What New Bugs

Live in the Cloud?
(and how to exterminate them)

Haryadi Gunawi

ezied | HE UNIVERSITY OF

CHICAGO

Gox :Slc ucare uchicago 2012

Web

UCARE - Health Promotion and Wellness - University of Chi..
nitps weliness uchicago edu'ucare shimy

UCARE is the University-required alcohol server and education course
for all student groups and departments interested in serving alcohol or
overseeing ...

Alcohol Policy - Office of the Reynolds Club and Student Activ...

U of C systems research on stz ncuctos s o
An alcohol management training course (UCARE training) is required of

all ... 2008 The University of Chicago; Office of the Reynolds Club and

Avallability, Reliability & Efficiency S e

UCARE Certification Quiz | Health Promotion and Wellness | ..
hitps /iweliness uchicago edu'educalion_ucare lest shiml

Please complete all questions, then submit your lest. You will receive an
email notifying you of the results. Staff members grade the quizes once
a week on ...

' YScience - University of Chicago

ing with an nitiative called UCARE

University of Chicago Alcohol Risk Reduction Education ... ers Research on Avadabiky, Rlabilty,
wellness.uchicago.edu/ucare.shtml ~ - Department of Computer ... - Faculty
UCARE is the University-required alcohol server and education course for all student ity of Chicago Computer Science

UChicagO ucare Chicago. KBase HydePark ... UCARE -
vailabiity and Elasticity. The Systems

Student Counseling Service | The University of Chicago
Web News Images Shopping Maps More ~ Search tools cOun%eInNg UChiago edu

University of Chicago office that provides counseling and resources

for students

[POF) ORCSA's quidelines - Office of the Reynolds Club and S...
hitps /studentactivities uchicago edu RSO _Aicohol_Permission Re

File Format: PDF/Adobe Acrobat - Quick View

University of Chicago Alcohol Risk-Reduction Education (UCARE) is

About 9,160 results (0.26 seconds)

Univel’Sity Of Chicago A|00h0| R|5k Reduct'on Educatlon sss available through the Student Care Center's Health Education Services
wellness.uchicago.edu/ucare.shtml ~ st LG
UCARE is the University-required alcohol server and education course for all student Haryadi S Gunawi - Department of Computer Science

www 3 uchicago edu/pecpaharyadi
The Department of Compulef Scence at the University of Chicago ...
UCARE Univ. of Chicag: geearch on Availability, Reliability,

groups and departments interested in serving alcohol or overseeing ...

UCARE -- Research on Cloud Computing, Operating ...
ucare.cs.uchicago.edu/ ~

Cloud Computing Operating Systems Availability Reliability Elasticity, UChicago,
University of Chicago, Haryadi Gunawi, PreFail, Fate and Destini.

UCARE Project, UChicago Systems Availability Reliability an
ucare cs uchicago edu

Cloud Computing Operating Systems Availability Reliability Elasticity
UChicago, University of Chicago, Haryadi Gunawi, PreFail, Fat

g THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

What new bugs live in the cloud?

Datacenter
distributed
systems

of Bug Reports Jan 2014 Jan 2016

Hadoop+MR+Yarn 17454 23811

HDFS 5710 9605

HBase 10263 15062

Cassandra 6535 10960

Z0ooKeeper 1854 2350
We studied

3000+ Issues

UNIVERSITY O

@ CLHICAGO ©@Vsk

6/13/16

“New” classes of bugs

0 Distributed concurrency bugs
= + Timings of multiple failures

TaxDC [ASPLOS '16]
SAMC [OSDI '14]
FATE & DESTINI [NSDI '11]

6/13/16

2 Non-deterministic performance
bugs

QO Scalability bugs

_ THE UNIVERSITY OF
@CHICAGO @ MSR 6/13/16

Distributed concurrency (DC) bug

QO Caused by non-deterministic timing of concurrent
events involving more than one node

Q Events: Messages, crashes, reboots, timeouts, local
computations

7 N\
CAUTION
6% of the bugs

in our StUdy Data loss, downtimes,

inconsistent replicas,
_ hanging jobs, etc.l//

: THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

DC bug: a real view

i v T

0 Cassandra Paxos Bug (# 6023)

Q 3 concurrent updates
= Red, blue, green

0w >

O 3 msg-msg races must happen

= m = prepare message for ballot 2, BEFORE
= n =commit message for ballot 1

= 0 = prepare message for ballot 3, BEFORE
= p = propose message for ballot 2

= g = promise message for ballot 3, BEFORE
= = promise message for ballot 3

= (24 hours to understand)

-

ZooKeeper (synchronization service)
ISsue #335.

PERMANENTLY INCONSISTENT REPLICA

6/13/16 @ MSR

-

ZooKeeper (synchronization service)
ISsue #335.

Nodes A, B, C start (w/ latex txid: 10)

B becomes leader &=
B crashes
C becomes leader
C commits new txid-value pair (11, X)
A crashes, bef ittt
C loses quorum and C cras
A and B are back onli
A becomes leader
A's commits new txid-value pair
C is back online
C announces to B (11, X)
B replies the diff from tx 12
Inconsistency: A has (11, Y), C has (11, X)

Specific Order

Y)

-

\
K

1. Out-of-order messages]

2. Multiple crashes

=
>

3. Multiple reboots

J

(O @G HAPPEN IN ANY ORDER

6/13/16

How can we catch deep
concurrency bugs
in distributed systems?

