Recovering From

Concurrency-bug Failures

6/29/2016

The challenges for failure recovery

e What is a correct program state?
* How to go back to that state?
* How to by-pass the failure during re-execution?

Traditional rollback-recovery

Concurrency bugs are easier to recover from!
Thread 1 I
Thread 2 I
Thread 3 _____i?

Triage: Diagnosing Production Run Failures at the User's Site, SOSP'07

/ Thread 1 Thread 2\ / Thread 1 (child) Thread 2 (parent)
if (proc){ —_ - . =CreateThd();
tmp=*prog+” Po¢ = NULL _state = mThd->state;

} mThd=

.

\\AitySQL / _ Mozilla

Are we done?

¢ What about the performance?

Thread 1 I
Thread 2 I
Thread 3 ____{y:}

Modify OS/HW and Slow

How can we do better?

Do we have to roll back all threads?

Do we have to make whole-memory checkpoint?

ConAir: Featherweight Concurrency Bug Recovery Via Single-Threaded Idempotent Execution. ASPLOS'13

Do we need to roll back all threads?

Bug example revisit
[00 werecdto ol buck i treccs?]

Thdl Thd2
if(ptr){
ptr = NULL;
tmp = *ptr;

}

6/29/2016

Bug example revisit

Thdl Thd2 Timeline
if(ptr){ :
v
ptr = NULL; E
tmp = *ptr; v
? Y
if(ptr){ ' v

| Rollback one thread is enough

Bug example revisit

Do we need periodic checkpoint?

Thdl Thd2
if(ptr){
ptr = NULL;
tmp = *ptr;

}

Failure site is (somewhat) predictable,
guided checkpoint could work

Bug example revisit

if(ptr)
Idempotent {

anidem potent region is a code region that can
ve reexecuted for any number of times
without changing the program Semantics

Src dst

PC1: mov 0x80496f4 ,%eax
PC2: test %eax,%eax
PC3:je PCn

Re-execution region is small,
no need to checkpoint

Generalize the bug example

Thread 2

Thread 1 \

Single-threaded error propagation - roll back the failure thread is mostly enough
Simple failure/error patterns > guided checkpoint-recovery is mostly enough
Short error propagation > re-executing an idempotent region is often enough

Is single-threaded re-exec enough?

* Atomicity violation bugs

Thdl Thd2

RL if(ptr) R2

S ptr= NULL
tmp =*ptr; 4”

Rl if(ptr){

Is single-threaded re-exec enough?

¢ Atomicity violation bugs (~¥100%)
¢ Order violation bugs

Thdl Thd2

_state = mThd->state;
mThd = CreateThd();

6/29/2016

Is single-threaded re-exec enough?

¢ Atomicity violation bugs (~¥100%)
¢ Order violation bugs

Thdl Thd2
_state = mThd-%te;
_state = mThd->State;

mThd = CreateThd();
_state = mThd->state,

Failure thread executes too fast @
Failure thread executes too slow 0

Is single-threaded re-exec enough?

¢ Atomicity violation bugs (~100%)
¢ Order violation bugs (50%)
Thdl Thd2
_state = mThd»*ite;
_state = mThd->State; mThd = CreateThd();
_state = mThd->state

Failure thread executes too fast @
Failure thread executes too slow 0

Is single-threaded re-exec enough?

¢ Atomicity violation bugs (~¥100%)
¢ Order violation bugs (50%)
¢ Deadlocks (?)

Is single-threaded re-exec enough?

¢ Atomicity violation bugs (~¥100%)
¢ Order violation bugs (50%)
¢ Deadlocks (100%)

A simplified con. bug failure recovery

Thread 2

Thread 1

jump back

Recover many failures
Negligible cost
No change to semantics

Stepl: Locate potential failures
Step2: Identify the re-exec region

Step3: Generate rollback re-exec code
18

Step 1 Identify potential failure sites

Error Messages

Deadlocks

Incorrect outputs

Illegal mem. accesses

Failure Type Potential Failure Site

Assertion Failures

Call to __assert_fail etc

Call to fprintf(stderr,...), NS_WARNING in Moxzilla, tr_err in
Transmission, etc.

Call to (f)printf, BinLog::Write in MySQL, etc.
Dereferencing
Call to pthread_mutex_lock(...)

Number of potential failure sites in MySQL: ~13000

6/29/2016

Step 2 identify re-execution region

* Re-execution region = idempotent region

What code region is idempotent?

What makes code non-idempotent ?

¢ 1/0 operation
¢ Shared memory write

¢ Local memory writes
X=X+1;
Z=X+Y;
Y=X+1;
Z=X+Y;

* Writes to registers

@00

What makes code non-idempotent ?

