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Abstract

Large vision-language models (VLMs) have garnered
increasing interest in autonomous driving areas, due to
their advanced capabilities in complex reasoning tasks es-
sential for highly autonomous vehicle behavior. Despite
their potential, research in autonomous systems is hindered
by the lack of datasets with annotated reasoning chains
that explain the decision-making processes in driving. To
bridge this gap, we present Reason2Drive, a benchmark
dataset with over 600K video-text pairs, aimed at facilitat-
ing the study of interpretable reasoning in complex driving
environments. We distinctly characterize the autonomous
driving process as a sequential combination of perception,
prediction, and reasoning steps, and the question-answer
pairs are automatically collected from a diverse range of
open-source outdoor driving datasets, including nuScenes,
Waymo and ONCE. Moreover, we introduce a novel ag-
gregated evaluation metric to assess chain-based reason-
ing performance in autonomous systems, addressing the se-
mantic ambiguities of existing metrics such as BLEU and
CIDEY. Based on the proposed benchmark, we conduct ex-
periments to assess various existing VLMs, revealing in-
sights into their reasoning capabilities. Additionally, we
develop an efficient approach to empower VLMs to leverage
object-level perceptual elements in both feature extraction
and prediction, further enhancing their reasoning accuracy.
The code and dataset will be released.

1. Introduction

Modern autonomous driving systems face challenges re-
lated to generalization issues across diverse scenarios,
which is often attributed to the reliance on empirical and
intricate rules involved in decision-making. To reduce de-
pendence on such rules, recent end-to-end approaches [19]
have been developed to derive control signals directly from
sensor inputs, treating the system as a black box that re-
quires extensive data for training. However, this approach
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Figure 1. (a) Different decision-making processes in autonomous
driving. (b) Language-based dataset comparison.

tends to obscure the underlying logic of decisions, com-
plicating failure diagnosis in real-world applications. In
contrast, Large Vision-Language Models (VLMs) offer a
promising alternative, potentially enhancing interpretabil-
ity and generalization for these systems. With their broad
world knowledge and advanced reasoning abilities, as il-
lustrated in Fig. 1(a), VLMs have the potential to pro-
vide a more thorough understanding and explicit explana-
tion for reliable decision-making. Nonetheless, existing
works [33, 40] primarily focused on the straightforward
adaptation of question-answering tasks to the autonomous
driving; how to exploit VLMs to facilitate the reasoning
abilities of autonomous systems is still under exploration.

One reason that hinders the research in this field lies in
the scarcity of datasets, especially those chained-based rea-
soning labels that elucidate the decision-making process.
Most existing datasets [10, 33, 41] often oversimplify the
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complex processes of driving into straightforward question-
answering tasks with only a few specific tasks covered. As
depicted in Fig. 1(b), they typically provide closed-form
annotations constrained to boolean (i.e., yes or no) an-
swers or limited multiple-choice responses (e.g., stopped,
parked, and moving). However, autonomous driving tran-
scends a simplistic QA process. It encompasses a multi-step
approach involving perception, prediction, and reasoning,
each of which plays an indispensable role in the decision-
making. Therefore, it is crucial to introduce a novel bench-
mark annotated with detailed decision-making reasoning
for assessing the reasoning abilities of current VLMs.

To this end, we introduce Reason2Drive, a new bench-
mark comprising over 600K video-text pairs, characterized
by intricate driving instructions and a series of percep-
tion, prediction and reasoning steps. Our benchmark builds
upon widely-used open-source driving datasets including
nuScenes [2], Waymo [36], and ONCE [26], utilizing an
extensible annotation schema. Specifically, we extract ob-
ject metadata, structure it into JSON format, and integrate
it into pre-defined templates to create paired data for VLMs
at both object and scenario levels. To enhance diversity,
GPT-4 and manual annotations are employed for verifica-
tion and enrichment purposes. Notably, Reason2Drive is
the most extensive dataset available to date, outperform-
ing existing datasets in scale and the complexity of rea-
soning chains included, which is a distinctive attribute not
present in other datasets. Furthermore, we observe a fun-
damental flaw in the current evaluation of VLMs on au-
tonomous driving tasks, due to the inherent semantic am-
biguity of traditional caption-based metrics like BLEU [29]
and CIDEr [39]. For example, sentences with contrasting
meanings such as “It will turn left” and “It will turn right”
could yield high scores in BLEU, which is especially prob-
lematic in the context of autonomous driving. To address
this issue, we propose a new aggregated evaluation metric
specifically designed to measure chain-based reasoning per-
formance in autonomous systems, which aims to resolve the
semantic ambiguities associated with current metrics.

