

# How to automatically fix bugs? How to automatically fix memory bugs? How to automatically fix semantic bugs?





# Challenges Q1: what is the root cause? Atomicity violation? Order violation? A mix of both? Q2: how to enforce a specific synchronization? Do not introduce new bugs How could a patch introduce new bugs? Do not hurt performance too much How could a patch hurt performance? Do not hurt code readability too much How could a patch hurt readability?











```
Solutions?
How to fix these?
if (..){ while(..){p};
p
}
c c;
How to generalize this into an algorithm?
```







Challenges for AllA-B
Does signal after A, wait before B work?
Thread 1 Thread 2
\*P=tmp;

free(P);
What if A is executed for multiple times in its thread?
What if there are multiple instances of thread-A?

Solutions for Alla-B (principles)
 signal in A-threads:

 A-thread signals when it will not execute more A;
 Each A-thread signals only once;
 Each A-thread signals as soon as possible.

 wait before B:

 B Proceeds when each A-thread has signaled
 A<sub>1</sub>
 A<sub>n</sub>
 A<sub>n</sub>











# Is that all? Is the patch really correct? Could it lead to bugs? What is the readability? What is the performance?



### **Patch Testing**

- Prune incorrect patches:
  - Patches causing failures due to incorrect root causes, etc.
- Prune slow patches
- Prune complicated patches
- Not exhaustive testing, but patch oriented testing.

24



### A failure in patch\_b implies a failure in patch\_a: If patch\_a is less restrictive than patch\_b. Mutual Exclusion Order Relationships Helpful to prune patch\_a: Traditional testing may not find the failure in patch\_a.















```
One more example

//child thread //parent thread
if (...) { FIFO= NULL;
 unlock(FIFO->m);
 return;
}

How many signals do we need to fix this bug?
```

```
How do developers fix con-bugs?

• How can we find this out?
```









### Adding join Fixing bugs by code moving

What can be automated?



### When does Add-Join work?

- Parent-child relationship
- Not-joined yet
- Joinable child thread
- No deadlock risk

# How to add join

### When can Move help?

- When can Move help fix an OV bug?
- When can Move help fix an AV bug?



### //parent thread void tr\_sessionInit (...) { h = malloc(...); + h->band = bdNew(h); tr\_eventInit(...); ... h->band = bdNew(h); //A } //child thread assert(h->band); //B //child thread assert(h->band); //B



### What are the challenges?

- Data dependency checking (static)
  - What could be wrong?
- Control dependency checking (static)
  - What could be wrong?

### Other research in this field

Demmunix.OSDI08
Avisio.ASPLOS13
Grail.FSE15, Gadara.OSDI08

### **Summary**

- Constraints in automated bug fixing
  - Correctness
  - Performance
  - Readability
- Concurrency bugs can be automatically fixed
- Different ways to fix concurrency bugs
  - Adding synchronization
    - Lock, C.V., join
  - Moving memory accesses and synchronization around

**Break** 

52

### Many other things

- Deterministic execution/program
- Record-and-replay
- Model checking & symbolic execution
- Approximate computation

52