Production-Run Failures Diagnosis
for Concurrency Bugs

Shan Lu
University of Chicago

CHICAGO|
T

Failure diagnosis is challenging

¢ Limited information
e Failures are difficult to repeat

e Root causes are difficult to reason about
SRR 5

i

Intornet Explores has sncountored o problem ond needs
o close. We are soury on the inconvenience.

g wete i th ks of scmein, e dfoanaion o wete wking
e be ot

Ploase 164 Microsott about this prcbiem.

W haym raat 1 evcr epeet i you can semd o hek s e
kst Evplre. W el best h epot a3 confdeial oo

o s whe A i coce epoe cmbms, ci e,

bet S et

Different aspects of fighting bugs

In-field
failure recovery

In-field
failure diagnosis

In-house
bug detection

Low overhead
High accurac

6/29/2016

In-house
bug fixing

[High accuracy |

CHICAGO|

Example

Thread 1 Thread 2
ptr = malloc(SIZE);

«) free(ptr);
if (1ptr){ ptr=NULL;

ReportOutofMem();

exit(1);

}
Mozilla

O

InitState(...}{

» table = New();

if (table == NULL) {
ReportOutOfMemory();
return JS_FALSE;

o g
out of memory

CALL STACK

InitState()

ReportOutOfMemory(){
error("out of memory");

}

CHICAGO|
T

Questions

Slide 2

SL41 ideally, this should be a cycle, but ...
Shan Lu, 2014-1-7

Slide 3

SL35 if i have time, i can turn these into developers quotes
Shan Lu, 2014-1-15

Slide 4

Al15 i need to replace this with Joy's version

Administratr, 2014-3-5

Previous work

6/29/2016

m
Our work

Performance

[]
bug detector
[}

replay
coredump CHICAGO
e

Our work

Performance

[]

CCl

[]
bug detector
o
replay
coredump CHICAGO

Outline

* QOverview

¢ Production-run failure diagnosis
— What is the problem
— What are our solutions

Latency
o <
PBI ®
Ccl
Performance
& LXR

¢ Conclusion

Performance

®

CcClI

([]
bug detector
L]
replay
coredump CHicica

Our work

Diagnostic Latency
Performance

[]

CCl

[]
bug detector
®
replay
coredump CHicica

How to do better than state-of-art?

What to collect How to collect How to use the collected

CHICAGO|
T

Slide 8

Al4 simplify these. put
statistical approach, compiler, cause-pattern
hardware support
hardware extension, effect-pattern
in one text box, keep growing.
change the cloud shape. simplify both the slide and the script
Administratr, 2014-3-4
Slide 9
SL31 maybe i should put 4-d/3-d coordinates here, and change the tables following
Shan Lu, 2014-1-15
Slide 10
SL31 maybe i should put 4-d/3-d coordinates here, and change the tables following
Shan Lu, 2014-1-15
Slide 11
SL33 change the bullets texts. things like "compiler-based" is strange.

Shan Lu, 2014-1-15

6/29/2016

How to do better than state-of-art? How to do better than state-of-art?

What to collect How to collect How to use the collected

Sampling

Branch
Return value

’

Program H
d Source Predicates \

Sampling g'*g

Statistical - I
. Predicates ' *
“— | Debugging % ©/@ I ﬁ D

Performance Capability
Good ??

True in most
failure runs,
false in most
correct runs

Failure
Predictors

1 / Print_tokens2 v7

2 i(ch =="\n")

3 return (TRUE);

4 elseifich=="")

s # Bug: should return FALSE
6 return (TRUE);

7 else

& return (FALSE);

What to collect How to collect How to use the collected

Sampling Cooperative
statistical analysis

e Statistical fault localization, delta debugging

e Sampling based statistical fault localization

Slide 15

SL20 do i need to provide a sequential bug diagnosis example?
Shan Lu, 2014-1-10

SL34 should i add an overview slide before this saying: challenges; solutions: apply xxx to concurrency bug
diagnosis.
Shan Lu, 2014-1-15

Thread 1

ptr = malloc(SIZE);

P if (pte) //5

exit(1);
}

free(ptr);
fecton | lens

I
ReportOutofMem(); Itakenb

Why does CBI not work?

