What New Bugs

Live in the Cloud?
nd how to exterminate them)

Haryadi Gunawi

E=-3 THE UNIVERSITY OF
CHICAGO

7/1/2016

systems research on
vailability, Reliability &
fficiency

»
University of Chicago Alcohol Risk Reduction Education ...
wellness.uchicago.edu/ucare.shtml ~
UCARE is the Universitv-reauired alcohol server and education course for al student

uchicago ucare 2014

— Research on Cloud Compuling, Operating ...
hicago ok

ssticty, UChicago,

What new bugs live in the cloud?

Datacenter
distributed
systems

Hadoop+MR+Yarn 17454 23811
HDFS 5710 9605
HBase 10263 15062
Cassandra 6535 10960
ZooKeeper 1854 2350

We studied
3000+ issues

“New” classes of bugs

Q Non—-deterministic performance
bugs

Q Scalability bugs

“New” classes of bugs

0 Distributed concurrency bugs
= + Timings of multiple failures

TaxDC [ASPLOS ’ 16]

Distributed concurrency (DC) bug

Q Caused by non—deterministic timing of
concurrent events involving more than one node

0 Events: Messages, crashes, reboots, timeouts

local computations
CAUTION

6% of the bugs
in our study

Data loss, downtimes,
inconsistent replicas,
hanging jobs, etc.

DC bug: a real view

7/1/2016

\ \
A=k =7k =k} 7

o0 ®>

0 Cassandra Paxos Bug (# 6023)

0 3 concurrent updates
= Red, blue, green

0 3 msg-msg races must happen

m = prepare message for ballot 2, BEFORE
= commit message for ballot 1

prepare message for ballot 3, BEFORE
propose message for ballot 2

promise message for ballot 3, BEFORE
promise message for ballot 3

hours to understand)

== o= omomem
~" 0T O 3
S
N

»
VARV SN R Vb

(ZooKeeper (synchronization service)
Issue #335

4 C becomes leader

5..C commits new txid-value pair i X)

PERMANENTLY INCONSISTENT REPLICA

@MSR

I L)
ZooKeeper (synchronization service)
Issue #335.

1. Nodes A, B, C start (w/ latex txid: 10)
2. B becomes leader
3. B crashes
4. C becomes leader

9. Abecomes leader
10. A's commits new txid-value pair
11. Ciis back online

12. C announces to B (11, X)
13. B replies the diff from tx 12
V(i Inconsistency: A has (11, Y), C has (11, X)

® @0 HAPPEN IN ANY ORDER

Specific Order

=

3. Multiple reboots

How can we catch deep
concurrency bugs
in distributed systems?

Distributed system model checker
(dmck)

¢ Re-ordering all non-deterministic events
— Paths: abcd, abdc, acbd, acdb, ...
— Find buggy paths/interleavings

Node 1 Node 2 Dmck Server
ISt}

Policy: DPOR, Random, ...
Checks / assertions

Features (crash, reboot. ...}

Figure 1: DMCK. The figure illustrates a typical framework
of a distributed system model checker (dmck).

6/13/16 @MsR

Event re-orderings by dmck

ZooKeeper (synchroniration service)
Issue #335.

Permanent inconsistent data

Nodes A8, C start (w! latex txid: 10}

€ commits new tridwalue pair (11,X) .
<rashes, before commicaing the new odd |1

C loses quorum and C crashes

A and B ars back online after C crashes

A becomes leader

A's commits new oid-value pair (11.Y)

C is back enline after A's new tx commit

C announce t B.11,X)

B replies dif starting with tx 12

Inconsistency: A has (1Y), has (11, %)

SAMC:
Semantic-Aware

Model Checking

7/1/2016

for Fast Discovery of Deep DC Bugs

with Tanakorn Leesatapornwongsa,
Mingzhe Hao, Pallavi Joshi, and Jeffrey F. Lukman
[OSDI *14]

What’s Wrong with

Existing Model Checkers?
e Last 7 years

* MaceMC [NSDI '07], Modist [NSDI '09], dBug [SSV '10],
Demeter [SOSP ’13], etc.

e BUT

Keeper (synchronization servie)
Issue #335.
Permanent inconsistent data

Nodes A B, C start (wl latex id: 10)

— Too many events to permute iarc
— Must add crashes and reboots oo

C becomes lej
yea 100
 State-space explosion! events ¢
* (skipped in existing checkers)

A's commits niew txid-value pair (1 1Y)
C s back enline after A's new tx commit
C announce o 8.11,X)

B replies &4 starting with t 12

— Cannot find deep bugs!