Utilizing the proposed benchmark, we undertake exper-
iments to assess various existing VLMs, thereby unveiling
valuable insights into their reasoning capabilities. We find
that most methods struggle to effectively leverage percep-
tual priors, resulting in subpar reasoning performance. Ad-
ditionally, constrained by the language model functioning
solely as a decoder, these methods often fail to deliver accu-
rate perceptual results, which is a crucial component for ver-
ifying a model’s spatial reasoning capability. To alleviate
this dilemma, we present a simple yet efficient framework,
augmenting existing VLMs with two new components: a
prior tokenizer and an instructed vision decoder, which aim
to bolster the models’ visual localization capabilities within
the encoder and decoder, respectively.

The contributions of this paper are summarized as fol-
lows: (i) We publish a novel visual instruction tuning
dataset aimed at facilitating interpretable and chain-based
reasoning autonomous systems. (ii) We introduce a novel
evaluation metric to assess chain-based reasoning perfor-
mance in autonomous driving, effectively addressing the
semantic ambiguities present in existing metrics. (iii) We
conduct experiments to assess a range of existing VLMs,
revealing valuable insights into their reasoning capabilities.
(iv) To address the challenge posed by inefficient priors fea-
ture extraction and inaccurate perceptual predictions, we
introduce an efficient approach for integrating these into
VLMs, resulting in a substantial improvement in reason-
ing accuracy. Our method surpasses all baselines, notably
achieving impressive generalization in unseen scenarios.

2. Related work

Multimodal large language model. The current state of
large language models provides remarkable abilities in nat-
ural language understanding and generation ([5, 6, 28, 38]).
Inspired by the potential of large language models, a mul-
titude of multimodal models has emerged, intended to en-
hance these models’ capabilities in achieving multi-modal
comprehension. Blip-2 [22] aligns visual and language
features by utilizing a learnable Q-former. LLaVA [23]
and MiniGPT-4 [48] initially align image-text features and
then proceed with instruction tuning. Additionally, Video-
LLaMA [46] and ImageBind-LLM [16] integrate multi-
ple modalities into the input, aligning features from vari-
ous sources like images, videos, audio, and point clouds,
consolidating them into the space of language features.
Kosmos-2 [31] and Shikra [4] perform object detection
based on instructions and also accomplish grounded visual
question answering. DetGPT [32] connects a fixed multi-
modal LLM with a customizable detector based on user
instructions. LISA [21] efficiently embeds segmentation
abilities into multi-modal LLMs, showcasing self-reasoning
for current perception systems. The previous works have
demonstrated that current large-scale multimodal models
can achieve cross-modal alignment, enabling comprehen-
sion and inference towards images and more. These models
can not only perform perceptual tasks like detection but also
accomplish preliminary reasoning.

Vision language tasks in autonomous driving. Cur-
rently, VLMs have demonstrated robust capabilities in
scene perception and understanding. Extensive efforts have
been dedicated to the realm of autonomous driving, lever-
aging VLM to achieve comprehensive scene understanding
and perform diverse tasks [12, 14, 27, 42, 45]. Simultane-
ously, substantial works are in progress to create datasets
and models tailored to various tasks. Talk2Car [10] pro-
poses the first object referral dataset for grounding com-
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lane, necessitating close monitoring for potential risk.

Figure 2. Schematic illustration of our Reason2Drive Dataset. The upper part illustrates the pipeline for the automated construction of
datasets. The lower part shows detailed instances of perception, prediction, and reasoning, accompanied by outcomes after applying GPT-4
for data augmentation. The special tokens hold distinct definitions: <Inst x> represents a specified instance, <MOT > signifies a forecasted
sequence of trajectory coordinates, and <LLOC> denotes positional coordinates. The colors associated with these tokens correspond to the

highlighted objects in the upper-left image’s boxes.

mands for self-driving cars in free natural language into
the visual context. But it exclusively contains informa-
tion about visible objects. While DRAMA [25] outlines
the overall scene risk, it lacks precise perception annota-
tion. NuPrompt [41] and Refer-KITTI [40] offer language
prompt sets for driving scenes but primarily concentrate on
multi-object tracking tasks. NuScenesQA [33] and Driv-
eLM [8] build visual question-answering (VQA) datasets
for scenario understanding. However, their primary em-
phasis is on the perceptual information in the scene, lack-
ing annotations for the analysis and complex reasoning of
the entire scenario. To address the limitations of existing
works, we construct a thorough dataset covering percep-
tion, prediction, and complex reasoning, additionally with
an improved vision-language model for better analyzing au-
tonomous driving scenarios.

