Production-Run Failures Diagnosis

for Concurrency Bugs

Shan Lu
University of Chicago

Different aspects of fighting bugs

In-house In-field In-field In-house

bug detection failure recovery @ failure diagnosis bug fixing

Low overhead
High accurac High accurac

TTTTTTTTTTTTTTT

CHICAGO

o v
ﬁ'é’ﬁ% l'—
A e |

7 L2 S

Slide 2

SL41 ideally, this should be a cycle, but ...
Shan Lu, 2014-1-7

Failure diagnosis is challenging

e Limited information
e Failures are difficult to repeat

* Root causes are difficult to reason about

¥ Microsoft Office PowerPoint

,‘ Microsoft Office PowerPoint has encountered a problem and needs to dose 3
We are somy for the inconvenience '

The irformation you were woding on might be lost. Microsok Office PowerPoint cantry to
recover t foryou
() Recover my wedk and restan Mcrosok Office PowerPont

Please tell Mi ft about this probl
We have created an emor report that you can send to help us improve Microsoft Office
erPort. Ve wil treat ths report 38 corfidential and anonymous

Internet Explorer

Internet Explorer has encountered a problem and needs ¥
to close. We are sony for the inconvenience.

[Sr-:EryF.w.:ﬂ]] Dont Send

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an emor report that you can send to help us improve
Internet Explorer. We will treat this report as confidential and anonymous.

To see what data this error report contains, click here.

Debug Send Error Report || Don't Send I

THE UNIVERSITY OF

CHICAGO

TI]
Z0
4@

=0

Slide 3

SL35 if i have time, i can turn these into developers quotes
Shan Lu, 2014-1-15

ﬁl’hread 1 Thread 2 \

ptr = malloc(SIZE);
4/\‘ free(ptr);

if (Iptr){ ptr=NULL;
ReportOutofMem();
exit(1);

}

wozilla J

THE UNIVERSITY OF

CHICAGO

(OXO)]

220

3 =33
0

Slide 4

Al15 i need to replace this with Joy's version
Administratr, 2014-3-5

InitState(...){

» table = New();

e |®
if (table == NULL) { out of memory
ReportOutOfMemory();
return JS_FALSE;
}
CALL
ReportOutOfMemory(){ : InitState()
error("out of memory");
} main()

THE UNIVERSITY OF
CHICAGO

T TCrs | Vit
& mrgﬁ €x0-/

ontia | [atur

Questions

Goals

Previous work

coredump

Performance

®
bug detector
®
replay

Our work

coredump

Performance |
o
CClI
®
bug detector
®
replay

Slide 8

Al4 simplify these. put
statistical approach, compiler, cause-pattern
hardware support
hardware extension, effect-pattern
in one text box, keep growing.

change the cloud shape. simplify both the slide and the script
Administratr, 2014-3-4

Our work

coredump

Performance |
o
PBI ¢
CClI
®
bug detector
®
replay

Slide 9

SL31 maybe i should put 4-d/3-d coordinates here, and change the tables following
Shan Lu, 2014-1-15

Our work

Diagnostic Latency

A

Performance |
o
CClI
®
bug detector
®
replay

coredump

Slide 10

SL31 maybe i should put 4-d/3-d coordinates here, and change the tables following
Shan Lu, 2014-1-15

Outline

e QOverview

 Production-run failure diagnosis
— What is the problem
— What are our solutions

Latency
A ‘ ‘
PBI ®
CCl
Performance:
Q
® LXR

e Conclusion

Slide 11

SL33 change the bullets texts. things like "compiler-based" is strange.
Shan Lu, 2014-1-15

How to do better than state-of-art?

What to collect How to collect How to use the collected

THE UNIVERSITY OF
CHICAGO

How to do better than state-of-art?

What to collect How to collect How to use the collected

Sampling

THE UNIVERSITY OF
CHICAGO

How to do better than state-of-art?

What to collect How to collect How to use the collected

Sampling Cooperative
statistical analysis

THE UNIVERSITY OF
CHICAGO

“den,

Cooperative Bug Isolation (CBI)

/
Branch
Return value

correct runs S\
P .

Failure DSZTotlIJStICiEI - Predicatesﬂ/* *g
Predictors gging & ©/® ﬁ

N

/True IN most\ aP : 7 ﬁ
_ rogram|
failure runs, Source
false in most \ g
Sampling f*

Performance Capability

Good ?7?