Inconsistency: A has (11.Y).C has {11.3)

How can we catch deep bugs
REALLY FAST?

¢ Why are existing checkers slow?

¢ They treat target system as a black box
— Must re-order everything

Black Box
Black Model Checker

Box ABCD Black Semantic
ABDC Box Awareness
ACBD
A [\
BEEEE 408
o O ‘EEOEE
(24 total)) MSR

¢ How can we make model checkers fast?
— Exploit semantic knowledge
* E.g. knowledge of how messages are processed
— Reduce unnecessary re-orderings

7/1/2016

Dependency vs. Independency

Node
state S
m ®

A, B = Dependent A, B = Independent

Independent = No need to reorder

SR

Black Box vs. SAMC

Model Checker

ABCD Black
ABDC Box
ACBD
ACDB
ADBC
we | @EE0)
BACD
BADC
BCAD
BCDA
BDAC

All dependent

SAMC with
message processing
Message semantic
Processing
. ABCD
Semantic
ABDC
-ACBD-
-ACBB-
-ADBC-
® /
®E(IE]
W BACD
Dep. Dep.

Message Processing Semantic in
a Leader Election

Belief = 3 4
4
if (vote <= belief)
// do nothing
else
belief = vote; 2
1
/t N\ I
1

* Discard pattern

MESSAGE PROCESSING SEMANTIC

if (msg.vote <= state.belief)
// do nothing

else
belief = vote;

DISCARD PATTERN

if (isDiscard(msg, state)) {
// do nothing;
}

A4

DISCARD PREDICATE

boolean isDiscard(msg, state) {
if (msg.vote <= state.belief
return true;
else
return false;

e Discard pattern

* Increment pattern

if (msg.type == ack) {
node.ackCount++; ack

;.;
boolean isIncrement (msg, 1s) {
if (msg.type == ack)

return true;
else

return false;
}

* Constant pattern

ack

Local-Message Independence (LMI)

SAMC with Crashes

Black Box SAMC with
Model crash recovery
checker semantic
ABCDX ABCDX
ABCXD —ABGED- -
ABXCD —ABXCD- -
AXBCD —AXBCD-
XABCD —ABCD. |
ABDCX -ABDCX- <
ABDXC —ABDXC- < |
=

7/1/2016

Crash-Msg Independence

void handleCrash() {
Black Box AB. if (X == follower &&
ABCDX isQuorum())
followerCount--;
// No new messages!!
ABXED }
AXBED-
XABCD.
ABDCX Crash a follower

9
Local Impact

(no new messages &
only state changes in leader L)

6/13/16

Crash-Msg Independence

@EE)@)

void handleCrash() {

electLeader ()
// New messages created

if (X == leader || !isQuorum())

Black Box

ABCDX

- ABCXD
Crash the leader D

- Global Impact T

(cannot prune P

ABDCX

re-orderings)

@MsR 2

SAMC Architecture

Protocol

Speciic [aomc N

Generic Reduction Policies

Local Crash.

Indep. (LMI) Indep. (CMI)
Crash Recovery Reboot Sync.
Symmetry (CRS) Symmetry (RSS)

Protocol-specific predicates (extra)

(e.g. ZooKeeper Leader Election)

L & Crash R
M) CMI) Symmetry (CRS)
bool pd : Inewota(m, 8); | bool pg (s, bool prifs,0):

ool p= ; aewote(a,

bool newVote(a, 6) ¢
it (s.ep > 5.ep) ot 1;

P
22 \quoreaktreri(s)

x
uu.x--rnxn--n 42 (a.rl == L &k C.rl == F

&k quorusAfterkis))

ralsi:{rl,fel,all};

ret 1; G0 sk =8 | ol w2l

olse if (m.ep == a.0p)
if (m.tx > 5.0

12 (

bool gl (s, 1) :
1 oo gk Rl oee B | rale2: {r1,£s1,1i,0p, 2,51k}
rusArterk(s))

i (arl == L &R C.rl == F
& {quoruzAfrerk(s))

ror 1 el P30
<rLee P er) = L

Yool rabas: (e o1, 14 ap,tx, 1k}
et ((a.fol-1) >=
.all/2); bool pré
e -0

A IP——

¢ 35 LOC on average per protocol

6/13/16 @MsR 28

Speed in Reaching Old Bugs

#executions/paths to reach the bugs (e.g., 2 paths = abcd, abdc)