3. Reason2Drive dataset

We introduce Reason2Drive, a dataset that comprises com-
prehensive driving instructions and a chain-based reasoning
framework for decision-making. Our dataset is character-
ized by the following key aspects:

* Quantity: It stands out as the largest language-based
driving dataset available, collated from prominent pub-
licly accessible datasets worldwide.

* Quality: Reason2Drive offers a more precise representa-
tion of driving activities, including perception, prediction
and reasoning, with a reliable auto-annotation schema for
data collection.

* Diversity: (i) The dataset exhibits a broader range of
scenes, encompassing both object-level and scenario-
level data. This diversity includes object types, visual
and motion attributes, object locations, and relationships
relative to the ego-vehicle. (ii) It includes more intricate
question-answer pairs, enhanced by GPT-4, along with
longer text passages featuring step-by-step reasoning.

* Protocols: A novel evaluation metric is introduced to as-
sess the reasoning capabilities of VLMs. Different from
those widely used in the NLP community, it takes into ac-
count not only perception results but also semantic ambi-
guities, providing a more holistic evaluation of the VLM’s
reasoning capacity for autonomous driving scenarios.

Further details regarding the data collection process, sta-



tistical data analysis, and benchmark protocols are provided
in the subsequent section.

3.1. Dataset collection

As illustrated in Fig. 2, we employ an extensible annota-
tion schema, constructing data in the forms of question-
answer pairs. Specifically, we first leverage a diverse ar-
ray of publicly available datasets collected in different re-
gions worldwide, including nuScenes, Waymo, and ONCE,
and then parse their comprehensive object metadatas into
JSON-structured entries. Each object entry contains vari-
ous details pertaining to its driving actions, including loca-
tion, category, attributes and more. Afterwards, these ex-
tracted entries are filled into predefined templates, which
are divided into different tasks (i.e., perception, prediction
and reasoning) at both object-level and scenario-level. Sub-
sequently, GPT-4 and manual annotations are involved for
verification and enrichment purposes.

Due to the complexity of autonomous driving activities,
we categorize the tasks into three distinct groups to acquire
diversified data: perception, prediction and reasoning. The
specifics and distinctions of these three types of tasks are
elaborated as follows:

* Perception task is designed to identify objects within
the driving scenario, assessing the fundamental percep-
tual capabilities of VLMs in outdoor environments.

 Prediction task entails the prediction of future states
of key objects within the perceptual range, challenging
VLMs to infer the intentions of objects with video input.

* Reasoning task prompts the analysis of the current per-
ceptual and predicted states step by step, requiring the
deduction of reasoned inferences and decisions through a
chain of thoughts (COT) approach.

For each task, we further categorize the data into object-
level and scenario-level. In more detail,

¢ Object-level data is formatted to benchmark the founda-
tional capabilities of specific objects. As for perception,
we address the location and attributes of objects such as
moving status and distance to ego, while for prediction,
future motion and merging-in/out status are considered.

¢ Scenario-level data is organized from a global perspec-
tive towards driving environment and ego-driving instruc-
tions. It focused on whether there is an object worth
noting currently (perception), whether there is an object
worth noting in the future (prediction) and why (reason-
ing). For example, as illustrated in Fig. 2, models are
asked to identify distances, merging states and other risks
from the whole scene. It verifies the agent’s ability to
perceive the entire driving scene rather than specifying
objects, thus more challenging and meaningful.

3.2. Dataset analysis

Tab. 1 and Fig. 3 demonstrate the comparison between our
Reason2Drive dataset and existing benchmarks. It is note-
worthy that our benchmark stands as the largest dataset to
date, surpassing others in terms of both dataset size and
the inclusion of extensive long-text chain-based reasoning
references. To further investigate the property of Rea-
son2Drive dataset, we statistic the distribution of our dataset
in Fig. 4. The benchmark exhibits a balanced distribution,
with multi-object tasks constituting the majority. Addition-
ally, perception, prediction and reasoning questions are dis-
tributed as 39%, 34%, and 27%, respectively. More details
are provided in the appendix.