@ MSR

11

Distributed system model checker
(dmck)

e Re-ordering all non-deterministic events
— Paths: abcd, abdc, acbd, acdb, ...
— Find buggy paths/interleavings

Node 1 Node 2 Dmck Server

Messages: {a,b,d}

] enable(c) GS: {is1,Is2, ...}

Policy: DPOR, Random, ...

Checks / assertions

Features (crash, reboot,...)

Figure I: DMCK. The figure illustrates a typical framework

of a distributed system model checker (dmck).
6/13/16 @ MSR

12

Event re-orderings by dmck

(Zool(eeper (synchronization service) \
Issue #335.
Permanent inconsistent data

Nodes A, B, C start (w/ latex txid: 10)
.. B becomes leader
3. B crashes
‘. C becomes leader
C commits new txid-value pair (11, X)
A crashes, before committing the new txid |1
".C loses quorum and C crashes
I.A and B are back online after C crashes
/.A becomes leader
A's commits new txid-value pair (I 1,Y)
C is back online after A's new tx commit
2. C announce to B (I 1, X)

(IR
HN&OOO\ICDNU'II—\-DU)]

=
~ O

I. B replies diff starting with tx 12
_/ 4 Inconsistency:A has (11,Y),Chas (I11,X))

6/13/16

[EY
w

[
[
[

<

:OOUUCDU'I-bl—\\IN]

== =
AN Yo

[EY
w

@ MSR

=
._\ONOO\II—\U'I-bUJLDO\J

=
N W

(WY
D

=
HOLDOO\IO\U'IAUUNH]

=
,_\OLDOOO\\IU'IAUOI—\N]

Y~
N D

[EY
w

|

13

SAMC:
Semantic-Aware

Model Checking
for Fast Discovery of Deep DC Bugs

with Tanakorn Leesatapornwongsa,
Mingzhe Hao, Pallavi Joshi, and Jeffrey F. Lukman
[OSDI ’"14]

What’s Wrong with
Existing Model Checkers?

e Last / years

e MaceMC [NSDI’07], Modist [NSDI’09], dBug [SSV "10],

Demeter [SOSP '13], etc.

e BUT

— Too many events to permute
— Must add crashes and reboots

e State-space explosion!
e (skipped in existing checkers)

— Cannot find deep bugs!

6/13/16

@ MSR

(Zool(eeper (synchronization service)
Issue #335.
Permanent inconsistent data

Nodes A, B, C start (w/ latex txid: 10)
B becomes leader
B crashes
C becomes le3
C commits g
A crashes,
C loses quq events
A and B are ba¥
A becomes leader
A's commits new txid-value pair (11,Y)
C is back online after A's new tx commit
C announce to B (11, X)
B replies diff starting with tx 12

k Inconsistency: A has (I1,Y),C has (I 1, X)

/

15

How can we catch deep bugs
REALLY FAST?

 Why are existing checkers slow?

 They treat target system as a black box
— Must re-order everything

Model Checker
ABCD
ABDC
ACBD

ACDB
ADBC

(24 total)

e How can we make model checkers fast?

— Exploit semantic knowledge
e E£.g. knowledge of how messages are processed

— Reduce unnecessary re-orderings

Semantic
Awareness

6/13/16 @ MSR

18

Dependency vs. Independency

—B- A
Unnecessary

A, B = Dependent A, B = Independent

Independent = No need to reorder

6/13/16 @ MSR 19

Model Checker
ABCD
ABDC
ACBD
ACDB
ADBC
ADCB
BACD
BADC
BCAD
BCDA
BDAC

Black Box vs. SAMC

Black

Box

Message
Processing
Semantic

SAMC with
message processing
semantic

ABCD

ABDC

A

A

D

-

/

~

All dependent

Message Processing Semantic in
a Leader Election

Belief = 3

if (vote <= belief)
// do nothing

else

belief = vote;

/ 1

6/13/16

e Discard pattern

6/13/16

MESSAGE PROCESSING SEMANTIC

if (msg.vote <= state.belief)
// do nothing

else
belief = vote;

\ 4

DISCARD PATTERN

if (isDiscard(msg, state)) {
// do nothing;
}

A4

DISCARD PREDICATE

boolean isDiscard(msg, state) {
if (msg.vote <= state.belief)
return true;
else
return false;

@ Microsoft 22

e Discard pattern
* Increment pattern

if (msg.type == ack) {
node.ackCount++;

R

boolean isIncrement (msg, 1s) {
if (msg.type == ack)

return true;

else
return false;

}

* Constant pattern

Local-Message Independence (LMI)

SAMC with Crashes

Black Box SAMC with
Model crash recovery
checker semantic
ABCDX ABCDX
ABCXD —ARC D v\\
ABXCD —ABXCD_ \‘§
AXBCD AR
—
XABCD XABCD. ¢
ABDCX ~ABDCYX- €
4//
ABDXC —ABDXC-
/

Crash-Msg Independence

0.

void handleCrash() {

Black Box A,B' C,D i1f (X == follower &&
ABCDX isQuorum())

followerCount--;

// No new messages!!
ABCE }
AXBED
SABRCD

ABDCX- Crash a follower
9

Local Impact
(no new messages &

only state changes in leader L)

6/13/16 @ MSR 25

Crash-Msg Independence

void handleCrash () {

if (X == leader || !isQuorum())
A,B' C,D electLeader ()
// New messages created

Black Box

ABCDX
ABCXD

S Global ABXCD
Gliobal Impact
Global Impact AXBCD

(cannot prune
re-orderings)

Crash the leader

XABCD
ABDCX

26

SAMC Architecture

Protocol
Specific —Leader —Atomic - -

Generic Reduction Policies

Local-Message Crash-Message
Indep. (LMI) Indep. (CMI)

Crash Recovery Reboot Sync.