ZooKeeper-335
ZooKeeper-790
ZooKeeper-975
ZooKeeper-1075
ZooKeeper-1419
ZooKeeper-1492
ZooKeeper-1653
MapReduce-4748
MapReduce-5489
MapReduce-5505
Cassandra-3395

Cassandra-3626
6/13/1¢ 5000+ © ViR 2

Speed in Reaching Old Bugs

#executions/paths to reach the bugs (e.g., 2 paths = abcd, abdc)

SAMC | Black-Box DPOR Random DPOR

Hexe #texe speedup #exe speedup #exe speedup

ZooKeeper-335 117 5000+ 43+ 1057 9 5000+ 43+
ZooKeeper-790 7 14 2 225 32 82 12
ZooKeeper-975 53 967 18 71 1 163 3
ZooKeeper-1075 16 1081 68 86 5 250 16
ZooKeeper-1419 100 924 9 2514 25 987 10
ZooKeeper-1492 576 5000+ 9+ 5000+ 9+ 5000+ 9+
ZooKeeper-1653 11 945 86 3756 341 3462 315
MapReduce-4748 4 22 6 6 2 6 2
MapReduce-5489 53 5000+ 94+ 5000+ 94+ 5000+ 94+
MapReduce-5505 40 1212 30 5000+ 125+ 1210 30
Cassandra-3395 104 2552 25 191 2 550 5
Cassandra-3626 96 5000+ 52+ 5000+ 52+ 5000+ 52

6/13/16 @ MR 30

Summary

* Distributed concurrency bugs = hard to catch
* Semantic-awareness for model checking is
powerful
— Find bugs 2 - 340x faster, 49x on average

7/1/2016

TaxDC:

Taxonomy of
Non-Deterministic Concurrency Bugs
in Datacenter Distributed Systems

with Tanakorn Leesatapornwongsa,
Jeffrey F. Lukman and Shan Lu
[ASPLOS "16]

Go gle local concurrency bug
S

(LC bug: multi-threaded single machine software)

Learning from mistakes: a comprehensive study on real world concurrency bug characteristics
$SLu, S Park, E Seo, Y Zhou - ACM Sigplan Notices, 2008 - dl.acm.org

Cited by 558 Top 10 most cited ASPLOS paper

=

GO : gle distributed concurrency bug

i
Learning from mistakes: a comprehensive st -eal world concurrency bug characteristics
SLu, S Park, E Seo, Y Zhou - ACM Sigplan Notices, 2008, g

roF) TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed

Systems
T Leesatapomwongsa, JE Lukman, S Lu, HS Gunawi - ucare.cs.uchicago edu

TaxDC

o Taxonomy of distributed concurrency bugs
0 104 bugs
0 4 varied distributed systems

el I

cassandra
0Bugs in 2011-2014
0 Study description, source code, patches

betéiled Characteristics

~

ZooKeeper-1264

1. Follower F crashes, reboots,
and joins cluster

2. Leader L sync snapshot with
F

3. Client requests new update,
F applies this only in memory

4. Sync finishes

5. Client requests other update,
F writes this to disk correctly

6. F crashes, reboots, and joins
cluster again

7. This time L sends only diff
after update in step 5.

8. F loses update in step 3.

betailed Characteristics

-
ZooKeeper-1264

1. Follower F crashes, reboots,

and joins clus
M shot with
E
. Cli quests new update, F
ies this only in memory
4. Sync finishes
5. Client requests other update,
F writes this to disk correctly
> 6. F crashes, reboots, and
joins cluster again
7. This time L sends only diff
after update in step 5.