3.3. Benchmark protocol

It is worth noting that previous works [11, 25, 33] sim-
ply utilize metric scores widely used in the NLP commu-
nity, including BLEU [29], CIDEr [39] and METEOR [1].
However, these metrics primarily measure word-level per-
formance and do not account for semantic meaning, which
may lead to unexpected evaluation results. To address the
semantic ambiguities, inspired by [44] and [15], we develop
the evaluation protocol to measure the correctness of the
reasoning chains.
Preliminary. To begin with, we denote the generated rea-
soning steps as hypothesis & = {h1, ..., hx '}, and the gold
annotation as reference ¥ = {ry, ...,k }.

At the core of reasoning metrics is the reasoning align-
ment vector from the N-step hypothesis i to the K-step
reference:

align(i_i—H:') ={ag,...,an}, ey

where alignment value «; represents the semantic similar-
ity between the corresponding hypothesis step and the most
similar reference step:

K
o = maszlsim (2)

sij = cos(h;, ;).

a; € [0,1] explicitly measures the grounding of the step-
wise reasoning with respect to the reference, and cos(+) de-
notes the cosine similarity between the corresponding sen-
tence embeddings. Based on the above reasoning alignment
vector, we propose the following metrics to thoroughly
measure the quality of reasoning steps.

Reasoning alignment. The most straightforward way to
evaluate the correctness of the hypothesis reasoning chain
is to compare the degree of overlap between the hypothesis
and the reference. One way of doing that is to measure the
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Figure 3. Data quality comparison. Reason2Drive is
Table 1. The comparison between our Reason2Drive dataset and other larger in scale, richer in data content, and more diverse

prompt-based datasets. ll means dataset not published.
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Figure 4. Statistical distribution of different tasks in Reason2Drive
dataset, which illustrates the equilibrium of our proposed dataset.

reasoning alignment between them:

N

1 .
RA = N ; align(h; — 7). 3)

Redundancy. To find chains that contain information that
is not required to solve the problem (i.e., redundant steps),
we identify those hypothesis steps that are least aligned with
the reference steps. This metric punishes the chain with
steps that are not required for the correct solution.

RD = minl_jalign(h; — 7). 4)

Missing step. To identify steps that are missing from the
hypothesis but could be required to solve the problem, we
look at the alignment between reference and the hypothesis,
similar to Redundancy. However, here we go through each

in scenarios.

step in the reference, and check if there is a similar step in
the hypothesis:

MS = min!< align(r; — h). ®)

Finally, the aggregated metric score is the average of the
above performance, which is:

R= %(R/H—RD—&—MS). 6)

Strict reason. To further adapt to the realistic driving pro-
cess, we promote the above metric to the situation with vi-
sual elements. Specifically, when the hypothesis step h; and
reference step r; contains visual elements, i.e., the locations
and motions predicted for further reasoning, the similarity
score becomes:

— M(h;,r;
815 = 6( ), )

where M (-) measures the mean square error between two
perceptual elements. And we normalize it to [0, 1] to match
the distribution of semantic-level similarity. The promoted
strict reason metric is designed to more precisely assess the
reasoning responses containing perceptual elements.

4. Method

In this section we introduce our framework in Sec. 4.1, fol-
lowed by the training details provided in Sec. 4.2.

4.1. Model architecture

We observe that most VLMs struggle to effectively handle
object-level perceptual information, including the input of
visual priors and predictions of object locations, which are
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indispensable in autonomous driving scenarios. The limita-
tion is primarily due to (i) the lack of a targeted tokenizer
and (ii) decoder solely composed of language model, result-
ing in subpar reasoning performance. To address this chal-
lenge, as illustrated in Fig. 5, we introduce a straightforward
yet effective framework that enhances existing VLMs with
two new components: a prior tokenizer and an instructed
vision decoder. These components aim to strengthen the
capabilities of the model to utilize object-level perceptual
elements in both the process of extracting visual priors and
generating perceptual predictions.