Symmetry (CRS) Symmetry (RSS)

6/13/16 27

Protocol-specific predicates (extra)

(e.g. ZooKeeper Leader Election)

Local-Message Crash-Message Crash Recovery
Independence (LMI) Independence (CMI) Symmetry (CRS)
bool pd : !mewVote(m, s); bool pg (s, X) : bool pri(s,C):

bool pm : newVote(m, s);
bool newVote(m, s) :
if (m.ep > s.ep)
ret 1;
else if (m.ep == s.ep)
if (m.tx > s.tx)
ret 1;
else if (m.tx == s.tx &&
m.lid > s.1lid)
ret 1;

ret 0;

if (s.rl == F && X.rl ==
ret 1;
if (s.rl == L && X.rl ==
&% !quorumAfterX(s)
ret 1;
if (s.xl == S && X.rl ==
ret 1;

bool pl (s, X) :
if (s.xl == L && X.rl ==
&& quorumAfterX(s))
ret 1;

bool quorumAfterX(s) :
ret ((s.fol-1) >=
s.all/2);

L)

S)

if (s.rl ==L & C.rl == F
&% quorumAfterX(s))
ret 1;
ralsi:{rl,fol,all};

bool pr2(s,C):
if (s.rl ==L & C.rl == F
&& !'quorumAfterX(s))
ret 1;
rals2: {rl,fol,lid,ep,tx,clk}

bool pr3(s,C):
if (s.rl == F && c.rl == L)
ret 1;

rals3: {rl,fol,lid,ep,tx,clk}

bool pr4:
if (s.rl == 8)
ret 1;
rals4: {rl,lid,ep,tx,clk}

e 35 LOC on average per protocol

6/13/16

@ MSR

28

Speed in Reaching Old Bugs

#executions/paths to reach the bugs (e.g., 2 paths = abcd, abdc)

SAMC | Black-Box DPOR Random DPOR

ZooKeeper-335
ZooKeeper-790
ZooKeeper-975
ZooKeeper-1075
ZooKeeper-1419
ZooKeeper-1492
ZooKeeper-1653
MapReduce-4748
MapReduce-5489
MapReduce-5505
Cassandra-3395

Cassandra-3626
6/13/16 5000+ @ MSR 29

Speed in Reaching Old Bugs

#texecutions/paths to reach the bugs (e.g., 2 paths = abcd, abdc)

SAMC | Black-Box DPOR Random DPOR

#exe #lexe speedup f#texe speedup #exe speedup

ZooKeeper-335 117 5000+ 43+ 1057 9 5000+ 43+
ZooKeeper-790 7 14 2 225 32 82 12
ZooKeeper-975 53 967 18 71 1 163 3
ZooKeeper-1075 16 1081 68 86 5 250 16
ZooKeeper-1419 100 924 9 2514 25 987 10
ZooKeeper-1492 576 5000+ 9+ 5000+ 9+ 5000+ 9+
ZooKeeper-1653 11 945 86 3756 341 3462 315
MapReduce-4748 4 22 6 6 2 6 2
MapReduce-5489 53 5000+ 94+ 5000+ 94+ 5000+ 94+
MapReduce-5505 40 1212 30 5000+ 125+ 1210 30
Cassandra-3395 104 2552 25 191 2 550 5
Cassandra-3626 96 5000+ 52+ 5000+ 52+ 5000+ 52

6/13/16 @ MSR 30

Summary

e Distributed concurrency bugs = hard to catch

* Semantic-awareness for model checking is
powerful

— Find bugs 2 - 340x faster, 49x on average

6/13/16 @ MSR 31

TaxDC:

Taxonomy of
Non-Deterministic Concurrency Bugs
iIn Datacenter Distributed Systems

with Tanakorn Leesatapornwongsa,
Jeffrey F. Lukman and Shan Lu
[ASPLOS ’16]

ﬁ THE UNIVERSITY OF
® CHICAGO @ MSR 6/13/16

Go gle local concurrency bug

Scholar

(LC bug: multi-threaded single machine software)

Learning from mistakes: a comprehensive study on real world concurrency bug characteristics
S Lu, S Park, E Seo, Y Zhou - ACM Sigplan Notices, 2008 - dl.acm.org