8. F loses update in step 3.
-

Detailed Characteristics

ZooKeeper-1264

1. Follower F crashes, reboots,
and joins cluster

Timing:

2. Leader L sync snapshot with - Atomicity
F violation
3. Client requests new update, - Fault Timing

F applies this only in memory
4. Sync finishes

5. Client requests other upday
F writes this to disk correctly

6. F crashes, reboots, and joins
cluster again

7. This time L sends only diff
after update in step 5.

8. F loses update in step 3.

ZooKeeper-1264

1. Follower F crashes, reboots,
and joins cluster

2. Leader L sync snapshot with
E

3. Client requests new update, F
applies this only in memory

4. Sync finishes

5. Client requests other update,
F writes this to disk correctly

6. F crashes, reboots, and joins
cluster again

7. This time L sends.erly diff
after update in step 5.

8. F loses update in step‘\

7/1/2016

Timing:

- Atomicity
violation

- Fault Timing

~N
ZooKeeper-1264

1. Follower F crashes, reboots,
and joins clusig

Timing:
- Atomicity
violation

- Fault Timing

geffies this only in memory
4. Sync finishes
5. Client requests other updat
F writes this to disk correctly)
6. F crashes, reboots, and joins
cluster again

7. This time L sends.erfly diff
after update in step 5.

8. F loses update in step\

Error:

Timin
Order
Violation

Atomicity
Violation

Fault
Timing
Reboot
Timing

Error & Failure

I-Loc Mem

IFLoc Sem

IFLoc Hang
I-Loc Silence
[FGlob Wrong

-Glob Miss

“Glob Silence

Global
Sync

Local
Sync

Timin

Order
Violati

ABomicit

y
Violatio

Conditions that induce
the bug

n
Fault
Timing
Rgbqot e
Timing Glob Wrong

Glob
Miss
Glob
Silence

der
Violati
RKomicit
y
Violatio
n
Fault
Timing

Reboot
Timing

What: Untimely events

that induce the bug

Why: Help design

Miss

Glob
Silence

bug detection tools

Handlin

I—Mes sage

Messages arrive Iin
untimely order

I—Message
Order violation (4%

YV must happen after X
But 'V happens before X

7/1/2016

I—.Vle ssage
Order violation (14%)
A
Msg-msg race W)
Kill Submit

Y must happen after X
But ¥V happens before X

MapReduce

//

LMessage
Order violation ()
Msg—msg race

=

I—Message
Order violation (14%)
Msg-msg race
Msg—compute race

cmp

I—Message
Order violation (44%)
Atomicity
violation (20%)

A message comes In
the middle of

Cassandra-1011,

~
~

“atomic” operation

7/1/2016

= —

Message ~ "
Fault (1% ~ — Fault o
— ~ Reboot (11%)

A
* &) &)

Fault at specific timing \ 5 c A B
\

L ~ Reboot at specific timing *

No fault timing in LC bugs — (I)
Only in DC bugs ~ —

Cassandra-6415, Hbase-5806, MapReduce-3858, Zookeeper—1653 Ex: Cassandra-2083, Hadoop-3186, MapReduce-5489, Zookeeper-975

Implication: simple patterns can inform
m pattern-based bug detection tools, etc.

\\ \ \ > < *—— lu‘x'nn Input
%) g
$4 T s _—\ . @ .
g) (%]) Fault
- N RBomicit h
N ~ . Violatio [ReboOt W a't. Input to gnore
N\ X — ¥ Boult exercise buggy code
" cmp *\‘/ o Tﬁing Workload ept
® ® ® ™ ® ® Reboot Why: Improve o

Timing

testing coverage

Message timing Fault timing

“How many reboots?”

‘ 73% = No reboot 20% =1 7%

“How many bugs require fault injection?”

I—Faul t

37% = No fault

“What kinds of fault? & How many times?” Reboot

Fault

53% = No crash 35% = 1 crash 12%

Real-world DC bugs are NOT just about
message re-ordering, but faults as well

7/1/2016

Qg J Cassandra Paxos bug m
4 ww] &

vr 3 concurrent

Fault user requests!
Reboot

Workload

“How many protocol initiations to
run as input?”