What to collect? (predicate design)

Atomicity Violation
thread 1 thread 2 | thread 1 thread 2

[access X] [access X]

| L
access x access x
\\\\ ////

~

© ®

Concurrency bug root cause patterns CCI-Prev predicate

Order Violation
thread 1 thread 2 | thread 1 thread 2

access x ‘ access x

~ : e
N : /

. : ~

access x access X

© ®

6/29/2016

Does it work for concurrency bugs? Cooperative Con-Bug Isolation (CCl)

Program| |
N
Sampling i

Failure Statlstlc'al Predicates '
Predictors Debugging & ©/@

Performance Capability

i)

Mixed Good

Instrumentation and Sampling Strategies for Cooperative Concurrency Bug Isolation, OOPSLA10

Concurrency bug root cause patterns

Atomicity Violation

Order Violation

Whether two successive accesses
to a memory location were by

two distinct threads
or one thread

CHICA

i

Slide 21

SL42 i need to redraw this to be consistent with earlier ...
Shan Lu, 2014-1-16

6/29/2016

CCI-Prev can reflect root causes Is CCI-Prev useful? (Example)

Order Violation
thread 1

Atomicity Violation
thread 1

thread 1
access x access x

access X access x

© ® @ © ®

thread 2 thread 2 thread 2 ' thread 1 thread 2

access X access x
L

CHICAGO|

Example (correct runs)

thread 1 thread 2
f?ee (ptr);
ptr=NULL; remote, 0 0
local, 1 0
hatr = malloc (SIZE); |
[1]if (ptr) { |
ReportOutofMem();
exit(1);

} ©

How to evaluate?

et fead 2
ptr = malloc (SIZE); remote, 0 1
- free (ptr); local, 1 0
ptr=NULL;
[lock(glock);)
[remote = test and insert(& ptr, curTid);]
[record(l, remote);] a global hash table
||| temp = ptr;
R }
if ('temp) {
ReportOutofMem(); & ptr 1
exit(1); .
} CHICAGO

Thread 1 Thread 2
ptr = malloc(SIZE);

free(ptr);
if (Iptr){ ptr=NULL;

ReportOutofMem();

exit(1);

}
Mozilla

J

CHICAGO|

Example (failure run)

thread 1 thread 2

ptr = malloc (SIZE);
T free (ptr);

.

[ptr=NULL;

] local, 1 0

keliiing

ReportOutofMem();
exit(1);
}

How to sample?

CHICAGO|

How to sample branch predicates?

A:if (itemp2) {
if (sample()) J
| record (A, TRUEJ; |
) clse {]
if (sample()) .
B: if {temp3) {
[record (A, FALSE);)) J
i I | record (C, TRUE); |
} indegendent
B: if (itemp) { . }else{
if (sample()) .) | if {sample())]
|__record (B, TRUE)J] .- “” record (C, FALSE); |
)ellée{ M ifjgepén‘dent)
[if (sample()) PR]
| record (B, FALSE); « ©]
! CHICAGY

How to sample CCI-Prev?

thread 1 thread 2

if (sample())
ock (..J;

3

if (sample())
ock (..J;

ptr = tmp1;

unlock(...);

cannpt be
indeplendent

i cannotbe -~
indepengdertt

if (sample()) .
ock (..); X

-
/e
tmp3 = ptr;

unlock(...);

C

Does traditional sampling work? NO!

Other predicates

Performance (overhead)

e

Havoc

e

Capability (manual effort)

6/29/2016

How to sample CCI-Prev?

thread 1 thread 2

ptr = malloc (SIZE);
free (ptr);
ptr=NULL;

|f .(!ptr) {
ReportOutofMem();
exit(1);

}

Does traditional sampling work?

Thread-coordinated, bursty sampling

thread 1 thread 2
if (sample())

Evaluation methodology

Apache-1
Apache-2
Cherokee
FFT
L
Mozilla-JS-1
Mozilla-JS-2
Mozilla-JS-3
PBZIP2

CHICA

ClL-based static code instrumentor
1/100 sampling rate, ~3000 runs in total (failure:success~1:1)

6/29/2016

Diagnosis capability (w/ sampling) Diagnosis performance (overhead)

Apache-1 v topl
Apache-2 v topl

| Cherokee x
FFT v topl
LU topl

[mozillas1 x
Mozilla-JS-2 v topl
Mozilla-JS-3 v top2
PBZIP2 v topl

1/1000 sampling rate, ~3000 runs in total (failure:success~1:1)

CHICAGO|

Are we done?

coredump

Performance
[]
CCl
[]
bug detector
o
replay

CHICAGO|
T

L prev |
No Sampling

Sampling
Apache-1 62.6% 1.9%
Apache-2 8.4% 0.5%
Cherokee 19.1% 0.3%
FFT 169 % 24.0%
LU 57857 % 949 %
Mozilla-)S 11311 % 606 %
PBZIP2 0.2% 0.2%

cHicacd
|
Outline

coredump

Performance
[]
CCl
[]
bug detector
®
replay

How to do better than CCI? How to do better than CCI?