Vision encoder. Our model accepts both video frames
and text inputs, along with perceptual priors, and tokenizes
them into embeddings. For a sequence of video frames
(V1, Va, ..., Vi), features are extracted using a pretrained
Blip-2 visual encoder [22] F), and aggregated through con-
catenation:

fo=F,WV)®F,(V2)®..D F,(Vy). (®)

Prior tokenizer. We propose a novel tokenization strat-
egy tailored to taking advantage of visual cues. The motiva-
tion is grounded in the acknowledgement that extracting and
aligning visual features is considerably simpler and more
suitable compared to compelling the LLM to comprehend
ambiguous positional descriptions. Direct textual input to
the LLM may result in challenges such as information loss,
as textual representation may not fully capture image details
and context, especially in complex scenarios with dynamic
object positions and velocities. To tackle this issue, we de-
sign a novel tokenizer F},, implemented as a two-layer MLP,

to independently extract local image features and positional
embeddings from visual priors:

fp = Fp(fr + E(P)), )

where f,. represents the region-level features extracted from
the image-level features f, according to the precise loca-
tions of perception priors P. These features are aligned to
7 x 7 size using the RolAlign [17] operation and fused into
a single embedding f,. And E(-) is a positional encoding
function mapping the geometry locations and motions into
the same dimension of f,.

LLM. After we tokenize the video and perception priors
into embedding f, and fp, a projector Q) (Q-former [22]
in this work) is adopted to align the non-text features into
textual domain:

fa=Q(fv: fp)- (10)

Then, to generate the final text output, we utilize the LLM
for further language processing with the extracted text em-
bedding f;:

9t = F(fe, fq)- 1)

Instructed vision decoder. Current works [10, 14] treat
the LLM as a versatile tool to generate answers and infer-
ences without intermediate reasoning steps, let alone con-
sidering the perceptions of the agent toward driving scenes.
However, the perception ability of the agent towards driv-
ing scenarios is an indispensable part of a reliable driv-
ing procedure. Moreover, recent works [21] have demon-



Reasoning metric

Captioning metric

Methods LLM
Strict Reason Reason | B@4 METEOR ROUGE CIDEr
. OPT-2.7B [47] 0.162 0.296 | 0.361 0.249 0.443 0.174
Blip-2 [22
FlanT5-XL [7] 0.171 0.310 | 0.368 0.256 0.451 0.187
FlanT5-XL 0.187 0.329 | 0.376 0.269 0.462 0.196

InstructBLIP [9]

Vicuna-7B [30] 0.214 0.351 | 0.408 0.294 0.484 0.211
MiniGPT-4 [48] Vicuna-7B 0.203 0.338 | 0.396 0.286 0.475 0.219
o FlanT5-XL 0.420 0.457 | 0.451 0.349 0.520 0.292

urs
Vicuna-7B 0.432 0.463 | 0.457 0.356 0.529 0.298

Table 2. Results of different models on the Reason2Drive validation set. We evaluate the reasoning metrics as well as captioning metrics.

Perception Prediction Reasoning | Strict Reason Reason

v 0.253 0.282
4 4 0.264 0.297

v 0.323 0.351
4 v 0.364 0.407
v v v 0.432 0.463

Table 3. Ablations on different combinations of training tasks.

strated that, rather than training with textualized percep-
tual sequences, incorporating the perception abilities into
the multi-modal LLM brings a significant improvement. To
this end, inspired by [21], we integrate new perception capa-
bilities into the multi-modal LLM. Specifically, we expand
the original LLM vocabulary by introducing new tokens as
placeholders, denoted as <LOC> and <MOT>, to signify the
request for the perception output. When the LLM aims to
generate a specific perception, the output g; should include
a designed token. We then extract the last-layer textual fea-
tures corresponding to the specific token and apply an MLP
projection layer to obtain the hidden embedding f7,. Finally,
the textual embedding and visual features are fed into the
instructed vision decoder to decode the predictions:

P =D(fu, fn)- (12)

This module is comprised of a transformer decoder for fea-
tures alignments [3] and task-specific heads designed to
generate object locations and motions independently.

4.2. Training details.

Training objectives The model is trained end-to-end us-
ing the text generation loss L;,; and the perception output

loss Lper:

L= Eta:t + /\perﬁpera (13)

where Ap., is the balanced term. Specifically, L, is the
auto-regressive cross-entropy loss for text generation, and
Lyer encourages the instructed vision decoder to generate
accurate locations and motions, which is similar to tradi-
tional detection loss and is employed with the combination
of binary cross-entropy loss and MSE loss. More details are
included in the appendix.

