
编译系统新技术及
发展

陈⽂光
清华⼤学/⻘海⼤学

编译系统的作⽤

• 翻译
• ⽀持⾼层的编程抽象
• ⽀持底层的硬件体系结构

• 优化
• 更快的执⾏速度
• 更⼩的空间

• 理解程序
• 安全性(security)
• 功能正确(safety)

新的应⽤需要新的编程抽象

ImageNet: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

新的底层硬件

• GPU，FPGA,寒武纪， …

• CUDA

https://devblogs.nvidia.com/even-easier-introduction-cuda/

https://devblogs.nvidia.com/even-easier-introduction-cuda/

多层抽象 – 编程框架与库

https://suif.stanford.edu/~courses/cs243/

编译系统的作⽤

• 翻译
• ⽀持⾼层的编程抽象
• ⽀持底层的硬件体系结构

• 优化
• 更快的执⾏速度
• 更⼩的空间

• 理解程序
• 安全性(security)
• 功能正确(safety)

Carnegie Mellon

I. Compiler Organization

M. Lam CS243: Intro to Data Flow 2

优化编译器的结构

⾼层循环变换 – 循环交换

2	

Carnegie Mellon

1. Parallelism and Locality

•  Parallelism DOES NOT imply speed up!

•  Parallel performance:
Improve locality with loop transformations
–  Minimize communication
–  Operations using the same data are executed on the same processor

•  Sequential performance:
Improve locality with loop transformations
–  Minimize cache misses
–  Operations using the same data are executed close in time.

M. Lam 3 CS243: Loop Transformations

Carnegie Mellon

Loop Permutation (Loop Interchange)

for J’ = 1 to 3
 for I’ = 1 to 4
 Z[I’,J’] = Z[I’-1,J’]

for I = 1 to 4
 for J = 1 to 3
 Z[I,J] = Z[I-1,J]

I

J

J’

I’

€

j '
i'
"

$
%

&
' =

0 1
1 0
"

$

%

&
'
i
j
"

$
%

&
'

M. Lam 4 CS243: Loop Transformations

⾼层循环变换 – 循环合并

3	

Carnegie Mellon

Loop Fusion

for J = 1 to 4
 T[J]= A[J]+B[J] (s1)

 C[J]= T[J] x T[J] (s2)

for I = 1 to 4
 T[I]= A[I]+B[I] (s1)

for I’ = 1 to 4
 C[I’]= T[I’] x T[I’] (s2)

€

j[] = 1[] [i]

M. Lam 5 CS243: Loop Transformations

I’

I

€

j[] = 1[] [i']
s1:	

s2:	 J

Carnegie Mellon

Loop Transformations

•  Unimodular transforms on loop nests
–  Interchange
–  Skewing
–  Reversal

•  Cross statement transforms
–  Loop fusion
–  Loop fission
–  Re-indexing

•  How to combine them to get parallelism and locality?

M. Lam CS243: Loop Transformations 6

体系结构⽆关的底层优化
• 从⾼层抽象翻译到底层的过程中引⼊了冗余

• 优化过程就是消除冗余的过程
#include <stdio.h>

int foo()
{

int a[4];
a[0] = 1;
a[1] = a[0];
return a[1];

}

例⼦：循环不变量外提

Carnegie Mellon

Resource Constraints

•  Each instruction type has a resource reservation table

–  Pipelined functional units: occupy only one slot
–  Non-pipelined functional units: multiple time slots
–  Instructions may use more than one resource
–  Multiple units of same resource
–  Limited instruction issue slots

•  may also be managed like a resource

M. Lam CS243: Instruction Scheduling 5

Functional units

ld st alu fmpy fadd br …
Ti

m
e 0

1

2

体系结构相关的优化

• 寄存器分配
• 虚拟寄存器

• 构建Interference graph

• 图着⾊算法

• 指令调度
• CPU中的功能部件数

• 是否流⽔

• 延迟 Carnegie Mellon

Step 1a. Nodes in an Interference Graph

M. Lam CS243: Register Allocation 8

B = …
 = A
D =
 = B + D

L1: C = …
 = A
 D =
 = D + C

A = …
IF A goto L1

 A = 2

 = A

程序优化的现状

• CPU上的过程内优化基本成熟

• 过程间优化能⼒仍然受限

• ⾯向GPU等新型体系结构的编译优化还有空间

GPU存储结构对编程优化的挑战

• 消除冗余计算的循环不变量外提可能引起寄存器
压⼒⼤，从⽽引发spill，在GPU上开销很⼤

Carnegie Mellon

I. Compiler Organization

M. Lam CS243: Intro to Data Flow 2

DSL – 领域特定语⾔(抽象+优化）

• Halide：⾯向图像处理的DSL

The end result is a system which enables terse, composable
programs to achieve state-of-the-art performance on a wide range
of real image processing pipelines, and across different hardware
architectures, including multicores with SIMD, and heterogeneous
CPU+GPU execution. From simple Halide programs written in a
few hours, we demonstrate performance up to 5⇥ faster than hand-
tuned C, intrinsics, and CUDA implementations written by experts
over weeks or months, for image processing applications beyond
the reach of past automatic compilers.