Cited by 558 Top 10 most cited ASPLOS paper

=

GO g|€ distributed concurrency bug

Scholar

real world concurrency bug characteristics
g

Learning from mistakes: a comprehensive stud
S Lu, S Park, E Seo, Y Zhou - ACM Sigplan Notices, 2008

poF] TaxDC: A Taxonomy of Non-Determinis

Systems
T Leesatapornwongsa, JF Lukman, S Lu, HS Gunawi - ucare.cs.uchicago.edu

tc Concurrency Bugs in Datacenter Distributed

CHICAGO @ MSR 6/13/16 34

TaxDC

a Taxonomy of distributed concurrency bugs
2104 bugs

24 varied distributed systems

€ 3 @ AP ACHE &AbAnache
‘W ‘ ‘ 0 G HBHSE l?;zaakeeper
cassandra

2 Bugsin 2011-2014

1 Study description, source code, patches

_ THE UNIVERSITY OF
@CHICAGO @ MSR 6/13/16

Detailed Characteristics

4)
ZooKeeper-1264

1. Follower F crashes, reboots,
and joins cluster

2. Leader L sync snapshot with
F

3. Client requests new update,
F applies this only in memory

4. Sync finishes

5. Client requests other update,
F writes this to disk correctly

6. F crashes, reboots, and joins
cluster again

7. This time L sends only diff
after update in step 5.

8. F loses update in step 3.
\ J

_ THE UNIVERSITY OF
@CHICAGO @ MSR 6/13/16

Detailed Characteristics

4)
ZooKeeper-1264

1. Follower F crashes, reboots,
and joins clustg

oflies this only in memory

4. Sync finishes

5. Client requests other update,
F writes this to disk correctly

6. F crashes, reboots, and
joins cluster again

7. This time L sends only diff
after update in step 5.

8. F loses update in step 3.
\ J

: THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

Detailed Characteristics

4)
ZooKeeper-1264

1. Follower F crashes, reboots, . _)
and joins cluster Timing:

2. Leader L sync snapshot with - Atomicity

F / violation

3. Client requests new update, - Fault Timing)

F applies this only in memory

4. Sync finishes

5. Client requests other updat

F writes this to disk correctly

6. F crashes, reboots, and joins
cluster again

7. This time L sends only diff
after update in step 5.

8. F loses update in step 3.
\ J

o
0
=
®

N
O
)
°

=

)
)

Q

(O

=

©
L=
O
d
ke

THE UNIVERSITY OF

® CHICAGO

Deta

ity

IC

in
violation

T
- Atom

ing

Im

Fault Ti

Bt ©

ZooKeeper-1264

luster

1. Follower F crashes, reboots,
joins c

2. Leader L sync snapshot with

and

F
3. Client requests new update, F

applies this only in memory

4. Sync finishes

5. Client requests other update,

joins

F writes this to disk correctly
6. F crashes, reboots, and

cluster again
7. This time L sends.efy di

after update in step 5.

8. F loses update in step @

L

T

THE UNIVERSITY OF
6/13/16

CHICAGO @MsSR

Detailed Characteristics

ZooKeeper-1264

1. Follower F crashes, reboots, -

and joins clustg INg.
- Atomicity
violation

equests new update, F - Fault Timing

4. Sync finishes

5. Client requests other updat

F writes this to disk correctly Ertor,.,. |

6. F crashes, reboots, and joins .

cluster again

7. This time L sends.eiy diff

after update in step 5.

8. F loses update in step @

.

THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

The taxonomy m

Error & Failure

=
£ R

|_Order : n -Loc Mem |-Downtime | Global |
Violation Fault Nodes Sync Retry
| Atomicity | _ -LocSem L pata Loss | Local B
—Violation Reboot Messages Syne Ignore
Eault -Loc Hang ,
_Ti?rl:ing -Workload LProtocols —Op Fal —Accept
-Loc Silence
|_Reboot —Performance | Others
Timing -Glob Wrong
-Glob Miss
-Glob Silence

g THE UNIVERSITY OF

' CHICAGO @ MSR 6/13/16

o

1
Trigger Error & Failure

KR
"

|_Order i _ Downtime | Global |
Violation Fault N Sync Retry
_Citglrgtiicoiay -Rebog I'Eal\—lgnore
. Conditions that induce
|_maul . ept
Timing the bug
Reboot
~ Timing _\C/;\/IOb € Others
rong
| Glob
Miss
Glob

“Silence

§ THE UNIVERSITY OF

® CHICAGO

@ MSR 6/13/16

1
Error & Failure

0

|_Order
Violation

| Atomicity
Violation

| Fault
Timing

|_Reboot
Timing

What: Untimely events

that induce the bug

ept
Why: Help design
bug detection tools

thers

MISS

Glob
Silence

: THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

E

LMessage

Messages arrive in
untimely order

CHICAGO @ MSR 6/13/16

E

I-Message
L Order violation (44%)

Y must happen after X
But Y happens before X

THE UNIVERSITY OF

i CHICAGO @ MSR 6/13/16

\
L Message \
¥

L Order violation (44%)
L Msg-msg race

Kill Submit

Y must happen after X
But Y happens before X

e
‘:.
s

Ex: MapReduce-3274

ﬁ THE UNIVERSITY OF
® CHICAGO @ MSR 6/13/16

A B A B
Kill
Message e \I\Iéve; "
-
L Order violation 4% & Fepengnd
) %,
Msg-msg race
old © K|II
\Q ><report
Kill
key "
hat
(late Explred' job?

)

Receive- Receive- Send-send
receive send race
MapReduce- Hbase- ViapReduce-

3274 5780 5358

: THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

E

I-Message
L Order violation (44%)
Msg-msg race
Msg-compute race

cmp

)
) .

