wasted?
Computation
Wasted? Every Late Early
Iteration Iterations Iterations
? ?
Typel * Type 2 * Type Y
?
Useless-Result Type X Type 3 Typed *

10

boolean alreadyPresent = false;
while (isActualEmbeddedProperty.hasNext()) {

if (oldval.getStr().equals(newVal.getStr()))
alreadyPresent = true;

if (! alreadyPresent)
prop.container().addProp(newval); // side effect

for (a = arglist; a; a = a->next)
if (a->expr == NULL)
i=1,

Ingredient 1:

Result Instruction

prop.container().addProp(newVal);

)/ side effect

7/1/2016

/* Copy the column definitions */

memcpy((uchar*) recdef,(uchar*) share.rec,
(size_t) (sizeof(MI_COLUMNDEF)*(share.base.fields+1)));

for (rec=recdef,end=recdef+share.base.fields; rec != end ; rec++)
if (unpack && !(share.options & HA_OPTION_PACK_RECORD) &&
rec->type != FIELD_BLOB &&
rec->type != FIELD_VARCHAR &&
rec->type != FIELD_CHECK)

rec->type=(int) FIELD_NORMAL; Chitadc

}
}I MySQL

[*Are there any unended events of the same type? */

for (i = 0; i < DTMFdec_inst->EventBufferSize; i++)
{

/* Going through the whole queue even when we have
found a match will ensure that we add to the latest applicable
event */

if (DTMFdec_inst->EventQueue[i] == value) &&
(IDTMFdec_inst->EventQueueEnded][i] || endEvent))

position = [;

Ingredient 2:

Instruction-Condition

if (W(@lreadyPresent)
pTop. container().addProp(newval); // Result Insv

11

Ingredient 3:

¢ Condition under which all Rls do not produce
results for the remaining loop iterations

e Conjunction of the Instruction-Conditions of all
Rls in the loop

Also Loop-Condition

if (!CalreadyPresent

Instruction-Condition

Type 2 Ris (PDFBox) [reanarium

Late

Early
Useless Useless
boolean alreadyPresent = false;
while (isActualEmbeddedProperty.hasNext
SiF (alreadyPresent) break; // CondBreak FIX —I
i d .

prop conta1ner() addProp(newval); // Result Ins

¢ Instruction-Condition: alreadyPresent == true

¢ Type 2: When Instruction-Condition becomes true
— The Rl is not executed - Category No-Result
— In the remaining iterations - Category Late

Application Description

15 applications Ant Build tool 140,674

— 11 Java, 4 C/C++ Groovy Dynamic language 161,487
2

IMeter Load testing tool 114,645
— Google Chrome, Loga) Logging framework 51,936
GCC, Mozilla, Tomcat| ~*® i |

Lucene Text search engine 441,649
* 150 new bugs PDFBox POF framewaork 108,796
* 116 bugs fixed Sling

Webapp. framework 202,471 |
|

—51inJava Solr Search server 176,937
— 65in C/C++ Struts Web app. framework 175,06
. Tika Content extraction 50,503
¢ Only 4 rejected et =
* 22 bugs in GCC fixed [Google chrome Web browser 371208 22
* 149/150 fixed ace Compiler “““‘W““““
automatically Mozilla Web browser

MysQL Database server

7/1/2016

Every Late
No-result No-Result

Late Early
Useless Useless

vm Fypes. leng f
kefin - (T FALSEmm FAI SF
Dl [creTypes . lengMias):

A nethodba) S

Type 1 Ris (Groovy)

{ Not Execute
cTETUrn true; // Result INSERUCTION> =

¢ Ins.-Condition:!(argTypes == null)&&!(argTypes.length==0)

* Type 1: If Instruction-Condition is true at beginning of loop
— The Rl is not executed - Category No-Result
— In all iterations > Category Every

Caramel Algorithm

Details about each step

in the paper

False Positives

m
Ant T T U
Groovy 0 0 0
¢ Three causes: IMeter 0 0 0
Loga) 0 2 0
1. Complex Analysis Lucene 2 3 0
PDFBox 0 0 1
2. Concurrent Sling 0 o h
Solr 0 0 1
Struts 1 [1
3. Infrastructure = 5 o 0
. . Tomcat 1 0 3
* Discussed in paper Google Chrome 0 o o
. GCC 1 0 0
* Good ratio of false wai 2 0 0
positives / bugs o : :

23 false positives
150 bugs

12

Conclusions

1. Novel perspective: Performance bugs
non-intrusive fixes

Identify new family of performance bugs
Detection €= Static Analysis
Automated fixing

LA

116 bugs fixed, 15 popular apps

frJpien

PACHE ANT

CHICAGE
L

Thanks!

Questions?

My collaborators

¢ Prof. Darko Marinov
* Adrian Nistor
¢ Linhai Song

7/1/2016

What is next?

¢ Have we detected all performance bugs?
— Absolutely not

CHICAGC
o

13

