7/1/2016

How to automatically fix bugs?

¢ How to automatically fix memory bugs?

Fixing concurrency bugs

* How to automatically fix semantic bugs?

Shan Lu

e Concurrency bugs are easier to fix automatically!
— How to fix an atomicity violation? lock
— How to fix an order violation? Signal/wait

/ Thread 1 Thread 2 Thread 1 (parent) Thread 2 (child)

fleroel ——; proc=nuLy printf(“%u\n”, End); End = time(); \ j t O r
}tmp— proc; printf(“%u\n”, End-start);
‘\ MysaL / FFT . . M

4

Challenges Q1. what is the root cause?

¢ Q1: what is the root cause? ¢ Leverage automated bug detection tools
— Atomicity violation? Order violation? A mix of both?
¢ Q2: how to enforce a specific synchronization? e What is the root cause of a data race?

— Do not introduce new bugs
* How could a patch introduce new bugs?

N DO not hurt performance too mUCh / Thread 1 Thread 2 Thread 1 (parent) Thread 2 (child)
* How could a patch hurt performance?
— Do not hurt code readability too much if (proc){ ——> proc=NULL; print(“%u\n’, End); End = time();
tmp=*proc; s et P !
* How could a patch hurt readability? y o e printf(“Su\n’, End-start);
‘\ MmysaL / FFT

7/1/2016

Q1. what is the root cause? Fix strategy design

Preparing for inaccurate bug-detection results

¢ Leverage automated bug detection tools

¢ What is the root cause of a bug detected by an
atomicity-violation detector?

Thread 2

/Thread 1

Thread 1 (parent) Thread 2 (child)

if (proc){

< . T proc=NULL; printf(“%u\n”, End); End = time();
} tmp="proc; printf(“%u\n”, End-start);
\ MysaL / FFT

Ve

(
AV Detector OV Detector Race Detector

p

c

DU Detector

W,

W,

R

N

|
M|

L AR

=0
——

—

K T

Q2.a how to enforce atomicity? Potential problems

¢ How to make p-c code region mutually exclusive with r
— Put p and c into a critical section
— Put rinto a critical section
— Select or introduce a lock for the two critical sections

:
!

4

=

Automated Atomicity-Violation Fixing, PLDI11

¢ A naive solution
— Add lock on edges reaching p
— Add unlock on edges leaving ¢ ¢
5
¢ Potential new bugs
— Could lock without unlock
— Could unlock without lock
— etc.

v

e Simpler examples ...

pl |
\
v X

v

Y

o
Ad

Solutions? Solutions?

¢ How to fix these?

if (..){ while(..){p};
p

1

c c;

¢ How to fix these?

if (..){ while(..){p};
p

1

c c;

How to generalize this into an algorithm?

7/1/2016

¢ Step 1: find protected nodes in critical section ¢ How to make instruction A execute before B?

—In f’s CFG, find nodes on any p — ¢ path
e Step 2: add lock operations ¢

A
— unprotected node protected node B
a P

— protected node % unprotected node v Thread Lparent) Thread 2 chid)

¢ Avoid those potential bugs mentioned ‘
Eﬁg % printf(“%u\n”, End); End = time();
‘T ﬂ printf(“%u\n”, End-start);
FFT
Automated Concurrency-Bug Fixing, OSDI'12

What if A has multiple instances? Challenges for AllIA-B

A ¢ Does signal after A, wait before B work?
1
: Thread 1 Thread 2
A *P=tmp;
: B
AQ "
e ~ free(P);
Al initialization Al
use| : B | destroy : B | read e What if A is executed for multiple times in its
An An thread?
allA-B | firstA-B |
\ J & / . o
¢ What if there are multiple instances of thread-A?

Solutions for AllA-B (principles) Solutions for AllA-B (A-side)

e signal in A-threads:
— A-thread signals when it will not execute more A;

— Each A-thread signals only once; e
— Each A-thread signals as soon as possible. for(...) l/\
A

A
¢ wait before B: v
— B Proceeds when each A-thread has signaled,
/Al \
: B * Each thread that execute A:
A, - hexactly once as soon as it can execute no more A.
allA-B

7/1/2016

Solutions for AllA-B (A-side) Solutions for AllIA-B (B-side)

void main() {
for(...)
thread_create(thr_main);

void thr_main() {
for(...)
S lIA

&3 counter for 7
signal threads
void ofix_signal() { \“\
mutex_lock(L); /QV
=
if (k= 0)

cond_broadcast(con);
mutex_unlock(L);

¢ Safe to execute only when gy is 0.

\ void ofix_wait() {
U N mutex_lock(L); U
1Y if (L&l 0)
B cond_timedwait(con, L, t);
L]

mutex_unlock(L);
~ }

* Give up if OFix knows tha‘ it introduces new deadlock.
¢ Timed wait-operation to mask potential deadlocks.