Slide 15

SL20 do i need to provide a sequential bug diagnosis example?
Shan Lu, 2014-1-10

SL34 should i add an overview slide before this saying: challenges; solutions: apply xxx to concurrency bug diagnosis.
Shan Lu, 2014-1-15

A long story about CBI

o Statistical fault localization, delta debugging

 Sampling based statistical fault localization

An example

1 / Print_.tokens2 v7

2 if(ch == n"..ﬂ')

3 return (TRUE);

4 elseif(ch =="")

s // Bug: should return FALSE
6 return (TRUE);

7 else

§ return (FALSE);

Another example

189

184

void
zore_arrays ()

(

int indx;

int old_count;
bc_var_array eeold_ary;
char ee¢gld_nazes;

/* Save the old values. */
old_couat = a_count;
old_ary = arrays;
old_nazes = a_naxnes;

/* Increzeat by a fixed azount and allccate. =/
a_count += STORE_INCR;

arrays = (bc_var_array *¢) bc_zalloc (a_countesi...
a_nazes = (char ee) be_zalloc (a_countesizeof(ch...

/¢ Copy the old arrays. ¢/
for (indx = 1; indx < old_count; indxe+)
arrays(indx) = old_ary[iadx);

/e Initialize the new elezeats. ¢/
for (; indx < v_count; iadxee)

arrays(indx) = NULL;

/* Free the old elezents. =/
if (old_count != 0)
{
free (old_ary);
free (old_naxzes);

}

THE UNIVERSITY OF

CHICAGO

ares | Vin
mrgﬁ €x0-/
cntia | [atur

Does it work for concurrency bugs?

ptr = malloc(SIZE);

free(ptr);
s if (!ptr){ //b ptr=NULL;

o RepOI’tOUtOfMem();
exit(1);

}

o /

Iltakenb

Why does CBI not work?

Cooperative Con-Bug Isolation (CCl)

(=))
Program

Source Predicates

Compiler

N~

Failure DSZT;:UCIEI - Predicatesﬂ/ “ *
Predictors gging & ©/®

N

/\ Samphng ii

Performance Capability CHICAGO
Mixed Good e
TR ES TN
B AN
Instrumentation and Sampling Strategies for Cooperative Concurrency Bug Isolation, OOPSLA’'10
~

What to collect? (predicate design)

Slide 21

SL42 i need to redraw this to be consistent with earlier ...
Shan Lu, 2014-1-16

Concurrency bug root cause patterns

Atomicity Violation Order Violation

TTTTTTTTTTTTTTTT

IR
Learning from Mistakes --- A Comprehensive Study on Real World Concurrency Bug Characteristics, ASPLOS’08
~

Concurrency bug root cause patterns

Atomicity Violation
thread 1 thread 2 thread 1 thread 2
access X access X
access X access X

\

access X | access X

© ®

Order Violation

thread 1 thread 2 thread 1 thread 2

acCcess X access X

\ e

aCcess X : aCcess X

o mbn EEEEE
ttttttt

CCI-Prev predicate

Whether two successive accesses
to a memory location were by

two distinct threads
or one thread

TTTTTTTTTTTTTTT

CHICAGO

S e
2 e T s

CCIl-Prev can reflect root causes

Atomicity Violation
thread 1 thread 2 thread 1 thread 2
access X access X
access X

access X

\

access X access X

© ®

Order Violation

thread 1 thread 2 thread 1 thread 2

daCcCess X aCcess X

S /

access X i access X

o mbn EEEEE
ttttttt

Is CCI-Prev useful? (Example)

ﬁl’hread 1 Thread 2 \

ptr = malloc(SIZE);

free(ptr);
if (!ptr){ ptr=NULL;
ReportOutofMem();
exit(1);
}

wozilla J

Example (correct runs)

thread 1 thread 2
free (ptr);
ptr=NULL: remote, 0
local, 1 0

ptr = malloc (SIZE);

| if ('ptr) {
ReportOutofMem();
exit(1);

} ©

Example (failure run)

thread 1 thread 2
ptr = malloc (SIZE);
1
e o) _remote, | 0
ptr=NULL: local, 1 0
¥ = | if ('ptr) {
| ReportOutofMem();
exit(1);

} ®

How to evaluate?

thread 1 thread 2

ptr = malloc (SIZE); remote, 0 1
— _
free (ptr); local, 1 0

lock(glock);
remote = test_and_insert(& ptr, curTid);

record(l, remote);

temp = ptr,;
S,

unlock(glock);

if ('temp) {
ReportOutofMem(); & ptr
exit(1); e

cres| Vin
& m‘é‘i‘i €xeo|
| [entia | fatar
&

}

How to sample?