2. The Halide DSL
We use the Halide DSL to describe image processing pipelines
in a simple functional style [26]. A simple C++ implementation
of local Laplacian filters (Fig. 1) is described by dozens of loop
nests and hundreds of lines of code. This is not practical to globally
optimize with traditional loop optimization systems. The Halide
version distills this into 62 lines describing just the essential dataflow
and computation in the 99 stage pipeline, and all choices for how
the program should be synthesized are described separately (Sec. 3).

In Halide, values that would be mutable arrays in an impera-
tive language are instead functions from coordinates to values. It
represents images as pure functions defined over an infinite inte-
ger domain, where the value of a function at a point represents the
color of the corresponding pixel. Pipelines are specified as chains
of functions. Functions may either be simple expressions in their
arguments, or reductions over a bounded domain. The expressions
that define functions are side-effect free, and are much like those in
any simple functional language, including:
• Arithmetic and logical operations;
• Loads from external images;
• If-then-else expressions;
• References to named values (which may be function arguments,

or expressions defined by a functional let construct);
• Calls to other functions, including external C ABI functions.

For example, a separable 3⇥ 3 unnormalized box filter is expressed
as a chain of two functions in x, y:

UniformImage in(UInt(8), 2)
Var x, y
Func blurx(x,y) = in(x-1,y) + in(x,y) + in(x+1,y)
Func out(x,y) = blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)

This representation is simpler than most functional languages.
It does not include higher-order functions, dynamic recursion, or
additional data structures like lists. Functions simply map from
integer coordinates to a scalar result. Constrained versions of more
advanced features such as higher-order functions are added as
syntactic sugar, but do not change the underlying representation.

This representation is sufficient to describe a wide range of image
processing algorithms, and these constraints enable flexible analysis
and transformation of algorithms during compilation. Critically,
this representation is naturally data parallel within the domain of
each function. Also, since functions are defined over an infinite
domain, boundary conditions can be handled safely and efficiently
by computing arbitrary guard bands of extra values as needed. Guard
bands are a common pattern in image processing code, both for
performance concerns like alignment, and for safety. Wherever
specific boundary conditions matter to the meaning of an algorithm,
the function may define its own.
Reduction functions. In order to express operations like his-
tograms and general convolutions, Halide also needs a way to ex-
press iterative or recursive computations, like summation, histogram,
and scan. Reductions are defined in two parts:

• An initial value function, which specifies a value at each point
in the output domain.

• A recursive reduction function, which redefines the value at
points given by an output coordinate expression in terms of prior
values of the function.

Unlike a pure function, the meaning of a reduction depends on the
order in which the reduction function is applied. The programmer
specifies the order by defining a reduction domain, bounded by
minimum and maximum expressions for each dimension. The value
at each point in the output domain is defined by the final value of
the reduction function at that point, after recursing in lexicographic
order across the reduction domain.

This pattern can describe a range of algorithms outside the scope
of traditional stencil computation, but essential to image processig
pipelines, in a way that bounds side effects. For example, histogram
equalization combines multiple reductions and a data-dependent
gather. A scattering reduction computes a histogram, a recursive
scan integrates it into a CDF, and a point-wise operation remaps the
input using the CDF:
UniformImage in(UInt(8), 2)
RDom r(0..in.width(), 0..in.height()), ri(0..255)
Var x, y, i
Func histogram(i) = 0; histogram(in(r.x, r.y))++
Func cdf(i) = 0; cdf(ri) = cdf(ri-1) + histogram(ri)
Func out(x, y) = cdf(in(x, y))

The iteration bounds for the reduction and scan are expressed by the
programmer using explicit reduction domains (RDoms).

3. Scheduling Image Processing Pipelines
Halide’s representation of image processing algorithms avoids
imposing constraints on the order of execution and placement of
data. Values need to be computed before they can be used, to respect
the fundamental dependencies in the algorithm, but many choices
remain unspecified:

• When and where should the value at each coordinate in each
function be computed?

• Where should they be stored?
• How long are values cached and communicated across multiple

consumers, and when are they independently recomputed by
each?

These choices can not change the meaning or results of the algo-
rithm, but they are essential to the performance of the resulting
implementation. We call a specific set of choices for when and
where values are computed the pipeline’s schedule.

In the presence of stencil access patterns, these choices are bound
by a fundamental tension between producer-consumer locality,
parallelism, and redundant recomputation of shared values. To
understand this tradeoff space, it is useful to look at an example.