Tuning strategy. Our tuning strategy consists of two
stages: the pre-training stage and the fine-tuning stage. In
the pre-training stage, we initialize the weights from in-
structBLIP [9], including the pre-trained vision encoder, Q-
former and LLM, and freeze the parameters of LLM and
vision tokenizer F,. We train the prior tokenizer F}, and Q-
former @ to align visual priors with text, along with the in-
structed vision decoder D to enhance visual localization ca-
pabilities. The fine-tuning phase equips the LLM with rea-
soning abilities in autonomous driving using the instructed
vision decoder. To retain pre-trained LLM generalization,
we employ efficient fine-tuning with LoRA [18]. The vi-
sion encoder and prior tokenizer F}, remain fixed, while the
instructed vision decoder D is fully fine-tuned. Word em-
beddings of the LLM and Q-former are also trainable.

5. Experiments

We benchmark various baseline models and present our
method on Reason2Drive dataset. Sec. 5.1 covers imple-
mentation details. We assess reasoning performance using
our proposed metric in Sec. 5.2, perform ablation studies in
Sec. 5.3 and provide qualitative results in the appendix.



Visual features Perceptual priors .
Strict Reason ~ Reason

image-level video-level | region-level positional

v 0.379 0.414
v 0.394 0.431
4 v 0.418 0.447
v v v/ 0.432 0.463

Table 4. Ablations on visual input and perception priors.

Pre-train  text embedding MLP | Strict Reason Reason
0.361 0.387
v 0.396 0.421
v v 0.425 0.455
v v v 0.432 0.463

Table 5. Ablations on different settings of instructed vision de-
coder.

5.1. Experimental setting

Our main experiments are carried out on the complete Rea-
son2Drive benchmark. The dataset is collected from three
different source datasets: nuScenes [2], Waymo [36], and
ONCE [26]. It is divided into training and validation sets
based on segments, with 70% allocated to the training set
and 30% to the validation set, ensuring no overlap in scenes
between them. The input consists of 5 frames of cropped
images with a size of 224 x224 pixels. During training, we
leverage the AdamW [24] optimizer with a weight decay of
0.01. We adopt a cosine learning rate decay scheduler with
a max value of 3e-4 and a linear warm-up for the first 1000
iterations. The weight of perception loss A, is set to 1.0.
The normalization parameters 7 and 3 are selected to be 15
and 10 after empirical practice. Our models are trained for
10 epochs with a batch size of 8 on 8 V100 GPUs.

5.2. Reasoning results

As demonstrated in Tab. 2, we not only evaluate the reason-
ing scores of different models on our benchmark but also as-
sess their performance using traditional caption-based eval-
uation metrics. It is worth noting that our method outper-
forms others comprehensively, both in terms of reasoning
scores and traditional metrics. In detail, the performance
of the LLM plays a significant role. We observe that, on
the one hand, there is a correlation between our reasoning
scores and traditional metrics, while on the other hand, the
performance gap is more pronounced in our metrics.

Methods LLM Strict Reason  Reason | GPT-3.5 GPT-4
Blip-2 OPT-2.7B 0.332 0.450 0.479 0.458
InstructBLIP | FlanT5-XL 0.377 0.489 0.532 0.501
MiniGPT-4 | Vicuna-7B 0.352 0.469 0.519 0.467
Ours Vicuna-7B 0.561 0.593 0.643 0.628

Table 6. Evaluation results given by prompted ChatGPT.

. Testing
Method LLM Training
N W+0
. N 0.205 0.116
Blip-2 OPT-2.7B
W+0O | 0197 0.121
N 0.238  0.155
InstructBLIP | FlanT5-XL
W+0O | 0255 0.149
. . N 0.257 0.172
MiniGPT-4 | Vicuna-7B
W+0O | 0263 0.168
N 0.443 0397
Ours Vicuna-7B
W+0O | 0428 0.385
Table 7. Generalization ability when transferred to different

sources of datasets. Strict reason metric is reported.

5.3. Ablation study

Task contributions. To investigate the synergies between
different tasks, we evaluate the tasks independently. As
shown in Tab. 3, training on reasoning tasks contributed the
most. Meanwhile, the perception tasks and prediction tasks
contribute 4.1% and 6.8% respectively (Row 3, 4 and 5).

The effects of tokenizers. To verify the effectiveness
of the tokenizers, we conduct ablation studies to pinpoint
where the improvements come from (Tab. 4). Visual fea-
tures from single frame to multi-frame bring 1.5% improve-
ment. Perceptual priors, i.e., region-level features and posi-
tional embeddings bring 2.4% and 1.4% development.

The effects of instructed vision decoder. To verify the
efficiency of our instructed vision decoder, we conduct an
ablation study to compare it with other methods. As demon-
strated in Tab. 5, pre-training and textual embedding bring
the major contribution (3.5% and 2.9% in strict reason).