THE UNIVERSITY OF
CHICAGO

T TCrs | Vit
|G| exeo
P [entia | fatar

How to sample branch predicates?

A: if (ltemp?2) {
if (sample())
record (A, TRUE);
} else {)
if (sample()) -
record (A, FALSE):
|

B: if (ltemp3) {
if (sample())
record (C, TRUE);

} indegendent
B: if (ttemp) { ; belse{ .-~
if (sample()) : if [sample())
record (B, TRUE)} .~ record (C, FALSE);
. -
} éiée ¢ \ indep€ndent }
if (sample()) Lo -

record (B, FALSE); « =

How to sample CCIl-Prev?

thread 1 thread 2

ptr = malloc (SIZE);
free (ptr);
ptr=NULL;

if ('ptr) {
ReportOutofMem();
exit(1);

}

Does traditional sampling work?

How to sample CCIl-Prev?

thread 1 thread 2
if (sample())

lock (..); if (sample())
lock (..);

ptr = tmp1l;)
unlock(...); I tmp2 = ptr;
else unlock(...);

| else ...

canngt be
independent if (sarpple’())
! Jetk (..);
-

I cannotbe ~° ..

' indepe:n,derﬁ ptr=NULL;
if (sample()) - unlock(...);
lock (..);), * - else ...
tmp3 = ptr;
unlock(...); CHICAGO

else ... Does traditional sampling work? NO!

Thread-coordinated, bursty sampling

thread 1 thread 2
~if (sample())

Other predicates

Performance (overhead)

T

Havoc

Capability (manual effort)

Evaluation methodology

Apache-1
Apache-2
Cherokee
FFT
LU
Mozilla-JS-1
Mozilla-JS-2
Mozilla-JS-3
PBZIP2

ClL-based static code instrumentor
1/100 sampling rate, ~3000 runs in total (failure:success~1:1)

Diagnosis capability (w/ sampling)

Apache-1 v top1l
Apache-2 v top1l
Cherokee X
FFT v top1l
LU v top1l
Mozilla-JS-1 X
Mozilla-JS-2 v top1l
Mozilla-JS-3 v top2
PBZIP2 v top1l

1/1000 sampling rate, ~3000 runs in total (failure:success~1:1)|¢ 07 ¢

Diagnosis performance (overhead)

No Sampling

Sampling
Apache-1 62.6% 1.9%
Apache-2 8.4% 0.5%
Cherokee 19.1% 0.3%
FFT 169 % 24.0%

LU 57857 % 949 %
Mozilla-JS 11311 % 606 %
PBZIP2 0.2% 0.2%

Are we done?

coredump

Performance |
o
CClI
®
bug detector
®
replay

Outline

coredump

Performance |
®
PBI ®
CClI
®
bug detector
®
replay

Slide 40

SL33 change the bullets texts. things like "compiler-based" is strange.
Shan Lu, 2014-1-15

How to do better than CCI?

What to collect How to collect How to use the collected

CCI-Prev Sampling Cooperative statistical
analysis

THE UNIVERSITY OF
CHICAGO
T TCres | Vit

How to do better than CCI?

What to collect How to collect How to use the collected

Sampling

Slow sampling infrastructure

THE UNIVERSITY OF
CHICAGO

How to do better than CCI?

What to collect How to collect How to use the collected

Sampling

Slow sampling infrastructure
Inaccurate evaluation

THE UNIVERSITY OF
CHICAGO
T TCres | Vit

How to do better than CCI?

What to collect How to collect How to use the collected

Hardware-based
evaluation & sampling

| it
A IRioivavie R otavaoa koo totaiv)n

THE UNIVERSITY OF
CHICAGO

PerfCnt-based Bug Isolation (PBI)

Hardware

Program Perf. Events

Binary Counter

Overflow

Q Interrupt
: Statistical —
Failure At <« Predicates
Predictors w 2 ©/®
.