Ex: MapReduce-4157

: THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

m A B\A B

\
I-Message —
Order violation (44%) ~—
—

Atomicity
violation (20%) \AGD @

A B
A message comes in >
—

the middle of “atomic” operation \
\
—

Ex: Cassandra-1011, Hbase-4729, MapReduce-5009, Zookeeper-1496

THE UNIVERSITY

3CHICAG8 @ MSR 6/13/16

mﬂl A A B c
»*

= —
I:Message ~
Fault (21%) ~ —
— \
Fault at specific timing A 5 o
\
No fault timing in LC bugs —
Only in DC bugs ~

Ex: Cassandra-6415, Hbase-5806, MapReduce-3858, Zookeeper-1653

THE UNIVERSITY OF

i CHICAGO @ MSR 6/13/16

A B
T~
E »*

—Message |
—Fault O

—Reboot (11%)

A B
\
Reboot at specific timing *
O
e /

~
iy

Ex: Cassandra-2083, Hadoop-3186, MapReduce-5489, Zookeeper-975

THE UNIVERSITY O

gCHICAGOF @ MSR 6/13/16

Implication: simple patterns can inform
pattern-based bug detection tools, etc.

- "
~ ‘
®
A/QD @
[>
® " e O
k) e

Message timing Fault timing Reboot timing

§ THE UNIVERSITY OF

® CHICAGO

@ MSR

6/13/16

o

KR

1
Error & Failure

|_Order
Violation

| Atomicity
Violation

| Fault
Timing

|_Reboot
Timing

= @

-Fault

-Reboot

-Workload

Handlin

Timin

Scope Error Failure 9

Loc

\

QO Glbal Retry

What: Input to

gnore

exercise buggy code
ept
Why: Improve e

testing coverage

Miss

Glob
Silence

CHICAGO @ MSR 6/13/16
Trigger
“How many bugs require fault injection?”

Input
Fault

“What kinds of fault? & How many times?”

88% = No timeout

53% = No crash 35% =1 crash 12%

Real-world DC bugs are NOT just about
message re-ordering, but faults as well

@ EEHU?EKES @ MSR 6/13/16
Trigger
“How many reboots?”

73% = No reboot 20% =1 7%

Reboot

CHICAGO @ MSR

—Fault
—Reboot
—\Workload

6/13/16

Cassandra Paxos bug

3 concurrent
user requests!

“How many protocol initiations to
run as input?”

20% =1 29% =2 24% = 3

Implication: multiple protocols
for DC testing

THE UNIVERSITY OF

’ CHICAGO @ MSR 6/13/16

1
Error & Failure

INg Handlin
g
Dowp
|_Atomicity | ’
Violation w
Fault

—Timing What: How developers fix bugs

|_Rebo
Timin

|_Order
Violation

Loc

Why: Help design runtime prevention
and automatic patch generation

IITCTITOT

g THE UNIVERSITY OF

® CHICAGO

@ MSR

Trigger

6/13/16

Add new states
& transitions

Similar to fixing LC bugs:
add synchronization
e.g. lock()

S

10 /(2
I N

T S
& @Tﬁo_open> .'
N\ /t'.

/
/
/ S/

Y\
(OPENING) \

5 N3V

e

/4 e 17

; |
) ,_}‘_‘_ _4:"’

" CLOSED

"a._‘~- I “_’/' __‘_7_.-“"-'

-
(cLosinG
|

~5 Q7

\15

Tl

% 16 14

A

{ OPEN)

(OPEN)

b o
NJr\i3

» "V W

(MERGING) (SPLITTING)
15 12
. U S
(MERGED) (spuT)

Master Zookeeper
3
RegionServer RegionServer RegionServer

HDFS

C Add

Global
Synchro-

nization

g THE UNIVERSITY OF

CHICAGO @MsR 0113/

g THE UNIVERSITY OF

CHICAGO @MsR 0113/

— Delay
— [gnore/discard @

g THE UNIVERSITY OF

® CHICAGO @VsR o/18/16

. ®
~—\
¢

— Delay
— Ignore/Discard
Retry

g THE UNIVERSITY OF

CHICAGO @MsR 0113/

e
g (msg) ;
— Delay
— Ignore/Discard
— Retry @

— Accept

g THE UNIVERSITY OF

CHICAGO @MsSR

40% are easy to fix
(no new computation logic)

6/13/16

/

Retry

g (msqg) ;

Accept

g THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

.

|

Error & Failure
Timin
i 3 &2 D e

=
U

Loc :
|_Order i _ - —Downtime | Global |
Violation Fault Nodes Mem Sync Retry
| Atomicity | o | Messag '\Iég(r:n _Eata |Local | oo
Violation es Loc 0SS Sync g
|_Fault i i Hang -Op Falil i
Timing Workload “-Protocols Loc Accept
Silence Performanc
Reboot _
~ Timing Glob e —Others
Wrong
| Glob
Miss
Glob

“Silence

CHICAGO @ MSR

Challenges & Opportunities in ...