Romicit

y
Violatio

2A%N=N3N 27% = 4+

What: How developers fix bugs

Why: Help design runtime prevention
and automatic patch generation

Implication: multiple protocols
for DC testing

¢ e . . F or
Add new states X COF
& transitions P v
! o |
- r’ :

Add) ©
Global

Synchro-
nization

Similar to fixing LC bugs:
add synchronization
e.g. lock()

Delay Delay
Ignore/discard @ Ignore/Discard)
Retry |

10

Delay
Ignore/Discard
Retry

Accept

Error

40% are easy to fix
(no new computation logic)

7/1/2016

¢ ¥
[[petay | [tanore
—————
\ g(msq) ;
¥ v
[[Cketry | [accept

Order
Violati

Fault
Aomicit

v
Violatio [Reboot

n

;?“!(Workload
iming
Reboot
Timing

Error

[Loc Mem

[Loc Sem
| Loc
Hang

| Loc
Silence

lGlob
Miss

LGlob
Silence

Failure

&

‘ailure

Downtime

Data
Loss

Op Fail

e
FGlob Wrong

Performanc

Challenges & Opportunities in <

ODistributed system model checker

OFormal verification

aDC bug detection

QORuntime prevention

Checkers

Message
Crash

Multiple
crashes

B

Reboot

Multiple
reboots

Timeout

X S<X XX

Computation
Disk fault

Demeter

XSS XX

MaceMC

XX XK=

X% Bl x < [<

S S B S S

Formal Verification

Q State-of-the-art
= \erdi [pLDI '15]
- Raft update protocol
= |ronFleet [sosp 15]
- Paxos update protocol
- Lease-based read/write

Only verify foreground

protocols

0 Challenges
Foreground & Background

52% = BG

29% = Mix

#Protocol interactions

80% = 2+ Protocols

Foreground

11

7/1/2016

DC Bug Detection Runtime Failure Prevention
OState-of-the-art: QOpportunities: O State-of-the-art: O Opportunities:
LC bug detection DC bug detection? LC bug prevention DC bug prevention
= Pattern-based = Pattern-based = Deadlock Immunity [OSDI .
detection detection 08] Fixes
" Error-based detection & N N @z = = Aviso [ASPLOS ‘13] 404 = Sinple
. Statlsiﬁlcal bug ¢ A % @ = ConAir [ASPLOS ‘13
detection N\ X \E = = = (many more)
® A s v v

\\p\ \\ \\

Dey | [_lgore | [Rey | [CAccep

Dev’ s comments on DC bugs “New” classes of bugs -
Q “Do we have to rethink this entire [HBase] root L
and meta ’ huh hah’ ? There isn’ t a week going 0 Distributed concurrency bUgS

by without some new bugs about races between
splitting and assignment [distributed
protocols]. 7 — hbase4397

Q “That is one monster of a race!” — mr3274

Q “This has become quite messy, we didn’ t foresee
some of this during design, sigh.” — mr4819

Q “Great catch, Sid! Apologies for missing the

race condition” — mr4099 0 Scalability bugs

Q “We have already found and fix many cases ...
however it seems exist many other cases. ” —

hb6147

€13 ” _ i
A “limpware” anecdad Limpware, really?
(]J'mpl'ng Q “In 2011, one of the DDN 9900 units had 4 servers having
high wait times on 1/0 for a certain set of
P /731" dW&Zvﬂ 6’) i The maximum wait time was . This was left
a cee JGH NIC card on®machine that uncorrected for 50 days. ” - Kasick of CMU, Harms of
suddenly only trausmits at 1 kbps, Argonne
. . . . Q “The attempts to
Q this slow machine caused a chain reaction before responding, ” - Baptist of Cleversafe
upstream

Q “On Intrepid, we had a bad batch of
. with an extremely high error [dlé' T/zal results in an
Q in such a way that the effective throughput of - Harms of Argonne

4 “«

. 0 Many others: _“ we’ve seen that in production”
Q making the system non-avaSghle for al]
. » o b .
practical purposes. Be Cascading

Facebook .
impact!

12

Limpware impacts?

OModern distributed systems are ---
= -« fault tolerant
= .-« limpware tolerant?

QOLimpware—injection experiments

- E.g. slow a NIC to 1 Mbps, 0.1 Mbps, etc.