What to collect How to collect How to use the collected

CCI-Prev i C statistical
analysis

CHICAGO|
=

[

What to collect How to collect How to use the collected

Sampling

Slow sampling infrastructure

CHICAGO|
T

Slide 40

SL33 change the bullets texts. things like "compiler-based" is strange.
Shan Lu, 2014-1-15

Sampling

Slow sampling infrastructure
Inaccurate evaluation

What to collect How to collect How to use the collected

Hardware
Program Perf. Events
EETRY Counter
Overflow
Interrupt

Statistical
Debugging

Failure
Predictors

Performance

Predicates II
& ©/®

Capability Code Size

Good (<5% overhead) Good

No Change NO!

¢f
i

Change Hardwa

Production-Run Software Failure Diagnosis via Hardware Performance Counters, ASPLOS'13

What to collect? Which event can reflect root causes?

CHICAGO|

What to collect How to collect How to use the collected

Hardware-based
evaluation & sampling
Lo Li H

b

frrereeTTet O

* Registers monitor hardware performance events
— 1—8 registers per core
— Each register can contain an event count
— Large collection of hardware events

¢ Instructions retired, TLB misses, cache misses, etc.
e Traditional usage

— Hardware testing/profiling

How can this help diagnose software failures?

6/29/2016

How to do better than CCI? How to do better than CCI?

PerfCnt-based Bug Isolation (PBI) Hardware Performance Counters

¢ L1 data cache cache-coherence events

It tracks which cache-coherence state
(M/E/S/1) an instruction observes

Modified
. Local write
Exclusive
Remote read
Shared Remote write
Invalid

LHICAGO|

Slide 45

SL38 should i bring in secret sauce here?
Shan Lu, 2014-1-16

6/29/2016

Is cache-coherence event useful? Example (correct runs)

thread 1 (core 1)

Modified

thread 2 (core 2)

Thread 1 Thread 2
ptr = malloc(SIZE);

free(ptr);
if (Iptr){ ptr=NULL;

ReportOutofMem();

exit(1);

}
Mozilla

J

» free (ptr);
ptr=NULL;
M, 1 0
E 0o o0
ptr = malloc (SIZE); Si 0 0
I 0o o
[1:if (tptr) { U
ReportOutofMem();
exit(1);

©

Concurrency Bug from Apache HTTP Server

Example (failure run) Useful for Atomicity Violations

thread 1 (core 1)

Invalid

thread 2 (core 2)

Modified

Concurrency Bug from Apache HTTP Server

®

= ot = malo (S176)
free (ptr);
ptr=NULL;
M, 1 0
E, 0o o0
Si 0 0
o - 0o 1
W i (ptn) {]
ReportOutofMem();
exit(1);
}

WWR Violation
RWR Violation
RWW Violation
WRW Violation

INVALID
INVALID
INVALID
SHARED

Bug Type FAILURE PREDICTOR

Useful for order violations How to evaluate & sample?

Read-too-early

Read-too-late

Bug Type FAILURE PREDICTOR

EXCLUSIVE (!INVALID)

INVALID

CHICAGO|

Which performance events occur at a specific instruction?

Accessing performance counters

INTERRUPT-BASED

User
PC, e Read Count

1
HW

POLLING-BASED

(PMU)

Beyond concurrency bugs

¢ Which event?
— Branch taken/non-taken event

¢ How to evaluate & sample?
— Performance counter overflow interrupt

Evaluation methodology

Apache-1
Apache-2
Cherokee
FFT
LU
Mozilla-JS-1
Mozilla-JS-2
Mozilla-JS-3
MysQL-1
MysQL-2
PBZIP2

1/100 sampling rate, ~1000 runs in total (failure:success~1:1) |2

6/29/2016

More details of counter access

perf record -event=<code> -c <sampling_rate>
<program monitored>
Log | APP Core | Performance
Id Event
1

Httpd 2 0x140 401c3b decrement
(Invalid) _refent

PBI vs. CBI/CCI (Qualitative)

¢ Performance

Sample in this region?