3.1 Motivation: Scheduling a Two-Stage Pipeline
Consider the simple two-stage blur algorithm, which computes a
3⇥3 box filter as two 3⇥1 passes. The first stage, blurx, computes
a horizontal blur of the input by averaging over a 3⇥ 1 window:
blurx(x,y) = in(x-1,y) + in(x,y) + in(x+1,y)

The second stage, out, computes the final isotropic blur by averaging
a 1⇥ 3 window of the output from the first stage:
out(x,y) = blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)

A natural way to think about scheduling the pipeline is from the
perspective of the output stage: how should it compute its input?
There are three obvious choices for this pipeline.

DOWN
DOWN

DOWN

LUT
LUT: look-up table
 O(x,y,k) ← lut(I(x,y) − kσ)

DDA: data-dependent access
 k ← floor(I1(x,y) / σ)
 α ← (I1(x,y) / σ) − k
 O(x,y) ← (1−α) I2(x,y,k) + α I2(x,y,k+1)

DDA

DDA
ADD: addition
 O(x,y) ← I1(x,y) + I2(x,y)

DOWN

DOWN: downsample
 T1 ← I ⊗x [1 3 3 1]
 T2 ← T1 ⊗y [1 3 3 1]
 O(x,y) ← T2(2x,2y)

UP: upsample
 T1(2x,2y) ← I(x,y)
 T2 ← T1 ⊗x [1 3 3 1]
 O ← T2 ⊗y [1 3 3 1]

UP

UP
SUB

SUB: subtraction
 O(x,y) ← I1(x,y) − I2(x,y)

COPY COPY

SUB

UP

DDA
COPYCOPY

UP
ADD

ADD

...The algorithm uses 8 pyramid levels

level size
w × h

w × h
2 2

w × h128 128

Figure 1. Imaging pipelines employ large numbers of interconnected, heterogeneous stages. Here we show the structure of the local Laplacian
filter [3, 22], which is used for a variety of tasks in photographic post-production. Each box represents intermediate data, and each arrow
represents one or more functions that define that data. The pipeline includes horizontal and vertical stencils, resampling, data-dependent
gathers, and simple pointwise functions.

and computer graphics, where stencils are common, but often in a
very different form: stencil pipelines. Stencil pipelines are graphs of
different stencil computations. Iteration of the same stencil occurs,
but it is the exception, not the rule; most stages apply their stencil
only once before passing data to the next stage, which performs
different data parallel computation over a different stencil.

Graph-structured programs have been studied in the context
of streaming languages [4, 11, 29]. Static communication analy-
sis allows stream compilers to simultaneously optimize for data
parallelism and producer-consumer locality by interleaving compu-
tation and communication between kernels. However, most stream
compilation research has focussed on 1D streams, where sliding win-
dow communication allows 1D stencil patterns. Image processing
pipelines can be thought of as programs on 2D and 3D streams and
stencils. The model of computation required by image processing is
also more general than stencils, alone. While most stages are point
or stencil operations over the results of prior stages, some stages
gather from arbitrary data-dependent addresses, while others scatter
to arbitrary addresses to compute operations like histograms.

Pipelines of simple map operations can be optimized by tradi-
tional loop fusion: merging multiple successive operations on each
point into a single compound operation improves arithmetic intensity
by maximizing producer-consumer locality, keeping intermediate
data values in fast local memory (caches or registers) as it flows
through the pipeline. But traditional loop fusion does not apply to
stencil operations, where neighboring points in a consumer stage
depend on overlapping regions of a producer stage. Instead, sten-
cils require a complex tradeoff between producer-consumer locality,
synchronization, and redundant computation. Because this tradeoff
is made by interleaving the order of allocation, execution, and com-
munication of each stage, we call it the pipeline’s schedule. These
tradeoffs exist in scheduling individual iterated stencil computations
in scientific applications, and the complexity of the choice space
is reflected by the many different tiling and scheduling strategies
introduced in past work [10, 16, 19]. In image processing pipelines,
this tradeoff must be made for each producer-consumer relationship
between stages in the graph—often dozens or hundreds—and the
ideal schedule depends on the global interaction among every stage,
often requiring the composition of many different strategies.