Evaluated by GPT-4. To validate the rationality of our
reasoning scores, following [14], we employ GPT-4 to vali-
date the generated answers in Tab. 6. We can draw the con-



clusion that our method still achieves superior performance,
which also indicates the rationality of our proposed metric.

Generalization. To validate the method’s generalization,
we trained on the Reason2Drive benchmark with only the
nuScenes dataset and tested on Waymo and ONCE in
Tab. 7. We split the Reason2Drive benchmark into two sets,
nuScenes (noted as N) and Waymo + ONCE (noted as W +
0). Compared with others, our method suffers limited per-
formance drops (4.6% and 4.3%).

6. Conclusion

In summary, Large Vision-Language Models (VLMS) have
sparked interest in autonomous driving for their advanced
reasoning capabilities. However, the absence of datasets
explaining decision-making processes hinders progress. To
tackle this, we introduce Reason2Drive benchmark, com-
prising 600K+ video-text pairs for interpretable reason-
ing in complex driving scenarios. It outperforms existing
datasets in scale, sources and task diversities. We also pro-
pose a novel evaluation protocol for chain-based reasoning,
addressing existing semantic ambiguities. To uncover in-
sights into their reasoning abilities, our work evaluates var-
ious VLMs and proposes an efficient method to boost the
ability of models to utilize object-level perceptual elements
in both the encoder and decoder. We expect our work could
propel further advancements in interpretable reasoning for
autonomous systems. Code and dataset will be released.
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A. Appendix

A.1. More statistical analysis of Reason2Drive

In this section, we present more dataset details. As demon-
strated in Tab. 8, we split the dataset according to the task
and target. The benchmark exhibits a balanced distribution.
Specifically, multi-object questions constitute the major-
ity, followed by single-object and scenario-level questions,
which are of similar quantities. The fewest questions are
related to the ego-vehicle. Additionally, perception, predic-
tion and reasoning questions are distributed as 39%, 34%,
and 27%, respectively.
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Figure 6. Words distributions in (a) questions and (b) annotated
answers.
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We also statistic the distribution of the words, as is il-
lustrated in Fig. 6. From the words distribution, we can
observe that Reason2Drive has a large range of words that
describe perceptions, predictions and reasoning tasks, like
“moving”, “distance”, and “risk”.

A.2. More implementation details

Architecture. For the frozen visual encoder, we employ
ViT-G/14 from EVA-CLIP [37] in the main paper, which
is a state-of-the-art pre-trained vision transformer models.
We remove the last layer of the ViT and uses the second last
layers’ output features.

For the language model, we explore two types of LLMs:
encoder-decoder-based LLMs and decoder-based LLMs.
For encoder-decoder-based LLMs, we employ FlanT5-
XL [7], which is an instruction-tuned model based on the
encoder-decoder Transformer T5 [43]. For decoder-based
LLMs, we select Vicuna [5], a recently released decoder-
only Transformer instruction-tuned from LLaMA [38].

Training loss. Our model is trained with a language mod-
elling loss L+, where the task of the frozen LLM is to gen-
erate text conditioned on the extracted modality features of
the Q-former. Furthermore, we employ an auxiliary percep-
tion loss £, to enhance the perceptual capability. Specif-
ically, a linear combination of a binary cross-entropy loss
for classification and a regression loss is defined:

N N
EpET(P’ P) = - Z logpc,i + /\reg Z ‘Creg(Pb,ia pbﬂ')a

i=1 i=1

(14)

where Pc,i and Pb,i are predicted classification and regres-

sion results of P. Loss function L4 is employed by a MSE

loss. In practice, we select A4 to be 0.25 as the balance
term as a common setting in object detection tasks.

A.3. Ablation of visual encoders

We ablate the effects of employed visual encoders in Tab. 9.
For comparison, we explore two types of visual encoders:
ViT-L/14 in CLIP [34] and ViT-G/14 in EVA-CLIP [37].
We can draw the conclusion that the performance of visual
encoder inevitably influences the VLMs especially in strict
reason metric.
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Perception (PE)  Prediction (PR) Reasoning (RE) Total

Task
Target

Ego vehicle 22629 17173 18868 58670
Single object 71882 61667 72006 205555
Multi objects 102012 94502 52175 248689
Scenario 49589 42795 27657 120041
Total ‘ 246112 216137 170706 632955

Table 8. The statistics of different tasks in Reason2Drive dataset.