2 Distributed system model checker
1 Formal verification

2 DC bug detection

2 Runtime prevention

6/13/16

64

SllE] THE UNIVERSITY OF

6/13/16

Checkers

Event Modist Demeter MaceMC SAMC
NSDI'11 SOSP’11 NSDI'07 OSDI'14

Message /
Crash f - , ;
Multiple x % o /
crashes % 5
R .
eboot % = po y
Multiple o
reboots | ’
Timeout
Computation o x x x

Disk fault

g THE UNIVERSITY OF
®CHICAGO @ MSR 6/13/16

Formal Verification

2 State-of-the-art 2 Challenges

= \erdi [pLDI ‘15]
- Raft update protocol
= |ronFleet [sosp ‘15] 19%=F(

- Paxos update protocol
- Lease-based read/write

Foreground & Background

29% =
Mix

52% = BG

#Protocol Iinteractions
20%=

80% = 2+ Protocols

Only verify foreground Foreground
protocols

CHICAGO @ MSR 6/13/16

DC Bug Detection

a State-of-the-art: 2 Opportunities:
LC bug detection DC bug detection?

= Pattern-based » Pattern-based

detection detection

. Erro.r-l:_)ased detection S NN me s
= Statistical bug o T AT = ¢
detection N\ X \. = o
e % e W

CHICAGO @ MSR 6/13/16

Runtime Failure Prevention

2 State-of-the-art: 1 Opportunities:
LC bug prevention DC bug prevention
= Deadlock Immunity [OSDI Ei
08 IXes

= Aviso [ASPLOS ‘13] 60% = Complex

= ConAir [ASPLOS 13]
= (many more)

Delay lgnore Retry Accept

CHICAGO @ MSR 6/13/16

Dev’'s comments on DC bugs

0 “Do we have to rethink this entire [HBase] root and
meta 'huh hah’? There isn’t a week going by without
some new bugs about races between splitting and
assignment [distributed protocols].” — hbase4397

a “That iIs one monster of a race!” — mr3274

a “This has become quite messy, we didn’t foresee some
of this during design, sigh.” — mr4819

0 “Great catch, Sid! Apologies for missing the race
condition” — mr4099

0 “We have already found and fix many cases ... however
It seems exist many other cases.” — hb6147

v S

ﬁ CHICAGO @ MSR 6/13/16

“New” classes of bugs ...

2 Distributed concurrency bugs

2 Scalability bugs

CHICAGO @ MSR 6/13/16 71

A “limpware” anecdots
(limping hardware)

d Oon a =

onIy transmits at 1 kups,

d this slow machine caused a chain reaction
upstream

2 in such a way that the

gienine that suddenly

0 making the system non-avanigie for all
practical purposes.” — Borthak!s Cascading ”

Impact!

g THE UNIVERSITY OF

CHICAGO @ MSR 6/13/16

Limpware, really?

Q “In 2011, one of the DDN 9900 units had 4 servers having high

wait times on I/O for a certain set of The maximum
wait time was . This was left uncorrected for 50
days.” — Kasick of CMU, Harms of Argonne

a “The attempts to before
responding.” — Baptist of Cleversafe

QO “On Intrepid, we had a bad batch of op : with an
extremely high error rate. That results in an effective throughput
of " — Harms of Argonne

O Many others: * we've seen that in production”

_ THE UNIVERSITY OF
@CHICAGO @ MSR 6/13/16

Limpware impacts?

a Modern distributed systems are ...
= ... fault tolerant
= ... [impware tolerant?

a Limpware-injection experiments
= Run HDFS, Hadoop, ZooKeeper, Cassandra,
Hbase

- E.g. slow a NIC to 1 Mbps, 0.1 Mbps, etc.

THE UNIVERSIT

CHICAGO @ MSR 6/13/16

An example 0.1 Mbps
_ _ slowdown NIC
Q Run a distributed protocol
= E.g., write pipeline in HDFS ;g\?v%’:

ad Measure slowdowns under:

= No failure, , a limping NIC
100x
slower
pipeline 10x

1x

& CHICAGO

Benchmarks

@ MSR

6/13/16

ID Protocol Limp- | Injected Workload Base

ware Node Latency

Fl Logging Disk Master Create 8000 empty files 12

F2 Write Disk Data Create 30 64-MB files 182

F3 Read Disk Data Read 30 64-MB files 120

- F4 Metadata Read/Logging | Disk Master Stats 1000 files + heavy updates 9
F5 Checkpoint Disk Secondary Checkpoint 60K transactions 39

F6 Write Net Data Create 30 64-MB files 208

F7 Read Net Data Read 30 64-MB files 104

F8 Regeneration Net Data Regenerate 90 blocks 432

F9 Regeneration Net Data-S/Data-D | Scale replication factor from 2 to 4 11

F10 | Balancing Net Data-O/Data-U | Move 3.47 GB of data 4105

F11 | Decommission Net Data-L/Data-R | Decommission a node having 90 blocks 174

Hl Speculative execution Net Mapper WordCount: 512 MB dataset 80

- H2 Speculative execution Net Reducer WordCount: 512 MB dataset 30
H3 Speculative execution Net Job Tracker WordCount: 512 MB dataset 80

H4 Speculative execution Net Task Node 1000-task Facebook workload 4320

Zl Get Net Leader Get 7000 1-KB znodes 4

Z2 Get Net Follower Get 7000 1-KB znodes 5

- Z3 Set Net Leader Set 7000 1-KB znodes 23
74 Set Net Follower Set 7000 1-KB znodes 26

r r'z5 | Set Net | Follower Set 20KB data 6000 times to 100 znodes 64
Cl Put (quorum) Net Data Put 240K KeyValues 66