1.2 Contributions
Halide is an open-source domain-specific language for the complex
image processing pipelines found in modern computational pho-
tography and vision applications [26]. In this paper, we present the
optimizing compiler for this language. We introduce:

• a systematic model of the tradeoffs between locality, parallelism,
and redundant recomputation in stencil pipelines;

• a scheduling representation that spans this space of choices;
• a DSL compiler based on this representation that combines

Halide programs and schedule descriptions to synthesize points
anywhere in this space, using a design where the choices for how
to execute a program are separated not just from the definition
of what to compute, but are pulled all the way outside the black
box of the compiler;

• a loop synthesizer for data parallel pipelines based on simple
interval analysis, which is simpler and less expressive than
polyhedral model, but more general in the class of expressions
it can analyze;

• a code generator that produces high quality vector code for
image processing pipelines, using machinery much simpler than
the polyhedral model;

• and an autotuner that can infer high performance schedules—up
to 5⇥ faster than hand-optimized programs written by experts—
for complex image processing pipelines using stochastic search.
Our scheduling representation composably models a range of

tradeoffs between locality, parallelism, and avoiding redundant
work. It can naturally express most prior stencil optimizations,
as well as hierarchical combinations of them. Unlike prior stencil
code generation systems, it does not describe just a single stencil
scheduling strategy, but separately treats every producer-consumer
edge in a graph of stencil and other image processing computations.

Our split representation, which separates schedules from the
underlying algorithm, combined with the inside-out design of
our compiler, allows our compiler to automatically search for the
best schedule. The space of possible schedules is enormous, with
hundreds of inter-dependent dimensions. It is too high dimensional
for the polyhedral optimization or exhaustive parameter search
employed by existing stencil compilers and autotuners. However,
we show that it is possible to discover high quality schedules using
stochastic search.

Given a schedule, our compiler automatically synthesizes high
quality parallel vector code for x86 and ARM CPUs with SSE/AVX
and NEON, and graphs of CUDA kernels interwoven with host
management code for hybrid GPU execution. It automatically infers
all internal allocations and a complete loop nest using simple
but general interval analysis [18]. Directly mapping data parallel
dimensions to SIMD execution, including careful treatment of
strided access patterns, enables high quality vector code generation,
without requiring any general-purpose loop auto-vectorization.

更多DSL的例⼦

• T2S – time to spatial
• 基于Halide的DSL 和 FPGA编译器

• TACO – 稀疏张量编译器
• 代数表⽰的稀疏张量DSL，编译到CPU

• C = A*B + D
• 其中A,B,C,D是⾼维张量，且可能在任意⼀维是稀疏的

• ⾯向GPU的稀疏张量编译器

Temporal
definition

Spatial
mapping

Unrolling,
Overlapping

drain and
compute

Data
vectorization

Data
forwarding

Buffer
insertion,

Scattering,
Gathering

Perfectization,
Flattening,

Infinitization

Code
Generation

Backend compilerFrontend compiler

OpenCL
code

assembly

OpenCL
compiler

assembler

FPGA

CGRA

Compute
partition

Fig. 4: T2S compiler flow.

Second, the compiler overlaps drain and compute. In gen-
eral, a systolic array of PEs (like the C PEs in GEMM)
compute one tile of results, drain them, and compute the next
tile of results, and so on. It is desirable to overlap the draining
of one tile and the computation of the next tile. The compiler
identifies all the reduction loops and inserts a local buffer right
before the outermost reduction loop. This buffer contains the
results for the current tile. The size of the buffer is calculated
from the memory footprint of the results in the body of the
outermost reduction loop. Then the compiler generates a drain
signal and inserts code in the innermost loop to drain and re-
initialize one buffer element every iteration while computing
results for next tile at the same time. If the buffer has unit-
stride cyclic access pattern, it can be optimized into a rotating
register file. Rotating registers remove the area overhead due
to address calculation. The compiler changes the memory
accesses to the buffer so that a read/write access occur only at
the first/last element of the buffer. Then the compiler inserts
code for rotation of the buffer after the access.

Next, the compiler vectorizes data for loads and stores to
read and write data from and to the memory in chunks of
multiple contiguous data elements. This reduces the number
of memory accesses and improves the achieved memory
bandwidth. Currently, only the data accesses in an innermost
loop can be allowed for vectorization. Since the data is
communicated via channels, the compiler increases the width
of the channels to match the width of vectorized data, and
inserts a load before or a store after the innermost loop to
read/write the data as a vector. All the operations in the
innermost loop are vectorized, if possible (e.g. inserting code
for vectorized reduction). Otherwise, the innermost loop is
marked as unrolled, and the data accesses inside the loop are
changed to access the elements of the vector.

The compiler then realizes data forwarding, also called
dependence localization [20]. The channels are renamed so
that a producer sends data only to the boundary PEs of
its consumer, and every boundary PE broadcasts the data it
receives to the other PEs along a given direction.

Now the compiler manages data buffering, scattering and
gathering. Buffering creates a user-managed data cache. A
single or double buffer, as specified by the programmer, is
allocated at the specified loop level and new code is inserted
at this loop level to store the incoming data to the buffer. The
buffer size is automatically calculated by the references of the
data in the body of the loop level. Then all the references
in the body are changed to refer to the buffer elements.
Buffering is often accompanied with loop removal as discussed
in Section III.