¢ 1/0 operation

0 CallInst(to lib)

¢ Shared memory write o Storelnst to non-Alloca

¢ Local memory writes

X=X+1; 0 Storelnst to Alloca

Z=X+Y;

Y=X+1;

Z=X+Y; @ Write to virtual register
* Writes to registers + setjmp/longjmp

Step 2 identify re-execution region

@ crcnode

Potential failure
—1 (lib) Callinst or Storelnst

<) 'dempotent region

Step 3 generate code

setjmp(...);

/ //start of idempotent region
if(e}
Jelsef{

while(retryCnt++ < MAX){

longjmp(...);
}
CFG //potential failure site
_assert_fail();

Code

6/29/2016

Maximize legit idempotent region

¢ Handle some library functions (e.g. malloc, lock)
— During execution: timestamp
— Upon failure: undo most recent library functions

Inter-procedural analysis
— Configurable max level of function calls (e.g. 3)

Optimization
— Some recovery attempts are doomed to fail

Summary for failure recovery

* How to recovery from concurrency bug failures?
— Rollback-replay
« Different types of replay ...

What are the remaining challenges?
— Coverage vs. Overhead/System-Support
— Can we prevent failures at run time?

Deadlock Immunity: Enabling Systems to Defend Against Deadlocks. OSDI 2008
Cooperative Empirical Failure i for Programs. ASPLOS13

Failure Prevention

“Al: a Lightweight System for Tolerating Concurrency Bugs”
Mingxing Zhang, Yongwei Wu, Shan Lu, Shanxiang Qi, Jinglei
Ren, Weimin Zheng, FSE 2014

What is con. bug failure prevention?

¢ How to predict a failure?
* How to change the execution and avoid the failure?
— Pause to change the timing!

Challenge

¢ How to predict a failure?
— Not too early
* Too early will lead to unnecessary performance losses
— Not too late

* Too late will make failures inevitable

¢ Where should we predict the failure and pause?

/ Thread 1 Thread 2 "\ / Thread 1 (child) Thread 2 (parent)\
\ \

) m _stale = mThd->state;
PRl —, ioe = NuLL;
tmp=*proc;
Thd=CreateThd();

‘\\Mysat /’ \\ Mozilla Yy,

6/29/2016

How to generalize?

¢ Stop before every shared-variable write?

* Stop before every shared-variable read?

How to generalize?

¢ Stop before every shared-variable write?
— When the previous access is abnormal?

¢ Stop before every shared-variable read?
— When the previous access is abnormal?

How to generalize?

¢ Stop before every shared-variable write?
— When the previous access is abnog@hal?

¢ Stop before every shared-variable read?
— When the previous access is abnoghal?

Our solution — A(nticipating) I(nvariant)

For an instruction i,
a fixed set of instructions P are expected to
precede it and touch the same variable
from a different thread

(for correct execution)

/ Thread 1 Thread 2 ™\ / Thread 1 (child) Thread 2 (parent)
(\

if (proc){ _state = mThd->state;
—>» proc = NULL;
TP="p oc;‘) P
! Thd=CreateThd();

\ /

\I\inQL /, \7 Mozilla /

/ Thread 1 Thread 2 ™\
proc = NULL;
if (proc
tmp=*proc;
}
/ Thread 1 (child) Thread 2 (parent)\
\MySQL |

mThd=CreateThd();

_state = mThd->state;

/" Thread 1 Thread 2 ™\

\

il /
) Mozilla /

6/29/2016

Our solution --- the whole story

e Step 1l

— Off-line training to obtain Al invariants
e Step2
— On-line monitoring to look for Al violation
e Step3
— Stall a thread when Al invariant is violated
/Thread1 Threadz

Pstate = mThd->state;
if (proc)_ __ p,,l]!NULL;. {mThd

/ Thread 1 (child) Thread 2 (parent) ™\,

CreateThd();
tmp=*proc;
proc = NULL;) {nil, tmp=*prdc;} Thd=CreateThd|();
_ mysaL /
N,
\ mysar /,‘ Mozilla /"

Evaluation of Al

Evaluated on a large number of bugs and software
— 35 real-world bugs from 10+ applications

Prevent all 35 concurrency-bug failures

* Training

—~100 for small applications, ~1000 for large applications
* Runtime overhead

— <5% for desktop & I/O intensive applications
—>1000% for scientific computing applications

Conclusions

ConAir and Al complement each other
— Reactive vs. proactive

— Effect-guided vs. cause-guided

Prevention and recovery are promising!