- C2 Get (quorum) Net Data Get 45K KeyValues 73
C3 Get (one) + Put (all) Net Data Get 45K Key Values + heavy puts 36

a Bl Put Net Region Server Put 300K KeyValues 61

B2 Get Net Region Server Get 300K KeyValues 151

- B3 Scan Net Region Server Scan 300K KeyValues 17
B4 Cache Get/Put Net Data-H Get 100 KeyValues + heavy puts 4

B5 Compaction Net Region Server Compact 4 100-MB sstables 122

® CHICAGO

@ MSR

6/13/16

No failure C—
Disk crash C—

SIowdovgp
-SOO

Execution

c :1

82§ 8 No failure ==

'5-8 Nede crash C——

g3 10 10 Mbps S
g 1 1 Mbps s

;) 0.1 Mbps e

=000

i\

Execution
Slowdown
-D

F11. Decommission
(Data-L/Data-R)

§ 51000 |
= O 11U
3% 10
25 T
wom
Z2.Get
(Follower)
SE'9%
g5 19
3 i

C3. Get{one) + Put(all)
(Data)

tolerant, but not limpware tolerant
(no failover)

e

F1. Log
(Master)

Tl

F2. Write
(Data)

F3. Read
(Data)

~

F4. Read/Loggi
(Master e

F6. Write
(Data)

~

H1. Spec. Exec.
(Mapper)

“m

73.Set
(Leader)

F7. Read
(Data)

L T T

H2. Spec. Exec.
(Reducer)

LTI

74. Set
(Follower)

F8. R eneration

(Data)

L1 .

H3. Spec. Exec.
(Job Tracker)

e

Z5. Set
(Follower)

s <

B1. Put
(Region Server)

B2. Get
(Region Server)

B3. Scan
(Region Server)

F9. Re%enerauon
(Data-S/Data-D)

=

H4. Spec. Exec.
(Task Node)

LTl

C1. Put(quorum)
(Data)

<

B4. Cache Get/Put
(Data-H)

s

F5. Checkpoint
(Secondary)

~

il

F10. Balancm%
(Data-O/Data-U)

L T IO

Z1. Get
(Leader)

LT I

C2. Get(quorum)
(Data)

~d

B5. Compaction
(Region Server)

CHICAGO @ MSR 6/13/16

(The root causes are in Limpware paper [SOCC '13];
this talk focuses on Hadoop MapReduce)

Hadoop MapReduce

1 Supposedly tail tolerant

2 Why not limpware tolerant?

2 Why Speculative Execution fails?

.

4:1:1:.. T O eess

H1. Spec. Exec. H2. Spec. Exec. H3. Spec. Exec. H4. Spec. Exec.
(Mapper) (Reducer) (Job Tracker) (Task Node)

CHICAGO @ MSR 6/13/16

Loophole #1

a Backup task reads from the

same slow datanode

= Hadoop and HDFS don’t Datanodes Mappers
cooperate

= No history of bad “paths”

B " M2

@ MSR

Loophole #2

2 All reducers fetch from a

mapper with a slow NIC

= All reducers slow =2 no
straggler

= M2 reads data locally (not
slow)

2 (many other loopholes in
the paper)

6/13/16

Mappers Reducers

Ml/‘
o @
o —@

CHICAGO @ MSR 6/13/16

Cascading failures
a Alimping NIC -

= (Limping tasks are slower by orders of magnitude)

Qa Limping tasks use up slots -
= |f all slots are used = node is “unavailable”

a All nodes in limp mode -

_ THE UNIVERSITY OF
@CHICAGO @ MSR 6/13/16

Cluster collapse

a Macrobenchmark: Facebook Hadoop workload

= 30-node cluster
= One node w/ limping NIC (0.1 Mbps)

(c) Job Throughput
1200 -
Normal
E’ 1000 w/ 1 limping node = |
£ S0 & 1 jobfhour !!!
LL y
» 600 +
L0
S 400}
:;2 200

0O 50 100 150 200 250 300 350
Time (minute)

@ CHICAGO 6113116

Formalizing the problem

QA job = various deployment scenarios

a Untriggered speculative execution
(DSR, & FTY. & FPL, & DLC,) or
;) Of

Unanticipated scenario

Scenario Type | Possible Conditions

DLC: Data Locality (1) Read from remote disk, (2) read from local disk, ...

DSR: Data Source (1) Some tasks read from same datanode, (2) all tasks read from different datanodes, ...
JCH: Job Characteristic Map-reduce 1s€ >2) all-to-many, (3) large fan-in, (4) large fan-out, ...
JSZ: Job Size (1) 1 GB jar file, (2) 1 MB jar file, ...

LSZ: Load Size (1) Thousands of tasks. (2) small number of tasks, ...

FTY: Fault Type (2) Node disconnect/packet drop, (3) Disk error/out of space, (4) Rack switch, ...

FPL: Fault Placement Slowdown fault injection at the € (2) mapper, (3) reducer, ...
FGR: Fault Granularity (1) Single disk/NIC, (2) single node (deadnode), (3) entire rack (network switch), ...
FTM: Fault Timing (1) During shuffling, (2) during 95% of task completion, ...