For a PE to scatter data along a direction, the compiler

automatically inserts a counting loop t, counting the total data
received by the PE. Depending on the value of t, the received
data is either used by the current PE, or is forwarded to the
next PE along the scattering direction. Gathering is the inverse
operation of scattering, and works similarly.

Next, the compiler tries to reduce the overhead of the
loops by perfectizing, flattening and infinitizing them. For loop
perfectization, the compiler moves an operation at an outer
loop level into an inner loop level by predication. When there
are more than one inner loops at the same level, the loops are
merged together as a single loop whose trip count is the sum
of their individual trip counts.

After the loops in a nest are perfectized, loop flattening
happens. The compiler merges all the original loops into a
single loop whose trip count is the multiplication of all the
original loops’ trip counts. Then the compiler inserts code
to extract the original loop variables from the flattened loop
variable. Bit masks and shifts may be used for extracting the
original loop variables if all the loop bounds are powers-of-
two, which are efficient for FPGAs. When an original loop’s
trip count is not power of two, the flattened loop variable will
“jump” to the next power-of-two value when that original loop
is done. So far, we only support loop flattening for the loops
with constant trip counts.

As HLS compilers need to generate a finite state machine for
each for loop, which adds area overhead and can potentially
degrade the performance, our compiler converts for loops to
an infinite while(true) loop when all the input values in a
PE are from channels, and the loop variable is no longer used
anywhere. The infinite loop’s execution is then controlled by
data availability of the input channels.

Finally, the compiler generates code. Currently, the compiler
generates Altera OpenCL for Intel FPGAs, and assembly for
a research CGRA. The OpenCL codes are further compiled
by Altera compiler 17.1.1 into bitstreams and offloaded to
an FPGA; the assembly codes are place-and-routed by an
assember and simulated by a cycle-accurate simulator. Data
vectorization is not enabled for the CGRA yet. We are working
toward removing these limitations.

V. EVALUATION

We designed and wrote T2S specifications for 4 important
tensor kernels, including GEMM, MTTKRP, TTM and TTMc.
Their definitions are shown in Table I. GEMM is a core
computation in many fields. MTTKRP is the computational
bottleneck in Cannonical Polyadic Decomposition, and TTM
and TTMc are the bottlenecks in Tucker Decomposition algo-
rithms.

编译系统的作⽤

• 翻译
• ⽀持⾼层的编程抽象
• ⽀持底层的硬件体系结构

• 优化
• 更快的执⾏速度
• 更⼩的空间

• 理解程序
• 安全性(security)
• 功能正确(safety)

关键软件系统

• ⻜机和宇宙⻜船

• 医疗设备

• 核电站

• ⾃动驾驶汽⻋

Image: http://dailypost.ng/2017/07/11/fg-forget-
building-proposed-nuclear-power-plant-group/

智能合约

• 如何知道⼀个智能合约是否是安全的？

Image credit from the CVE-2018–10299 security alert

https://medium.com/coinmonks/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

SQL 注⼊ – 染⾊分析

SELECT balance FROM AcctData
WHERE name =‘ :n’ and password = ‘:p’

where n and p are passed by another
procedure

n = Charles Dickens’- - p = who cares

SELECT balance FROM AcctData
WHERE name =‘ Charles Dickens’- - and
password = ‘who cares’

缓冲区溢出分析

foo(char* s)

{

char buf[32];

strcpy(buf, s)

}

Will this strcpy overflow? You will need
information from the caller of foo

程序分析的⽅法

• SAT
• 程序建模成逻辑函数（只有true/false)

• SMT
• 程序建模成逻辑函数（判断整数表达式的可满⾜性

如a+b > 5）

• Reachibility
• 程序抽象成图，程序分析问题建模为图上的可达性问

题

例⼦：指针分析 – 初始建模

17

Advanced Compilers M. Lam & J. Whaley

Step 1: Assign numbers to

elements in domain
void main() {

x = new C();

y = new C();

z = new C();

m(x,y);

n(z,x);

q = z.f;

}

void m(C a, C b) {

n(a,b);

}

void n(C c, C d) {

c.f = d;

}

V

'x' : 0

'y' : 1

'z' : 2

'a' : 3

'b' : 4

'c' : 5

'd' : 6

H

'main@1' : 0

'main@2' : 1

'main@3' : 2

F

'f' : 0

Domains

Advanced Compilers M. Lam & J. Whaley

Step 2: Extract initial relations

(EDB) from program
void main() {

x = new C();

y = new C();

z = new C();

m(x,y);

n(z,x);

q = z.f;

}

void m(C a, C b) {

n(a,b);

}

void n(C c, C d) {

c.f = d;

}

vP0('x', 'main@1').

vP0('y', 'main@2').

vP0('z', 'main@3').

assign('a’,'x').

assign(‘b','y').

assign('c','z').

assign('d','x').

load('z','f','q').

assign('c','a').

assign('d','b').

store('c','f','d').