Method ‘ Visual encoder | Strict Reason Reason
. ViT-L/14 [34] 0.155 0.294
Blip-2
ViT-G/14 [37] 0.171 0.310
ViT-L/14 0.187 0.327
InstructBLIP
ViT-G/14 0.214 0.351
ViT-L/14 0.397 0.435
Ours
ViT-G/14 0.432 0.463

Table 9. Ablations on visual encoders.

A .4. Qualitative examples

Successful cases. In Fig. 7, we visualize some of the suc-
cessful cases in our Reason2Drive validation set. In gen-
eral, our method behaves better than InstructBLIP [9] in
most scenarios. Our method performs well on the planning
prediction of objects, the recognition of potential risks and
reasoning steps under different levels of tasks. The qual-
itative results demonstrate the effectiveness of our method
towards interpretable and chain-based reasoning, which has
great implications for autonomous driving.

Failure cases. In Fig. 8, we show the generation failures.
For some relatively complex driving scenarios, the exist-
ing methods, including ours, still make some mistakes. In
the first case of ego-level prediction, the network predicted
the stooped ego vehicle to be turning because the slightly
movement of the ego vehicle. In the second and third cases
of object-level perception and prediction, both our method
and InstructBLIP misjudged the moving status of the re-
ferred object due to the relative displacement of the ego car.
Besides, the VLMs seem likely to miss recognition when
opposed to distant risk objects, as illustrated in the fourth
case. These issues may be mitigated by targeted research to
enhance the features of distance objects and the encoding of
dynamic displacement of the ego vehicle in the future.



Ego-level Prediction
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[Question]: What is the moving status and motion [Response from ]: Itis turning. The
planning of the ego vehicle? motion is

[GT Response]: The ego vehicle is turning [Response from Ours]: The ego vehicle is turning left,
left. Its prediction motion is <MOT>. with predicted motion <MOT>.

Object-level Reasoning
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[Question]: Please analyze the risk of the referred [Response from ]: Yes. The referred
object. object is too close to ego.

[GT Response]: Yes, this object is a vehicle. It is
turning left on the same traffic lane with ego and getting
closer. A safe distance should be remained.

[Response from Ours]: The vehicle is turning left. The
distance is getting closer. Please mind the distance.

Ego-level Reasoning
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[Question]: What is the anticipated movement of [Response from ]: The ego vehicle will
ego vehicle and its reason? turn left.

[GT Response]: Yes, object <inst1> at <LOC> is on [Response from Ours]: An object located at <L.OC> is
the way of ego turning left and is too close. So ego too close to ego. So the ego vehicle should wait for its
vehicle should stop for safety. passing.

Scenario-level Reasoning
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[Question]: Can you identify any potential risks to [Response from ]: There is no risk in the
ego in the scenario? scenario.

[GT Response]: Yes, object <inst1> at <LOC> with a [Response from Ours]: An object located at <L.OC> with
trajectory <MOT> will merge into ego lane, motion <MOT> will merge into current lane. Please pay
necessitating close monitoring for potential risk. 12 attention to this vehicle.

Figure 7. Successful examples. Locations and motions are pictured in the first frame for better visualization. Ground truth in red color and
prediction in green color.



Ego-level Prediction

[Question]: What is the moving status and motion [Response from ]: 1t is moving forward.
planning of the ego vehicle?

[GT Response]: The ego vehicle is stopped. [Response from Ours]: The ego vehicle is turning left.
Its predicted motion is <MOT>,

Object-level Prediction
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[Question]: Will the referred object merged into [Response from ]: Yes.
current lane?

[GT Response]: No, this object will not merge into. ~ [Response from Ours]: Yes, this object will merge into
current ego lane.

Object-level Perception

[Question]: What is the moving status of the referred [Response from ]: It will turn left.
object?
[GT Response]: This object is turning right. [Response from Ours]: The referred object is a vehicle.

It will moving forward.

Scenario-level Reasoning
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[Question]: Can you identify any potential risks to [Response from ]: There is no risk in the
ego in the scenario? scenario.

[GT Response]: Yes, object <inst1>at <LOC>witha  [Response from Ours]: There is no object that poses
trajectory <MOT> will merge into ego lane, risks to ego vehicle.

necessitating close monitoring for potential risk. 13

Figure 8. Failure examples. Locations and motions are pictured in the first frame for better visualization. Ground truth in red color and
prediction in green color.
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