= Run HDFS, Hadoop, ZooKeeper, Cassandra, Hbase

An examp]. e Execution

slowdown
O Run a distributed protocol

= BE.g., write pipeline in HDFS 1000x

slower

O Measure slowdowns under:

= No failure, , a limping
NIC 100x
- slower
pipeline 10x

slowe

7/1/2016

0.1 Mbps
NIC

D | Protocol Limp- | Injected Waorkload Base

e | Node Latency

Fl Master Create 8000 empty files [

F2 Data 182

F3 120

HDFS | 1 9
F5 ra ct 9

Fo Create 30 64-MB files 208

F7 Read 30 64-MB files 4

s ¢ 90 blocks an

9 n

Flo 4105

F11 174

] ccution i

H2 exccution | Net 0

H4 Speculative execution Net Task Node 1000-task Facebook workload 4320

7l Net Get 7000 1-KB znodes 3

72 Net 5
ZooKeeper | 7 Net ot 23
2 " Ne | Follower 2%

zs Set Net Follower Set 20KB data 6000 times to 100 znodes o

8] Put (guorum) Net Data Put 240K KeyValues 66
Cassandra | C2 | Get (quorum) Net 7
€3 | Get (one) + Put all) Net at heavy puts 3

Bl Put Net g Server 61

B2 Get Net g et 151

HBase | B3 | Scan Net gion Server | Sean 300K KeyValues 7
Bi | Cache GeuPut Ne | Dant Get 100 KeyNalues + heavy puts 4

BS | Compaction Net | Region Server | Compact 4 100-MB sstables 2

1000
=R
F11. Dscommission M1 Spec. Exec. H2. Spec. Exec: H3. Spec. Exec. I
{Diata-LDala-R) Mapper) {Reducer] dob Tracker)

3

E—§

A\
\

Execution
Slowdown

i\
i\

3. Read ¥e.Readloggiog ¥ Crackpoint
(Data) Master] (Secondary)
5§ /
s e
i ! 1 ol
da -

F8. Reganaration ¥9. Raganeration F1n Batancs
Bata) BuinEoaiad] Gaia OBt

A\
H
i\
E

H4. Spoc. Exec 71.Gol
(Task Node) (Leader)

L T—
1. Putlquorum) €2. Gatlquorum)
(Data) (Data)

72.Get 7350 4. 561 7. 58t [
(Follower) (Ceaden) (Folower) (Folwer)
s 5\988
: § ;] /' /' /'
e Oulll - I (o
dz
€3, Get(one) « Putfall) B1. Put B2. Get B3. Scan B4. Cache GeUPut BS. Compaction
(Data) (Region Server) (Region Server) (Region Server) (Data-H) (Regicn Server)

this talk focuses on Hadoop MapReduce)

Hadoop MapReduce .
O Supposedly tail tolerant 7 &
[(@R

aWhy not limpware tolerant?

QWhy Speculative Execution fails:

iy mm— mee il

H1. Spec. Exec. H2. Spac. Exec.
(Mapper) (Reducer)

H3. Spec. Exec. H4. Spec. Exec.
(Job Tracker) (Task Node)

The root causes are in Limpware paper [SOCC ’ 13];

Loophole #1

0 Backup task reads from
the same slow datanode

= Hadoop and HDFS don’ t
cooperate
= No history of bad “paths”

Datan

”

Mappers

odes

13

Loophole #2

QAll reducers fetch from a
mapper with a slow NIC
= A1l reducers slow = no
straggler
= M2 reads data locally (not
slow)

Mappers Reducers

ML

Q (many other loopholes in
the paper)

Cascading failures

0 A limping NIC >
= (Limping tasks are slower by orders of
magnitude)

0 Limping tasks use up slots =
= If all slots are used - node is “unavailable”

0 All nodes in limp mode =>

7/1/2016

Cluster collapse

0 Macrobenchmark: Facebook Hadoop workload
= 30-node cluster
= One node w/ limping NIC (0.1 Mbps)

(c) Job Throughput
1200
Normal -
g 1000 w/ 1 limping node
=
;é 800 h/hour
i >
» 600 = o 1
S 400 RS
s 200 AL
0

0 50 100 150 200 250 300 350
Time (minute)

Formalizing the problem

QA job = various deployment scenarios

aUntriggered speculative execution
= (DSR, & FTV._ & FPL. & DLC,) or
) or -

Unanticipated scenario

Scenario Type Possible Conditions

DLC: Data Locality (1) Read from remote disk, (2) read from local disk, ...
DSR: Data Source (1) Some tasks read from s wode. (2) all tasks read from different datanodes, ...