不断实施规则直到收敛

21

Advanced Compilers M. Lam & J. Whaley

Step 5: Apply rules until
convergence

store('c','f','d').

Rules
vP(v,h) :- vP0(v,h).
vP(v1,h) :- assign(v1,v2), vP(v2,h).
hP(h1,f,h2) :- store(v1,f,v2), vP(v1,h1), vP(v2,h2).
vP(v2,h2) :- load(v1,f,v2), vP(v1,h1), hP(h1,f,h2).

Relations
vP0 assign

load

store

assign('a’,'x').
assign(‘b','y').
assign('c','z').
assign('d','x').
assign('c','a').
assign('d','b').

vP0('x','main@1').
vP0('y','main@2').
vP0('z','main@3').

load('z','f','q').

vP hP
vP('x','main@1').
vP('y','main@2').
vP('z','main@3').
vP('a','main@1').
vP('d,'main@1').
vP('b','main@2').
vP('c','main@3').
vP('c','main@1').
vP('d','main@2').

hP('main@1','f','main@1').
hP('main@1','f','main@2').
hP('main@3','f','main@1').
hP('main@3','f','main@2').

Advanced Compilers M. Lam & J. Whaley

Step 5: Apply rules until
convergence

store('c','f','d').

Rules
vP(v,h) :- vP0(v,h).
vP(v1,h) :- assign(v1,v2), vP(v2,h).
hP(h1,f,h2) :- store(v1,f,v2), vP(v1,h1), vP(v2,h2).
vP(v2,h2) :- load(v1,f,v2), vP(v1,h1), hP(h1,f,h2).

Relations
vP0 assign

load

store

assign('a’,'x').
assign(‘b','y').
assign('c','z').
assign('d','x').
assign('c','a').
assign('d','b').

vP0('x','main@1').
vP0('y','main@2').
vP0('z','main@3').

load('z','f','q').

vP hP
vP('x','main@1').
vP('y','main@2').
vP('z','main@3').
vP('a','main@1').
vP('d,'main@1').
vP('b','main@2').
vP('c','main@3').
vP('c','main@1').
vP('d','main@2').
vP('q','main@1').
vP('q','main@2').

hP('main@1','f','main@1').
hP('main@1','f','main@2').
hP('main@3','f','main@1').
hP('main@3','f','main@2').

程序分析的局限

• 精度和复杂度的⽭盾
• 区分c1,c2,c3更精确，

但过于复杂

• 不区分则在f处⽆法将
v作为常数

for （i = 0; i < n; i++) {

t1 = g(0);

t2 = g(243);

t3 = g(243);

}

int g(int v) {

return f(v);

}

int f(int v){

return v+1;

}

c1:
c2:

c3:

c4:

利⽤图计算系统的扩展性解决
程序分析的规模问题
• 图计算系统可以处理巨⼤规模的图(千亿结点，

⼗万亿边）

Giraph, 2015, Real-…

GraM, 2015, Synthetic

Chaos, 2015, …

G-Store, 2016, …

Graphene, 2017, …
Mosaic, 2017, …

ShenTu, Real-…

ShenTu, …

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r o
ne

 P
ag

eR
an

k
Ite

ra
tio

n(
s)

Edge number of graph (trillion)

利⽤图计算系统进⾏⾼精度分析

Prog Pointer/Alias Analysis Dataflow Analysis

IS=(E,V) PS=(E,V) PT SS T IS=(E,V) PS=(E,V) PT SS T

Linux (249.5M,52.9M) (1.1B,52.9M) 91 secs 27 1.7 hrs (69.4M, 63.0M) (211.3M, 63.0M) 65 secs 33 11.9 hrs
PSQL (25.0M,5.2M) (862.2M,5.2M) 10 secs 16 6.0 hrs (34.8M,29.0M) (56.1M, 29.0M) 35 secs 16 2.4 hrs
httpd (8.2M, 1.7M) (904.3M, 1.7M) 3 secs 13 8.4 hrs (10.0M, 5.3M) (19.3M, 5.3M) 9 secs 16 11.4 mins

Table 5. Graspan performance: reported are the numbers of vertices and edges before (IS) and after (PS) being processed by
Graspan, Graspan’s pre-processing time (PT), numbers of supersteps taken (#SS), and total running time (T).