Sample in this region?

sampling

|
T T
Em TN K

¢ Diagnostic capability
— Discontinuous monitoring (CCI/CBI)
— Continuous monitoring (PBI)
— PBI differentiates interleaving reads from writes

Diagnosis capability (w/ sampling)

Apache-1 v topl
Apache-2 v topl
Cherokee *
FFT v topl
L v topl
Mozilla-JS-1 x
Mozilla-JS-2 v topl
Mozilla-JS-3 v top2
MysQL-1 -
MysQL-2 -
PBZIP2 v topl

10

Slide 55

SL43 double check if polling needs to go through kernel
Shan Lu, 2014-1-16

Diagnosis capability (w/ sampling)

6/29/2016

Diagnosis capability (w/ sampling)

Apache-1 v topl v topl
Apache-2 v topl v topl
Cherokee x v topl
FFT v topl v topl

L ¥ topl v topl
Mozilla-JS-1 x v topl
Mozilla-JS-2 v topl v topl
Mozilla-JS-3 v top2 v topl
MysQL-1 = ¥ topl
MySQL-2 5 + topl
PBZIP2 v topl v topl

Diagnosis performance (overhead)

| _Progam | cciprev | Pm1 |
Apache-1 v topl v topl-l
Apache-2 v topl v topl-l
Cherokee x v topl-l
FFT v topl v topl-E
L ¥ topl v topl-E
Mozilla-JS-1 x v topl-l
Mozilla-JS-2 v topl v topl-l
Mozilla-JS-3 v top2 v topl-l
MysQL-1 - v top1-$
MysQL-2 - ¥ topl-S
PBZIP2 topl topl-l cicicol

Are we done?

Apache-1 1.90% 0.40%
Apache-2 0.40% 0.40%
Cherokee 0.00% 0.50%
et [1o0x

W |
mozilass-1 OO 1.50%
vozilass-2 [1.20%
Mozilla-ss-3 SOOI 0.60%
MysQL-1 ; 3.80%
MysQL-2 ; 1.20%

PBZIP2 1.40% 8.40% o

Sequential-bug failure diagnosis results are also good!

How to do better than PBI?

What to collect How to collect How to use the collected

Sampling

Missing failure-related information

High overhead

Diagnostic Latency

Performance
..
PB ®
LXR ccl
S)
&>
S °
[
bug detector
®
® replay

coredump CHICAGO
L

1/100 sampling rate =» ~100 failures required for diagnosis

CHICAGO|

How to collect sufficient root-cause information in 1 run

How to do better than PBI?

What to collect How to collect How to use the collected

Biased sampling

Missing failure-related information

High overhead

CHICAGO|

Collect information @ likely root-cause locations

w/ small overhead?

11

Slide 64

SL31 maybe i should put 4-d/3-d coordinates here, and change the tables following
Shan Lu, 2014-1-15

6/29/2016

LXR - Last eXecution Record Last Branch Record (LBR)

¢ What to collect?

 Existing hardware feature
— Last few branches right before failure

— Store recently taken branches
— Last few cache-coherence events right before failures

* How to collect/maintain LXR?
— Existing* hardware support!

— Circular buffer with 16 entries (Intel Nehalem)
— Negligible overhead

Pointer Pointer

Performance Capability Code Size Change Hardware? CHICAGO
Good (<5% overhead) Good Little Change z

Simple Extension* Short 3
P & Good performance
Levera&ing the Short-Term Memory of Hardware to Diagnose Production-Run Software Failures, ASPLOS'14

Diagnosis Latenc!

Last Cache-coherence Record (LCR) Is LXR useful?

 Existing hardware feature

Thread 1 Thread 2 Thread 1 Thread 2
— Configurable cache-coherence event counting ptr = malloc(SIZE);
free(ptr);
* Extension e if (Ipte) ptr=NULL;
L. . ReportOutofMem();;
— Buffer to collect this information exit(1);

}

Apache

— Set of recent L1 data cache access instructions
¢ Negligible overhead (estimated)

End=time();

he-access

Good performance

Bugs have short

Good diagnosis capability

ConSeq: Detecting Concurrency Bugs through Sequential Errors, ASPLOS'11

Latency
Performance Capability Diagnosis Latency 'Y
(#-failure-runs) PBI °
LXR <5% 23/31 1~10 failures ccl
PBI <5% 25/31 1000 failures Performance
CBI/C 3%~ 18/31 1000 failures S
a 969% = °
Q’b
[¢ie LXR

CHICAGO| CHICAGO|

12