Performance ?
Good (<5% overhead) Good No Change NO! Iﬂzﬁﬁ%l
TN

Production-Run Software Failure Diagnosis via Hardware Performance Counters, ASPLOS’13

Slide 45

SL38 should i bring in secret sauce here?
Shan Lu, 2014-1-16

Hardware Performance Counters

e Registers monitor hardware performance events
— 1—8 registers per core
— Each register can contain an event count

— Large collection of hardware events
e Instructions retired, TLB misses, cache misses, etc.

e Traditional usage
— Hardware testing/profiling

How can this help diagnose software failures?

What to collect?

THE UNIVERSITY OF
CHICAGO

T TCrs | Vit
|G| exeo
P [entia | fatar

Which event can reflect root causes?

e |1 data cache cache-coherence events

It tracks which cache-coherence state
(M/E/S/I) an instruction observes

Modified Local read

Exclusive Local write

Shared Remote read
are

Remote write
Invalid

IIIIIIIIIIII

CHICAGO

H mésﬁ

CH | jat s

I~ | [entia l IL|

A\
5N 7AW

Is cache-coherence event useful?

ﬁl’hread 1 Thread 2 \

ptr = malloc(SIZE);

free(ptr);
if (!ptr){ ptr=NULL;
ReportOutofMem();
exit(1);
}

wozilla J

Example (correct runs)

thread 1 (core 1) thread 2 (core 2)
Modified Invalid

» 1;r.(.ae (ptr);

ptr=NULL,;
M, 1 0
E, 0 0
ptr = malloc (SIZE); Si 0 0
| 0 o
|- if ('ptr) { |
ReportOutofMem();
exit(1);

} ©

Concurrency Bug from Apache HTTP Server

Example (failure run)

thread 1 (core 1) thread 2 (core 2)
Invalid Modified
o pir = malo (S126); [predicate | © | &
free (ptr);
ptr=NULL,;
M, 1 0
E, 0 0
SI 0 0
0 1
ReportOutofMem();
exit(1);

} ®

Concurrency Bug from Apache HTTP Server

Useful for Atomicity Violations

Bug Type FAILURE PREDICTOR

WWR Violation INVALID
RWR Violation INVALID
RWW Violation INVALID

WRW Violation SHARED

nnnnnnnnnnnnnnnn
CHICAGO

CHfore] &
] Lentia | e

Useful for order violations

Bug Type FAILURE PREDICTOR

Read-too-early EXCLUSIVE (!INVALID)
Read-too-late INVALID

TTTTTTTTTTTTTTT
CHICAGO

[Toe] e
FH| Lentia | atur

How to evaluate & sample?

Which performance events occur at a specific instruction?

Accessing performance counters

INTERRUPT-BASED POLLING-BASED

User

L4

Kernel

? 1
HW
(PhALU

TTTTTTTTTTTTTTT
CHICAGO
U (Mré!n‘-é]“ﬂ'

I-1]| |entia | [atur

@

2 e P o
/ ¥
ALY
AT

Slide 55

SL43 double check if polling needs to go through kernel
Shan Lu, 2014-1-16

More details of counter access

perf record -event=<code> -c <sampling rate>
<program monitored>

Core | Performance
Event

Httpd 2 0x140 401c3b decrement
(Invalid) _refent

TTTTTTTTTTTTTTTT

Beyond concurrency bugs

e Which event?

— Branch taken/non-taken event

e How to evaluate & sample?
— Performance counter overflow interrupt

PBI vs. CBI/CCI (Qualitative)

e Performance

Sample in this region?

Sample in this region?

«

I‘ ccl i

 Diagnostic capability
— Discontinuous monitoring (CCI/csty
— Continuous monitoring (PBI) e
— PBI differentiates interleaving reads from writes WEN

Evaluation methodology

Apache-1
Apache-2
Cherokee
FFT
LU
Mozilla-JS-1
Mozilla-JS-2
Mozilla-JS-3
MySQL-1
MySQL-2
PBZIP2

1/100 sampling rate, ~1000 runs in total (failure:success~1:1)

Diagnosis capability (w/ sampling)

Apache-1 v top1l
Apache-2 v top1l
Cherokee X
FFT v top1l
LU v top1l
Mozilla-JS-1 X
Mozilla-JS-2 v top1l
Mozilla-JS-3 v top2
MySQL-1
MySQL-2