Analysis Graspan ODA [101] SociaLite [45]

CT I/O

Linux-P 99.7 mins 46.6 secs OOM OOM
Linux-D 713.8 mins 4.2 mins - OOM

PostgreSQL-P 353.1 mins 4.5 mins > 1 day OOM
PostgreSQL-D 143.8 mins 57.1 secs - OOM

httpd-P 497.9 mins 7.6 mins > 1 day > 1 day
httpd-D 11.3 mins 3.3 secs - 4 hrs

Table 6. A comparison on the performance of Graspan,
on-demand pointer analysis (ODA) [101] implemented in
standard ways, as well as SociaLite [45] processing our
program graphs in Datalog. The Graspan section shows a
breakdown of the running times into computation time (CT),
I/O time (I/O), and garbage collection time (GC); P and D
represent pointer/alias analysis and dataflow analysis. OOM
means out of memory.

Linux-pointer Linux-dataflow PostgreSQL-pointer

httpd-pointer httpd-dataflow PostgreSQL-dataflow

0%

20%

40%

60%

0%

10%

20%

30%

0%

10%

20%

30%

40%

0%

5%

10%

15%

20%

0%

20%

40%

60%

0%

10%

20%

30%

40%

Figure 4. Percentages of added edges across supersteps.

Figure 4 depicts the percentages of added edges across
supersteps, measured as the number of added edges divided
by the number of edges in each original graph. In general, an
extremely large number of edges are added within the first
10 supersteps (e.g., more than 500M for Linux), and as the
computation progresses, fewer edges are added.

5.3 Comparisons with Other Analysis

Implementations

Data Structure Analysis [47] To understand whether
Graspan-based analyses are more scalable and efficient than
traditional analysis implementations, we wanted to compare
our analyses with existing context-sensitive pointer/alias and
dataflow analyses. While we had spent much time looking for
publicly available implementations, we could not find any-
thing available except the data-structure analysis (DSA) [47]
in LLVM itself. DSA (implemented in 2007) is much more
complicated than our pointer/alias analysis implementation
— it has more than 10K lines of code while our pointer/alias
analysis (i.e., the graph generation part) only has 1.2K lines

of code. According to a response from the LLVM mailing
list [8], DSA was buggy and removed from LLVM since ver-
sion 3.3. We tried to use LLVM 3.2 but it could not compile
any version of the Linux kernel due to lack of patches.

On-demand Pointer Analysis [101] As no other implemen-
tations were available, we implemented the context-sensitive
version of Zheng and Rugina’s C pointer analysis [101] our-
selves. We took the expression graph generated by our fron-
tend and used a worklist-based algorithm to compute tran-
sitive closures, following closely the original algorithm de-
scribed in [101]. The ODA section of Table 6 reports its
performance. For all but httpd, ODA either ran out of mem-
ory or took a very long time (longer than one day) on the
same desktop where we ran Graspan. For example, when
processing Linux, it ran out of memory in 13 minutes. When
we moved it onto a server with 32 2.60GHZ Xeon(R) proces-
sors and 32GB memory, it took this implementation 3.5 days
to analyze Linux and it consumed 29GB out of the 32GB
memory. On the contrary, Graspan finished processing Linux
in a few hours with less than 6GB memory on the desktop
with a much less powerful CPU.

5.4 Comparisons with Other Backend Engines

Datalog Since Datalog has been used to power static anal-
yses, it is important to understand the pros/cons of using
Graspan v.s. a Datalog engine as the analysis backend. While
there are many Datalog engines available [7, 45, 74, 86],
SociaLite [45] and LogicBlox [7] are designed for shared-
memory machines while others [74, 86] are distributed en-
gines running on large clusters. Since a distributed engine is
not a choice for code checking in daily development tasks,
we focused our comparison against shared-memory engines.
LogicBlox is a commercial tool that has been previously used
to power the Doop pointer analysis framework [17] for Java.
However, it was the same licensing issue that prevented us
from publishing comparison results with LogicBlox. Hence,
this subsection only compares Graspan with SociaLite, a
Datalog engine developed by Stanford that has been demon-
strated to outperform other shared-memory engines.

The SociaLite section of Table 6 reports SociaLite’s
performance on the same desktop. SociaLite programs were
easy to write — it took us less than 50 LoC to implement
either analysis. However, SociaLite clearly could not scale
to graphs that cannot fit into memory. For both pointer/alias
and dataflow analysis, it ran out of memory for Linux and

Program:

1 a = b;
2 b = &c;
3 d = &a;
4 e = malloc(...);
5 *c = e;
6 t = *d;
7 x = *t;
8 y = *x;

&c

c

b a

&a d

*ceA4

*d t

*tx

*xy
M A

A A A

A

A

A

D

D

D D

D

D

OF VF

VF/VA

MA
VF/VA

VF/VA

MA

VF/VA

MA

OF
OF

VF

Figure 1. A program and its expression graph: solid, horizon-
tal edges represent assignments (A- and M- edges); dashed,
vertical edges represent dereferences (D-edge); dotted, hori-
zontal edges represent transitive edges labeled non-terminals.
A4 indicates the allocation site at Line 4.