Solutions for FirstA-B? Solutions for FirstA-B

void ofix_signal_b() {
if (flag !=true) {
flag = true;
U mutex_lock(L); &
: cond_broadcast(con);
mutex_unlock(L);

* Basic enforcement

\
‘- \

A

A

o<

N /void ofix_wait_b() {
¢ When A may not execute:
— Add a safety-net of signal if (flag != true)

with allA-B algorithm. cond_timedwait(con, L, t);

mutex_unlock(L);

\1

’ }
\ RN S

mutex_lock(L); U

J

Is that all? The whole tool chain

e |s the patch really correct?
— Could it lead to bugs?

¢ What is the readability?

¢ What is the performance?

Bug
Understanding
Fix-Strategy
Design
Synchronization |
Enforcement
Patch Testing &
Selection

Support

7/1/2016

Patch Testing Run Once without External Perturbation

¢ Prune incorrect patches:

— Patches causing failures due to incorrect root causes, etc.
* Prune slow patches
¢ Prune complicated patches

* Not exhaustive testing, but patch oriented testing.

= Reject if there is a time-out or failure.
= Patches fixing wrong root cause:
= Make software to fail deterministically.

[Thread 1 Thread 2
X ptr->field = 1;

‘ ptr = NULL;
\ ptr->field = 1;

Q

Implicit Bad Patch Patch Merging

= A failure in patch_b implies a failure in patch_a:
= |f patch_a is less restrictive than patch_b.

a b c
Mutual Exclusion Order Relationships

= Helpful to prune patch_a:
= Traditional testing may not find the failure in patch_a.

Bug
Understanding
Fix-Strategy

Design
Synchronization
Enforcement * One programming mistake
Patch Testing & usually leads to multiple
Selection

bugs.

 Heuristics to merge patches
for related bugs.

Support

CFix: Automated Concurrency-Bug Fixing

Bug
Understanding
Fix-Strategy

Design)
Synchronization
Enforcement
Patch Testing & | ° To understand whether there
Selection is a deadlock underlying

time-out.

) Low-overhead, and suitable
/= for production runs.
Support \

* Key challenges

¢ Key solutions

* Remaining challenges
— Handle more complicated bugs
— Learning from human patches

— Other way to model the problem
Thread 1 (parent) Thread 2 (childx

printf(“%u\n”, End);
printf(“%u\n”, End-start);

End = time();

FFT J

7/1/2016

What is the remaining problem?

An bug example

1

child

1 thi
fputs (fp, ...

ead parent thread

)

B\, L

How would you fix this bug?

Manual patch vs. Auto Match

child thread parent thread
fputs(fp, ...); + lock(L);
+ lock (L) ; + while (ent > 0)
+ signal (cond) ; + wait(cond, L);
+ cnt—; + unlock (L) ;
+ unlock (L) ; fp = NULL;
child thread parent thread
fputs (fp, ...);
+ thread join(...);
fp = NULL;

Auto Patch could be much more complicated 34

One more example How do developers fix con-bugs?

//child thread
if (...) {

return;

}

//parent thread
FIFO= NULL;

unlock(FIFO->m);

How many signals do we need to fix this bug?

¢ How can we find this out?

Empirical study -- methodology Empirical study — finding 1

¢ What synchronization primitives are used?

AV Patches OV Patches

" Others '

“

Synchronization primitives in Patches

7/1/2016

Empirical study — finding 2 What can be automated?

S

Fix strategies in Patches

What can be automated? When does Add-Join work?

¢ Adding join
¢ Fixing bugs by code moving

7/1/2016

When does Add-Join work? How to add join

¢ Parent-child relationship
* Not-joined yet

* Joinable child thread

* No deadlock risk

When can Move help? Moving to fix OV bugs

* When can Move help fix an OV bug?

* When can Move help fix an AV bug?

Thread, Threadg Thread, Threadg

Movejoin fixes OV bugs
move-up S or move-down B

Move-create can also help

An example of move-create Moving to fix AV bugs

//parent thread
void tr_sessionInit (...) {
h = malloc(...);
+ h->band = bdNew(h);
tr_eventInit(...);

- h->band = bdNew(h); //4

}

void tr_eventInit (...) {
//child thread pthread_create(...);
assert(h->band) ; //B }

Thread,Thread, Thread, Thread,
; | A |

Moveunlock fixes AV bugs
move-up C or move-down S

7/1/2016

What are the challenges?

¢ Data dependency checking (static) . o
_ What could be wrong? Other research in this field

¢ Control dependency checking (static)
— What could be wrong?

Demmunix.0SDIO8
Avisio.ASPLOS13
Grail.FSE15, Gadara.0SDI08

¢ Constraints in automated bug fixing
— Correctness

— Performance
— Readability

¢ Concurrency bugs can be automatically fixed
¢ Different ways to fix concurrency bugs
— Adding synchronization
¢ Lock, C.V,, join

— Moving memory accesses and synchronization
around

Many other things

¢ Deterministic execution/program

¢ Record-and-replay

* Model checking & symbolic execution
* Approximate computation