JCH: Job Characteristic T-to-many, (3) large fan-in, (4) large fan-oul,
JSZ: Job Size
LSZ: Load Size

(2) mapper, (3) reducer, ...
e rack (network switch), ..

tpacket drop, (3) Disk errorfout of space, (4) Rack swilch,

TOP: Topology Scenaria
TPL: Task Placement

0 Untriggered Speculative
Execution

&

02 = DSK, & DLC, & FPL, & FTY,

= MR-7
= MR-5533 = FTY, & FPL, & TPL,
T [T r—) P
Sovisic | (5 g vt
B [
U5z Lowt st) Trousandsf sk, 2 sl e of s, 0 0(n) Recovery
IV Faul e RS Node dsconnectpacet diop. = MR-5251 = FTY, & FPL, & FTM,

FoL: e 5 MR=BUBE=TPE, & TPE R FIY iRt

FoR: Falt Gand node (catoce). ()

FTM: Falt Tining

0 Lo
- . 1

= MR-9292 = TPL, & TPL, & FTV, & FPL,
= MR-9393 = TPL, & TPL, & FTV, & TOP,

TOP: Toploay
TP Tk Plcament
n

Perf. Model Checking [HotCloud '15]

0Goal: Permute many
topological/failure/placement scenarios

OReal Java code = Colored Petri Nets (CPN)

mode

= Automated conversion (“compiler”)

= Abstract system—level constructs
E.g., queues, tasks, resources, locks

O Permute the scenarios in CPN

0O Abstract performance faults
= Boolean result: limping or not

= No need for precise latency/bandwidth predictions

QO Test the buggy scenarios in real runs

14

Path Based Spec. Exec. [In Subm.]

0 Hadoop SE:
= Straggler: if task T’ s progress is slower than the
rest
= Task T is just a progress score = fundamental flaw

Q Our observation:
= Task T is a path
= Map path: source datanode = map node
= Shuffle path: map node = reduce node
= Qutput path: reduce node = pipeline of datanodes

0 PBSE: Path-based speculative execution
= [t’ s about the progress of individual “paths”
= SE algorithm is based on path progress
= Diverse paths: no single point of path failure

7/1/2016

Conclusion

o Distributed concurrency The complexity of
bugs cloud-scale hardware and

a Non-deterministic software ecosystem
performance bugs N has o_utpaced _

a Scalability bugs existing testing, debugging,

] and verification tools.
0 Other outage-causing

bugs: Many new
= SPOF/cascading bugs classes of bugs
= Cross-layer upgrade bugs to hunt!

Thank you!
Questions?

0..
.-.
'--a ERES

Center for Unstoppable Computing

ucare. cs. uchicago. edu ceres.cs.uchicago.edu

Extra -- SAMC

Message Processing Semanticin
a Leader Election

Belief = 3
if (vote <= belief)
// do nothing
else
belief = vote; [V 1][\/2 V4]

1t 6“

l Vote=1 Vote=2 l Vote=4 l
6/13

15

SAMC server logic (extra)

[vote | belie | _isbiscard |
i 3 true
’ ‘ \ 2 3 true

4 3 false
- -
[m, | m, | discard(m) | discard(m) | _independent |
1 2 v

true true
1 4 true false X
2 4 true false X

7/1/2016

+ Crashes and Reboots
(sometimes multiple of them)

" ZooKeeper we Hadoop
° °

<3 <]

a°® a°

2. N

~: 3

8, i b 1
G &

g1 HH 8

S 5

* 0 *

913 =

Cassandra

x-axis is bug number
y-axis is number of crashes
and reboots

crashes / # reboots

6364
6503 e
BugH

Belief=4

7\

- o O

if (vote <= belief)
// do nothing
else
belief = vote;

Errors, Faults, Failure

¢ To quote the Software Engineering Body of Knowledge

« Different cultures and standards may use somewhat
different meanings for these terms, which have led to
attempts to define them.

¢ Partial definitions taken from standard (IEEE610.12-90)
are:

e Error: “A difference...between a computed result and the
correct result”

¢ Fault: “An incorrect step, process, or data definition in a

computer program”

Failure: “The [incorrect] result of a fault”

Mistake: “A human action that produces an incorrect

result”

3/16 v 9

16