PBZIP2 v topl

Diagnosis capability (w/ sampling)

Apache-1
Apache-2
Cherokee
FFT
LU
Mozilla-JS-1
Mozilla-JS-2
Mozilla-JS-3
MySQL-1
MySQL-2
PBZIP2

v topl
v topl
X
v top1l
v top1l
X
v top1l
v top2

v topl

v topl
v topl
v topl
v top1l
v top1l
v topl
v topl
v topl
v topl
v topl
v top1l

Diagnosis capability (w/ sampling)

Apache-1 v topl v top1-I
Apache-2 v topl v topl-l
Cherokee x v topl-I
FFT v top1l v topl-E

LU v top1l v topl-E
Mozilla-JS-1 x v topl-l
Mozilla-JS-2 v top1l v topl-I
Mozilla-JS-3 v top2 v topl-l
MySQL-1 - v top1-S
MySQL-2 - v top1-S

PBZIP2 v topl v top1-l

Diagnosis performance (overhead)

Apache-1 1.90% 0.40%
Apache-2 0.40% 0.40%
Cherokee 0.00% 0.50%
FFT 1.00%

LU 0.80%
Mozilla-JS-1 1.50%
Mozilla-JS-2 1.20%
Mozilla-JS-3 0.60%
MySQL-1 3.80%
MySQL-2 1.20%

PBZIP2 1.40% 8.40% CHcAcS

| Hiigervial]|

Sequential-bug failure diagnosis results are also good!

Are we done?

Diagnostic Latency

A

Performance |
®
CClI
®
bug detector
®
replay

coredump

1/100 sampling rate =» ~100 failures required for diagnosis

Slide 64

SL31 maybe i should put 4-d/3-d coordinates here, and change the tables following
Shan Lu, 2014-1-15

How to do better than PBI?

What to collect How to collect How to use the collected

Sampling

Missing failure-related information

High overhead

THE UNIVERSITY OF
CHICAGO
| Hiigervial]|

How to collect sufficient root-cause information in 1 run

w/ small overhead?

How to do better than PBI?

What to collect How to collect How to use the collected

Biased sampling

Missing failure-related information

High overhead

THE UNIVERSITY OF
CHICAGO
| Hiigervial]|

Collect information @ likely root-cause locations

LXR — Last eXecution Record

 What to collect?

— Last few branches right before failure

— Last few cache-coherence events right before failures
e How to collect/maintain LXR?

— Existing™ hardware support!

Performance Capability Code Size Change Hardware? Diagnosis Latency

Good (<5% overhead) Good Little Change Simple Extension* Short ﬁﬁ@
/ AN

Leveraging the Short-Term Memory of Hardware to Diagnose Production-Run Software Failures, ASPLOS’'14

Last Branch Record (LBR)

e Existing hardware feature
— Store recently taken branches
— Circular buffer with 16 entries (Intel Nehalem)
— Negligible overhead

Branch Source Branch Target

Last Cache-coherence Record (LCR)

e Existing hardware feature

— Configurable cache-coherence event counting
* Extension

— Buffer to collect this information

— Set of recent L1 data cache access instructions

* Negligible overhead (estimated)

Cache-access Cac e-Oherence
In tion Pointer (M/E/S/)

Good performance

Is LXR useful?

ﬁl’hread 1 Thread 2\ /I'hread 1 Thread 2 \
ptr = malloc(SIZE);
‘/\‘ free(ptr);

if (Iptr){ ptr=NULL; Srint(“%u”, End);
RED(Olr)tOutofl\/Iem(), !print("%u”, End-Start);
exit(1); e
! End=time();

\Apache / k FET /

Bugs have short LXR is sufficient
error-propagation distance for failure diagnosis

Good diagnosis capability

ConSeq: Detecting Concurrency Bugs through Sequential Errors, ASPLOS'11

LXR vs PBI vs CBI/CCI

Performance Capability Diagnosis Latency
(#-failure-runs)

LXR <5% 23/31 1~10 failures
PBI <5% 25/31 1000 failures
CBI/C 3% ~ 18/31 1000 failures
Cl 969%

TTTTTTTTTTTTTTT
CHICAGO

[Toe] e
FH| Lentia | atur

Summary

Latency
A ‘
PBI ®
CCl
Performance:
b\'\\s& O
>
Q
° LXR