TOP: Topology Scenario | (1) 30 nodes per rack, (2) 3 nodes per rack, ...
TPL: Task Placement

2) AM and reducers in different nodes, (3) Mappers
are in the same node. (4) Most of reducers placed in the same rack. .

& “11ICAGO

Scenario Type

@ MSR

Possible Condition

DLC: Data Locality

DSR: Data Source

1) Read from remote disk; (2) read from local disk, ...

ead from same catanots, (2) all tasks

read from

JCH: Job
Characteristic

JSZ: Job Size
LSZ: Load Size

Map-reduce is (1) many-to-all, (2) all-to-many, (3)
large fan-in, (4) large fan-out, ...

(1)1GBjarfile,(2)1MBjarfile,...

(1) Thousands of tasks, (2) small number of tasks, ...

FTY: Fault Type

FPL: Fault Placement

FGR: Fault Ganularity

FTM: Fault Timing

acK SV

connect/packet drop,

(1) Single disk/NIC, (2) single node (deadnode), (3)
en- tire rack (network switch), ...

TOP: Topology

TPL: Task Placement

in the same node,d#) Most of reducers piaced in thig
same rack, ...

d

d

6/13/16

Untriggered Speculative Execution
MR-70001 = JCH, & TPL, & FPL, & FTY,

O(n) Recovery
* MR-5251 = FTY,; & FPL; & FTM,
= MR-5060 = TPL; & TPL, & FTY, & FPL,

THE UNIVERSITY OF

@CHICAGE) @ MSR 6/13/16

Perf. Model Checking [HotCloud '19]

0 Goal: Permute many
topological/failure/placement scenarios

a Real Java code - Colored Petri Nets (CPN)

model
= Automated conversion (“compiler”)

= Abstract system-level constructs
- E.g., queues, tasks, resources, locks

a Permute the scenarios in CPN

a Abstract performance faults
= Boolean result: limping or not
= No need for precise latency/bandwidth predictions

a Test the buggy scenarios in real runs

THE UNIVERSITY OF

i CHICAGO @ MSR 6/13/16

Path Based Spec. Exec. [In Subm.]

0 Hadoop SE:

= Straggler: if task T's progress is slower than the rest
= Task T is just a progress score = fundamental flaw

Q Our observation:
= Task T is a path
= Map path: source datanode - map node
= Shuffle path: map node - reduce node
= Qutput path: reduce node - pipeline of datanodes

0 PBSE: Path-based speculative execution
= |t's about the progress of individual “paths”
= SE algorithm is based on path progress
= Diverse paths: no single point of path failure

@ MSR 6/13/16

Conclusion

Q Distributed concurrency The complexity of
bugs cloud-scale hardware and
a Non-deterministic software ecosystem

performance bugs has outpaced

0 Scalability bugs existing testing, debugging,

and verification tools.

2 Other outage-causing
bugs: Many new

= SPOF/cascading bugs classes of bugs
= Cross-layer upgrade bugs to hunt!

@ MSR

6/13/16

Thank you!
Questions?

ucare.cs.uchicago.edu

O
S0
:6CERES

Center for Unstoppable Computing

ceres.cs.uchicago.edu

g THE UNIVERSITY OF

W CHICAGO ©@MsR

—xira --

SAMC

6/13/16

89

Message Processing Semantic in
a Leader Election

Belief = 3

if (vote <= belief)
// do nothing
else

Vote=1

6/13/16 @ MSR 90

@ CHICAGO

SAMC server logic (extra)

1 3 true
’ ‘ 2 3 true

4 3 false
| .

--

true true
1 4 true false X
2 4 true false X

+ Crashes and Reboots
(sometimes multiple of them)

ZooKeeper

Hadoop

8ng

©

N

S0SS
= 6875
9LYS
6075
SovS
8G€S
e 861§
= 6919
000§
068Y
€Es8Y
[45:17
8vLy
L0997
Scvy
[4T47
b 17413
08.L€E

€16

4 o N~ <« O

S100Q9aJ # / Saysesd #

#3ng

r

©

T

LN

T T T
< o o~

e €991
e €LST
[4514"
61vT
e eLET
L9€T
[433)"
6T¢CT
v6ct
211"
. 8TTT
SL0T
SL6
6L
e 06L
69.
699
133
- o

$10002J # / S9YseJd #

Cassandra

X-axis is bug number
y-axis is number of crashes
and reboots

#3ng

- €059
¥9€9
9519
6L1S
9/8¢
979¢
99¥€
€/T€
v1ST
STIC
766T
0€LT
434
1X44?
SIS

T

o

r T T T T

O n < o N

$30002J # / S9ysetd #

S IRERRR

92

@ MSR

6/13/16

a THE . YIVERSITY OF
~ = S\ G
wCh(o/L()

Message Processing Semantic

1,2,3

if (vote <= belief)
// do nothing
else
belief = vote;

Errors, Faults, Failure

To quote the Software Engineering Body of Knowledge

Different cultures and standards may use somewhat
different meanings for these terms, which have led to
attempts to define them.

Partial definitions taken from standard (IEEE610.12-90)
are:

Error: “A difference...between a computed result and the
correct result”

Fault: “An incorrect step, process, or data definition in a
computer program”

Failure: “The [incorrect] result of a fault”

Mistake: “A human action that produces an incorrect
result”