T -path if the sequence of the edge labels on the path is a
string that can be reduced to T . In order for a variable v to
point to an object o (i.e., a malloc), there must exist an OF
path in the expression graph from o to v. The definition of
OF is straightforward: it must start with an alloc (M) edge,
followed by a VF path that propagates the object address to a
variable. A VF path is either a sequence of simple assignment
(A) edges or a mix of assignments edges and MA (memory
alias) paths.

There are two kinds of aliasing relationships in C: memory
aliasing (MA) and value aliasing (VA). Two lvalue expres-
sions are memory aliases if they may denote the same mem-
ory location while they are value aliases if they may evaluate
to the same value.

An MA path is represented by D VA D. Each edge has an
inverse edge with a “bar” label. For example, for each edge
a

D�! b, the edge b
D�! a exists automatically. D represents

the inverse of a dereference and is essentially equivalent to an
address-of. D VA D represents the fact that if (1) we take
the address of a variable a and writes it into a variable b, (2)
b is a value alias of another variable c, and (3) we perform
dereferencing on c, the result is the same as the value in a.

A VA path is represented by V F MA VF . This has the
meaning that if (1) two variables a and b are memory aliases,
and (2) the values of a and b are propagated to two other
variables c and d, respectively, through two VF paths, c and
d contain the same pointer value. In other words, the path –
c V F a MA b VF d – induces c VA d.

Note that MA, VA, and VF mutually refer each other.
This definition captures the recursive nature of a flow or
alias path. In this grammar, D and D are the open and close
parentheses that need to be balanced.

Example In Figure 1, e points to A4 , since the M edge
between them forms an OF path. There is a VF path from
&a to d, which is also a VA path (since VA includes VF).
The VA path enables an MA path from a to ⇤d due to the
balanced parentheses D and D. This path then induces two

additional VF /VA paths from b to t and from &c to t, which,
in turn, contribute to the forming of the VF/VA path from c

to x, making ⇤c and ⇤x memory aliases. Hence, there exists
a VF path from e to y, which, together with the M edge at
the beginning, forms an OF path from A4 to y. This path
indicates that y points to A4 . The dotted edges in Figure 1
show these transitive edges.

Traditional Solution The traditional way to implement this
analysis is to maintain a worklist, each element of which is
a pair of a newly discovered vertex and a stack simulating
a pushdown automaton. The implementation loops over the
worklist, iteratively retrieving vertices and processing their
edges. The traditional implementation does not add any phys-
ical edges into the graph (due to the fear of memory blowup),
but instead, it tracks path information using pushdown au-
tomata. When a CFL-reachable vertex is detected, the vertex
is pushed into the worklist together with the sequence of
the labels on the path leading to the vertex. When the ver-
tex is popped off of the list, the information regarding the
reachability from the source to the vertex is discarded.

This traditional approach has at least two significant draw-
backs. First, it does not scale well when the analysis be-
comes more sophisticated or the program to be analyzed
becomes larger. For example, when the analysis is made
context-sensitive, the grammar needs to be augmented with
the parentheses representing method entries/exists; the check-
ing of the balanced property for these parentheses also needs
to performed. Since the number of distinct calling contexts
can be very large for real-world programs, naı̈vely traversing
all paths is guaranteed to be not scalable in practice. As a
result, various abstractions and tradeoffs [41, 76–78] have
been employed, attempting to improve scalability at the cost
of precision as well as implementation straightforwardness.

Second, the worklist-based model is notoriously difficult
to parallelize, making it hard to fully utilize modern comput-
ing resources. Even if multiple traversals can be launched
simultaneously, since none of these traversals add transitive
edges into the program graph as they are being detected, every
traversal performs path discovery completely independently,
resulting in a great deal of wasted efforts.

A “Big Data” Perspective Our key insight here is that
adding physical transitive edges into the program graph
makes it possible to devise a Big Data solution to this
static analysis problem for two reasons. First, representing
transitive edges explicitly rather than implicitly leads to
addition of a great number of edges (e.g., even larger than
the number of edges in the original graph). This gives us a
large (evolving) dataset to process. Second, the computation
only needs to match the labels of consecutive edges with the
productions in the grammar and is thus simple enough to
be “systemized”. Of course, dynamically adding many edges
can make the computation quickly exhaust the main memory.
However, this should not be a concern, as there are already

*Graspan: A single-machine, disk-based graph system for interprocedural static
analyses of large-scale systems code，ASPLOS 17

总结

• 编译器是链接程序员和机器的桥梁
• ⽀持更有效的抽象 – 提⾼开发效率

• ⽀持更有效的优化 – 提⾼运⾏效率

• ⽀持更完善的分析 – 为系统提供安全性

• 编译器教学⾯临的挑战
• 内容少：基本上只介绍了⼀部分翻译功能

• 深度不⾜：如⾯向对象、函数语⾔的编译

